
Apache Impala Guide

 | Contents | ii

Contents

Introducing Apache Impala...13
Impala Benefits... 13
How Impala Works with Apache Hadoop...13
Primary Impala Features...14

Impala Concepts and Architecture...14
Components of the Impala Server..14

The Impala Daemon... 14
The Impala Statestore... 15
The Impala Catalog Service... 15

Developing Impala Applications.. 16
Overview of the Impala SQL Dialect.. 16
Overview of Impala Programming Interfaces..17

How Impala Fits Into the Hadoop Ecosystem... 17
How Impala Works with Hive... 17
Overview of Impala Metadata and the Metastore..18
How Impala Uses HDFS..18
How Impala Uses HBase... 18

Planning for Impala Deployment..18
Impala Requirements.. 18

Supported Operating Systems.. 18
Hive Metastore and Related Configuration..19
Java Dependencies.. 19
Networking Configuration Requirements...19
Hardware Requirements..20
User Account Requirements...20

Cluster Sizing Guidelines for Impala...20
Guidelines for Designing Impala Schemas.. 22

Installing Impala... 24
What is Included in an Impala Installation..24

Managing Impala..25
Post-Installation Configuration for Impala...25
Configuring Impala to Work with ODBC... 26
Configuring Impala to Work with JDBC...27

Configuring the JDBC Port..27
Choosing the JDBC Driver.. 27
Enabling Impala JDBC Support on Client Systems.. 27
Establishing JDBC Connections...28
Notes about JDBC and ODBC Interaction with Impala SQL Features... 29
Kudu Considerations for DML Statements..30

 | Contents | iii

Upgrading Impala...30
Upgrading Impala... 30

Starting Impala... 31
Starting Impala from the Command Line.. 31
Modifying Impala Startup Options.. 32

Configuring Impala Startup Options through the Command Line...32
Checking the Values of Impala Configuration Options...34
Startup Options for impalad Daemon.. 34
Startup Options for statestored Daemon.. 34
Startup Options for catalogd Daemon..34

Impala Tutorials... 35
Tutorials for Getting Started.. 35

Explore a New Impala Instance... 35
Load CSV Data from Local Files.. 40
Point an Impala Table at Existing Data Files.. 42
Describe the Impala Table..44
Query the Impala Table..44
Data Loading and Querying Examples.. 45

Advanced Tutorials...47
Attaching an External Partitioned Table to an HDFS Directory Structure.. 47
Switching Back and Forth Between Impala and Hive...50
Cross Joins and Cartesian Products with the CROSS JOIN Operator...50

Dealing with Parquet Files with Unknown Schema.. 52

Impala Administration... 67
Admission Control and Query Queuing...67

Overview of Impala Admission Control.. 68
Concurrent Queries and Admission Control.. 68
Memory Limits and Admission Control.. 68
How Impala Admission Control Relates to Other Resource Management Tools..................................69
How Impala Schedules and Enforces Limits on Concurrent Queries..69
How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2).............................69
SQL and Schema Considerations for Admission Control... 70
Configuring Admission Control... 70

Resource Management for Impala... 76
How Resource Limits Are Enforced..76
impala-shell Query Options for Resource Management.. 76
Limitations of Resource Management for Impala... 76

Setting Timeout Periods for Daemons, Queries, and Sessions..76
Increasing the Statestore Timeout.. 76
Setting the Idle Query and Idle Session Timeouts for impalad... 77
Setting Timeout and Retries for Thrift Connections to the Backend Client.. 77
Cancelling a Query... 77

Using Impala through a Proxy for High Availability..78
Overview of Proxy Usage and Load Balancing for Impala...78
Special Proxy Considerations for Clusters Using Kerberos.. 79
Example of Configuring HAProxy Load Balancer for Impala.. 79

Managing Disk Space for Impala Data..81

 | Contents | iv

Impala Security... 82
Security Guidelines for Impala.. 83
Securing Impala Data and Log Files... 84
Installation Considerations for Impala Security...84
Securing the Hive Metastore Database.. 85
Securing the Impala Web User Interface...85
Configuring TLS/SSL for Impala.. 85

Using the Command Line.. 85
Using TLS/SSL with Business Intelligence Tools...86
Specifying TLS/SSL Minimum Allowed Version and Ciphers...86

Enabling Sentry Authorization for Impala...87
The Sentry Privilege Model... 87
Starting the impalad Daemon with Sentry Authorization Enabled..88
Using Impala with the Sentry Service (Impala 1.4 or higher only)...89
Using Impala with the Sentry Policy File..89
Setting Up Schema Objects for a Secure Impala Deployment.. 94
Privilege Model and Object Hierarchy.. 94
Debugging Failed Sentry Authorization Requests... 97
The DEFAULT Database in a Secure Deployment...98

Impala Authentication...98
Enabling Kerberos Authentication for Impala... 98
Enabling LDAP Authentication for Impala... 101
Using Multiple Authentication Methods with Impala..103
Configuring Impala Delegation for Hue and BI Tools.. 104

Auditing Impala Operations... 104
Durability and Performance Considerations for Impala Auditing... 104
Format of the Audit Log Files... 105
Which Operations Are Audited..105

Viewing Lineage Information for Impala Data... 106

Impala SQL Language Reference...106
Comments..107
Data Types.. 107

ARRAY Complex Type (Impala 2.3 or higher only).. 108
BIGINT Data Type...111
BOOLEAN Data Type... 112
CHAR Data Type (Impala 2.0 or higher only)..113
DECIMAL Data Type (Impala 1.4 or higher only)...117
DOUBLE Data Type.. 125
FLOAT Data Type... 126
INT Data Type..127
MAP Complex Type (Impala 2.3 or higher only)... 128
REAL Data Type..132
SMALLINT Data Type.. 133
STRING Data Type..134
STRUCT Complex Type (Impala 2.3 or higher only)...135
TIMESTAMP Data Type... 141
TINYINT Data Type.. 149
VARCHAR Data Type (Impala 2.0 or higher only)..150
Complex Types (Impala 2.3 or higher only)... 152

Literals...183
Numeric Literals... 183
String Literals..184

 | Contents | v

Boolean Literals.. 186
Timestamp Literals... 186
NULL.. 186

SQL Operators.. 187
Arithmetic Operators.. 187
BETWEEN Operator.. 190
Comparison Operators.. 192
EXISTS Operator..193
ILIKE Operator...196
IN Operator... 197
IREGEXP Operator.. 200
IS DISTINCT FROM Operator..201
IS NULL Operator..203
IS TRUE Operator..203
LIKE Operator.. 204
Logical Operators..205
REGEXP Operator..208
RLIKE Operator..209

Impala Schema Objects and Object Names... 210
Overview of Impala Aliases...211
Overview of Impala Databases.. 212
Overview of Impala Functions...212
Overview of Impala Identifiers.. 213
Overview of Impala Tables.. 214
Overview of Impala Views.. 219

Impala SQL Statements.. 223
DDL Statements..223
DML Statements... 224
ALTER TABLE Statement.. 225
ALTER VIEW Statement...239
COMPUTE STATS Statement...240
CREATE DATABASE Statement... 247
CREATE FUNCTION Statement...250
CREATE ROLE Statement (Impala 2.0 or higher only)... 256
CREATE TABLE Statement..256
CREATE VIEW Statement.. 271
DELETE Statement (Impala 2.8 or higher only)...273
DESCRIBE Statement.. 274
DROP DATABASE Statement.. 286
DROP FUNCTION Statement... 288
DROP ROLE Statement (Impala 2.0 or higher only)..290
DROP STATS Statement... 290
DROP TABLE Statement...295
DROP VIEW Statement... 296
EXPLAIN Statement.. 297
GRANT Statement (Impala 2.0 or higher only).. 300
INSERT Statement..301
INVALIDATE METADATA Statement..310
LOAD DATA Statement.. 313
REFRESH Statement.. 317
REVOKE Statement (Impala 2.0 or higher only)..321
SELECT Statement...322
SET Statement.. 355
SHOW Statement..394
TRUNCATE TABLE Statement (Impala 2.3 or higher only)... 413
UPDATE Statement (Impala 2.8 or higher only).. 415

 | Contents | vi

UPSERT Statement (Impala 2.8 or higher only)... 417
USE Statement.. 418

Impala Built-In Functions...418
Impala Mathematical Functions... 420
Impala Bit Functions.. 437
Impala Type Conversion Functions... 449
Impala Date and Time Functions... 453
Impala Conditional Functions.. 504
Impala String Functions..510
Impala Miscellaneous Functions.. 535
Impala Aggregate Functions...537
Impala Analytic Functions..568
Impala User-Defined Functions (UDFs).. 587

SQL Differences Between Impala and Hive..604
HiveQL Features not Available in Impala... 604
Semantic Differences Between Impala and HiveQL Features...605

Porting SQL from Other Database Systems to Impala..606
Porting DDL and DML Statements... 606
Porting Data Types from Other Database Systems..606
SQL Statements to Remove or Adapt..609
SQL Constructs to Doublecheck.. 610
Next Porting Steps after Verifying Syntax and Semantics.. 611

Using the Impala Shell (impala-shell Command)..611
impala-shell Configuration Options... 612

Summary of impala-shell Configuration Options.. 612
impala-shell Configuration File..615

Connecting to impalad through impala-shell... 616
Running Commands and SQL Statements in impala-shell..618

Rerunning impala-shell Commands... 622
impala-shell Command Reference..623

Tuning Impala for Performance... 626
Impala Performance Guidelines and Best Practices...627
Performance Considerations for Join Queries..629

How Joins Are Processed when Statistics Are Unavailable.. 630
Overriding Join Reordering with STRAIGHT_JOIN.. 630
Examples of Join Order Optimization..630

Table and Column Statistics...636
Overview of Table Statistics.. 636
Overview of Column Statistics.. 637
How Table and Column Statistics Work for Partitioned Tables..638
Overview of Incremental Statistics.. 641
Generating Table and Column Statistics (COMPUTE STATS Statement)... 642
Detecting Missing Statistics... 642
Keeping Statistics Up to Date.. 645
Setting the NUMROWS Value Manually through ALTER TABLE...645
Setting Column Stats Manually through ALTER TABLE.. 646
Examples of Using Table and Column Statistics with Impala.. 646

Benchmarking Impala Queries... 650
Controlling Impala Resource Usage...651
Runtime Filtering for Impala Queries (Impala 2.5 or higher only)... 651

Background Information for Runtime Filtering... 651
Runtime Filtering Internals...652

 | Contents | vii

File Format Considerations for Runtime Filtering...653
Wait Intervals for Runtime Filters... 653
Query Options for Runtime Filtering...653
Runtime Filtering and Query Plans..653
Examples of Queries that Benefit from Runtime Filtering..654
Tuning and Troubleshooting Queries that Use Runtime Filtering...655
Limitations and Restrictions for Runtime Filtering... 656

Using HDFS Caching with Impala (Impala 2.1 or higher only)... 656
Overview of HDFS Caching for Impala.. 656
Setting Up HDFS Caching for Impala...657
Enabling HDFS Caching for Impala Tables and Partitions... 657
Loading and Removing Data with HDFS Caching Enabled..658
Administration for HDFS Caching with Impala.. 659
Performance Considerations for HDFS Caching with Impala... 660

Testing Impala Performance...661
Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles...662

Using the EXPLAIN Plan for Performance Tuning.. 663
Using the SUMMARY Report for Performance Tuning... 663
Using the Query Profile for Performance Tuning... 664

Detecting and Correcting HDFS Block Skew Conditions...671

Scalability Considerations for Impala.. 672
Impact of Many Tables or Partitions on Impala Catalog Performance and Memory Usage............................672
Scalability Considerations for the Impala Statestore... 673
Controlling which Hosts are Coordinators and Executors...674
Effect of Buffer Pool on Memory Usage (Impala 2.10 and higher)..674
SQL Operations that Spill to Disk...675
Limits on Query Size and Complexity.. 678
Scalability Considerations for Impala I/O..678
Scalability Considerations for Table Layout..679
Kerberos-Related Network Overhead for Large Clusters.. 679
Kerberos-Related Memory Overhead for Large Clusters.. 679
Avoiding CPU Hotspots for HDFS Cached Data..680
Scalability Considerations for NameNode Traffic with File Handle Caching...680

Partitioning for Impala Tables..681
When to Use Partitioned Tables.. 681
SQL Statements for Partitioned Tables..682
Static and Dynamic Partitioning Clauses...682
Refreshing a Single Partition..683
Permissions for Partition Subdirectories.. 683
Partition Pruning for Queries... 683

Checking if Partition Pruning Happens for a Query..683
What SQL Constructs Work with Partition Pruning..684
Dynamic Partition Pruning... 685

Partition Key Columns... 686
Setting Different File Formats for Partitions... 687
Managing Partitions.. 687
Using Partitioning with Kudu Tables...688
Keeping Statistics Up to Date for Partitioned Tables..688

How Impala Works with Hadoop File Formats.. 690
Choosing the File Format for a Table... 691

 | Contents | viii

Using Text Data Files with Impala Tables.. 692
Query Performance for Impala Text Tables.. 692
Creating Text Tables.. 693
Data Files for Text Tables... 694
Loading Data into Impala Text Tables.. 695
Using LZO-Compressed Text Files... 696
Using gzip, bzip2, or Snappy-Compressed Text Files...698

Using the Parquet File Format with Impala Tables...699
Creating Parquet Tables in Impala...700
Loading Data into Parquet Tables..701
Query Performance for Impala Parquet Tables..702
Snappy and GZip Compression for Parquet Data Files...704
Parquet Tables for Impala Complex Types... 707
Exchanging Parquet Data Files with Other Hadoop Components... 707
How Parquet Data Files Are Organized.. 709
Compacting Data Files for Parquet Tables.. 711
Schema Evolution for Parquet Tables..711
Data Type Considerations for Parquet Tables... 713

Using the Avro File Format with Impala Tables...714
Creating Avro Tables..714
Using a Hive-Created Avro Table in Impala...716
Specifying the Avro Schema through JSON... 716
Loading Data into an Avro Table.. 717
Enabling Compression for Avro Tables...717
How Impala Handles Avro Schema Evolution.. 717
Data Type Considerations for Avro Tables... 718
Query Performance for Impala Avro Tables... 719

Using the RCFile File Format with Impala Tables... 719
Creating RCFile Tables and Loading Data..719
Enabling Compression for RCFile Tables... 720
Query Performance for Impala RCFile Tables.. 721

Using the SequenceFile File Format with Impala Tables..722
Creating SequenceFile Tables and Loading Data.. 722
Enabling Compression for SequenceFile Tables..723
Query Performance for Impala SequenceFile Tables.. 724

Using Impala to Query Kudu Tables... 724
Benefits of Using Kudu Tables with Impala... 724
Configuring Impala for Use with Kudu...724

Cluster Topology for Kudu Tables.. 725
Impala DDL Enhancements for Kudu Tables (CREATE TABLE and ALTER TABLE)...............................725

Primary Key Columns for Kudu Tables.. 725
Kudu-Specific Column Attributes for CREATE TABLE..726
Partitioning for Kudu Tables..730
Handling Date, Time, or Timestamp Data with Kudu...733
How Impala Handles Kudu Metadata.. 735

Loading Data into Kudu Tables...736
Impala DML Support for Kudu Tables (INSERT, UPDATE, DELETE, UPSERT).......................................736
Consistency Considerations for Kudu Tables.. 737
Security Considerations for Kudu Tables.. 737
Impala Query Performance for Kudu Tables...737

Using Impala to Query HBase Tables..738
Overview of Using HBase with Impala...738

 | Contents | ix

Configuring HBase for Use with Impala... 739
Supported Data Types for HBase Columns...739
Performance Considerations for the Impala-HBase Integration.. 739
Use Cases for Querying HBase through Impala..745
Loading Data into an HBase Table..745
Limitations and Restrictions of the Impala and HBase Integration...745
Examples of Querying HBase Tables from Impala... 746

Using Impala with the Amazon S3 Filesystem.. 748
How Impala SQL Statements Work with S3...748
Specifying Impala Credentials to Access Data in S3.. 749
Loading Data into S3 for Impala Queries..749

Using Impala DML Statements for S3 Data..749
Manually Loading Data into Impala Tables on S3..750

Creating Impala Databases, Tables, and Partitions for Data Stored on S3..750
Internal and External Tables Located on S3..752
Running and Tuning Impala Queries for Data Stored on S3.. 754

Understanding and Tuning Impala Query Performance for S3 Data...754
Restrictions on Impala Support for S3...755
Best Practices for Using Impala with S3...755

Using Impala with the Azure Data Lake Store (ADLS)................................... 756
Prerequisites.. 756
How Impala SQL Statements Work with ADLS...756
Specifying Impala Credentials to Access Data in ADLS.. 757
Loading Data into ADLS for Impala Queries... 757

Using Impala DML Statements for ADLS Data..757
Manually Loading Data into Impala Tables on ADLS..757

Creating Impala Databases, Tables, and Partitions for Data Stored on ADLS..758
Internal and External Tables Located on ADLS..759
Running and Tuning Impala Queries for Data Stored on ADLS.. 761

Understanding and Tuning Impala Query Performance for ADLS Data...762
Restrictions on Impala Support for ADLS.. 762
Best Practices for Using Impala with ADLS...763

Using Impala with Isilon Storage... 763

Using Impala Logging.. 764
Locations and Names of Impala Log Files..764
Managing Impala Logs...765
Rotating Impala Logs... 765
Reviewing Impala Logs..765
Understanding Impala Log Contents..766
Setting Logging Levels...766
Redacting Sensitive Information from Impala Log Files.. 767

Troubleshooting Impala... 767
Troubleshooting Impala SQL Syntax Issues..767
Troubleshooting I/O Capacity Problems..767
Impala Troubleshooting Quick Reference..768
Impala Web User Interface for Debugging..770

 | Contents | x

Debug Web UI for impalad... 771
Breakpad Minidumps for Impala (Impala 2.6 or higher only).. 772

Enabling or Disabling Minidump Generation..773
Specifying the Location for Minidump Files...773
Controlling the Number of Minidump Files.. 773
Detecting Crash Events.. 773
Demonstration of Breakpad Feature...773

Ports Used by Impala...775

Impala Reserved Words...776
List of Current Reserved Words.. 777
Planning for Future Reserved Words...780

Impala Frequently Asked Questions.. 782

Impala Release Notes... 782
Impala Release Notes... 782
New Features in Apache Impala.. 782

New Features in Impala 2.11... 782
New Features in Impala 2.10... 782
New Features in Impala 2.9... 782
New Features in Impala 2.8... 783
New Features in Impala 2.7... 785
New Features in Impala 2.6... 785
New Features in Impala 2.5... 787
New Features in Impala 2.4... 790
New Features in Impala 2.3... 790
New Features in Impala 2.8... 792
New Features in Impala 2.1... 794
New Features in Impala 2.0... 794
New Features in Impala 1.4... 796
New Features in Impala 1.3.2.. 797
New Features in Impala 1.3.1.. 798
New Features in Impala 1.3... 798
New Features in Impala 1.2.4.. 799
New Features in Impala 1.2.3.. 799
New Features in Impala 1.2.2.. 799
New Features in Impala 1.2.1.. 800
New Features in Impala 1.2.0 (Beta)... 801
New Features in Impala 1.1.1.. 803
New Features in Impala 1.1... 803
New Features in Impala 1.0.1.. 804
New Features in Impala 1.0... 804
New Features in Version 0.7 of the Impala Beta Release... 804
New Features in Version 0.6 of the Impala Beta Release... 805
New Features in Version 0.5 of the Impala Beta Release... 805
New Features in Version 0.4 of the Impala Beta Release... 805
New Features in Version 0.3 of the Impala Beta Release... 805
New Features in Version 0.2 of the Impala Beta Release... 805

Incompatible Changes and Limitations in Apache Impala.. 805
Incompatible Changes Introduced in Impala 2.11.x.. 805

 | Contents | xi

Incompatible Changes Introduced in Impala 2.10.x.. 806
Incompatible Changes Introduced in Impala 2.9.x.. 806
Incompatible Changes Introduced in Impala 2.8.x.. 806
Incompatible Changes Introduced in Impala 2.7.x.. 806
Incompatible Changes Introduced in Impala 2.6.x.. 806
Incompatible Changes Introduced in Impala 2.5.x.. 807
Incompatible Changes Introduced in Impala 2.4.x.. 808
Incompatible Changes Introduced in Impala 2.3.x.. 808
Incompatible Changes Introduced in Impala 2.2.x.. 809
Incompatible Changes Introduced in Impala 2.1.x.. 809
Incompatible Changes Introduced in Impala 2.0.5.. 809
Incompatible Changes Introduced in Impala 2.0.4.. 809
Incompatible Changes Introduced in Impala 2.0.3.. 809
Incompatible Changes Introduced in Impala 2.0.2.. 809
Incompatible Changes Introduced in Impala 2.0.1.. 810
Incompatible Changes Introduced in Impala 2.0.0.. 810
Incompatible Changes Introduced in Impala 1.4.4.. 811
Incompatible Changes Introduced in Impala 1.4.3.. 811
Incompatible Changes Introduced in Impala 1.4.2.. 811
Incompatible Changes Introduced in Impala 1.4.1.. 811
Incompatible Changes Introduced in Impala 1.4.0.. 812
Incompatible Changes Introduced in Impala 1.3.3.. 812
Incompatible Changes Introduced in Impala 1.3.2.. 812
Incompatible Changes Introduced in Impala 1.3.1.. 812
Incompatible Changes Introduced in Impala 1.3.0.. 812
Incompatible Changes Introduced in Impala 1.2.4.. 813
Incompatible Changes Introduced in Impala 1.2.3.. 813
Incompatible Changes Introduced in Impala 1.2.2.. 813
Incompatible Changes Introduced in Impala 1.2.1.. 814
Incompatible Changes Introduced in Impala 1.2.0 (Beta)... 814
Incompatible Changes Introduced in Impala 1.1.1.. 815
Incompatible Change Introduced in Impala 1.1...815
Incompatible Changes Introduced in Impala 1.0... 815

Known Issues and Workarounds in Impala... 815
Impala Known Issues: Startup..815
Impala Known Issues: Crashes and Hangs.. 816
Impala Known Issues: Performance...817
Impala Known Issues: Usability...818
Impala Known Issues: JDBC and ODBC Drivers... 819
Impala Known Issues: Security..819
Impala Known Issues: Resources...819
Impala Known Issues: Correctness.. 822
Impala Known Issues: Metadata.. 828
Impala Known Issues: Interoperability.. 828
Impala Known Issues: Limitations...830
Impala Known Issues: Miscellaneous / Older Issues...830

Fixed Issues in Apache Impala.. 831
Issues Fixed in Impala 2.1.10.. 831
Issues Fixed in Impala 2.10.0.. 831
Issues Fixed in Impala 2.9.0.. 831
Issues Fixed in Impala 2.8.0.. 832
Issues Fixed in Impala 2.7.0.. 832
Issues Fixed in Impala 2.6.3.. 832
Issues Fixed in Impala 2.6.2.. 832
Issues Fixed in Impala 2.6.0.. 832
Issues Fixed in Impala 2.5.4.. 833

Issues Fixed in Impala 2.5.2.. 833
Issues Fixed in Impala 2.5.1.. 833
Issues Fixed in Impala 2.5.0.. 833
Issues Fixed in Impala 2.4.1.. 836
Issues Fixed in Impala 2.4.0.. 836
Issues Fixed in Impala 2.3.4.. 836
Issues Fixed in Impala 2.3.2.. 836
Issues Fixed in Impala 2.3.1.. 839
Issues Fixed in Impala 2.3.0.. 839
Issues Fixed in Impala 2.2.10.. 839
Issues Fixed in Impala 2.2.9.. 839
Issues Fixed in Impala 2.2.8.. 841
Issues Fixed in Impala 2.2.7.. 842
Issues Fixed in Impala Impala 2.2.5.. 843
Issues Fixed in Impala 2.2.3.. 844
Issues Fixed in Impala 2.2.1.. 845
Issues Fixed in Impala 2.2.0.. 845
Issues Fixed in Impala 2.1.10.. 846
Issues Fixed in Impala 2.1.7.. 846
Issues Fixed in Impala 2.1.6.. 847
Issues Fixed in Impala 2.1.5.. 847
Issues Fixed in Impala 2.1.4.. 847
Issues Fixed in Impala 2.1.3.. 848
Issues Fixed in Impala 2.1.2.. 849
Issues Fixed in Impala 2.1.1.. 850
Issues Fixed in Impala 2.1.0.. 850
Issues Fixed in Impala 2.0.5.. 851
Issues Fixed in Impala 2.0.4.. 851
Issues Fixed in Impala 2.0.3.. 851
Issues Fixed in Impala 2.0.2.. 852
Issues Fixed in Impala 2.0.1.. 852
Issues Fixed in Impala 2.0.0.. 853
Issues Fixed in Impala 1.4.4.. 854
Issues Fixed in Impala 1.4.3.. 854
Issues Fixed in Impala 1.4.2.. 854
Issues Fixed in Impala 1.4.1.. 854
Issues Fixed in Impala 1.4.0.. 855
Issues Fixed in Impala 1.3.3.. 857
Issues Fixed in Impala 1.3.2.. 857
Issues Fixed in Impala 1.3.1.. 857
Issues Fixed in Impala 1.3.0.. 858
Issues Fixed in the 1.2.4 Release...860
Issues Fixed in the 1.2.3 Release...861
Issues Fixed in the 1.2.2 Release...861
Issues Fixed in the 1.2.1 Release...862
Issues Fixed in the 1.2.0 Beta Release.. 863
Issues Fixed in the 1.1.1 Release...863
Issues Fixed in the 1.1.0 Release...864
Issues Fixed in the 1.0.1 Release...865
Issues Fixed in the 1.0 GA Release...866
Issues Fixed in Version 0.7 of the Beta Release... 868
Issues Fixed in Version 0.6 of the Beta Release... 869
Issues Fixed in Version 0.5 of the Beta Release... 870
Issues Fixed in Version 0.4 of the Beta Release... 871
Issues Fixed in Version 0.3 of the Beta Release... 871
Issues Fixed in Version 0.2 of the Beta Release... 872

 | Introducing Apache Impala | 13

Introducing Apache Impala

Impala provides fast, interactive SQL queries directly on your Apache Hadoop data stored in HDFS, HBase, or the
Amazon Simple Storage Service (S3). In addition to using the same unified storage platform, Impala also uses the
same metadata, SQL syntax (Hive SQL), ODBC driver, and user interface (Impala query UI in Hue) as Apache Hive.
This provides a familiar and unified platform for real-time or batch-oriented queries.

Impala is an addition to tools available for querying big data. Impala does not replace the batch processing
frameworks built on MapReduce such as Hive. Hive and other frameworks built on MapReduce are best suited for
long running batch jobs, such as those involving batch processing of Extract, Transform, and Load (ETL) type jobs.

Note: Impala graduated from the Apache Incubator on November 15, 2017. In places where the documentation
formerly referred to “Cloudera Impala”, now the official name is “Apache Impala”.

Impala Benefits
Impala provides:

• Familiar SQL interface that data scientists and analysts already know.
• Ability to query high volumes of data (“big data”) in Apache Hadoop.
• Distributed queries in a cluster environment, for convenient scaling and to make use of cost-effective commodity

hardware.
• Ability to share data files between different components with no copy or export/import step; for example, to write

with Pig, transform with Hive and query with Impala. Impala can read from and write to Hive tables, enabling
simple data interchange using Impala for analytics on Hive-produced data.

• Single system for big data processing and analytics, so customers can avoid costly modeling and ETL just for
analytics.

How Impala Works with Apache Hadoop
The Impala solution is composed of the following components:

• Clients - Entities including Hue, ODBC clients, JDBC clients, and the Impala Shell can all interact with Impala.
These interfaces are typically used to issue queries or complete administrative tasks such as connecting to Impala.

• Hive Metastore - Stores information about the data available to Impala. For example, the metastore lets Impala
know what databases are available and what the structure of those databases is. As you create, drop, and alter
schema objects, load data into tables, and so on through Impala SQL statements, the relevant metadata changes are
automatically broadcast to all Impala nodes by the dedicated catalog service introduced in Impala 1.2.

• Impala - This process, which runs on DataNodes, coordinates and executes queries. Each instance of Impala can
receive, plan, and coordinate queries from Impala clients. Queries are distributed among Impala nodes, and these
nodes then act as workers, executing parallel query fragments.

• HBase and HDFS - Storage for data to be queried.

Queries executed using Impala are handled as follows:

1. User applications send SQL queries to Impala through ODBC or JDBC, which provide standardized querying
interfaces. The user application may connect to any impalad in the cluster. This impalad becomes the
coordinator for the query.

2. Impala parses the query and analyzes it to determine what tasks need to be performed by impalad instances
across the cluster. Execution is planned for optimal efficiency.

3. Services such as HDFS and HBase are accessed by local impalad instances to provide data.
4. Each impalad returns data to the coordinating impalad, which sends these results to the client.

 | Impala Concepts and Architecture | 14

Primary Impala Features
Impala provides support for:

• Most common SQL-92 features of Hive Query Language (HiveQL) including SELECT, joins, and aggregate
functions.

• HDFS, HBase, and Amazon Simple Storage System (S3) storage, including:

• HDFS file formats: delimited text files, Parquet, Avro, SequenceFile, and RCFile.
• Compression codecs: Snappy, GZIP, Deflate, BZIP.

• Common data access interfaces including:

• JDBC driver.
• ODBC driver.
• Hue Beeswax and the Impala Query UI.

• impala-shell command-line interface.
• Kerberos authentication.

Impala Concepts and Architecture

The following sections provide background information to help you become productive using Impala and its
features. Where appropriate, the explanations include context to help understand how aspects of Impala relate to
other technologies you might already be familiar with, such as relational database management systems and data
warehouses, or other Hadoop components such as Hive, HDFS, and HBase.

Components of the Impala Server
The Impala server is a distributed, massively parallel processing (MPP) database engine. It consists of different
daemon processes that run on specific hosts within your cluster.

The Impala Daemon

The core Impala component is a daemon process that runs on each DataNode of the cluster, physically represented
by the impalad process. It reads and writes to data files; accepts queries transmitted from the impala-shell
command, Hue, JDBC, or ODBC; parallelizes the queries and distributes work across the cluster; and transmits
intermediate query results back to the central coordinator node.

You can submit a query to the Impala daemon running on any DataNode, and that instance of the daemon serves as
the coordinator node for that query. The other nodes transmit partial results back to the coordinator, which constructs
the final result set for a query. When running experiments with functionality through the impala-shell command,
you might always connect to the same Impala daemon for convenience. For clusters running production workloads,
you might load-balance by submitting each query to a different Impala daemon in round-robin style, using the JDBC
or ODBC interfaces.

The Impala daemons are in constant communication with the statestore, to confirm which nodes are healthy and can
accept new work.

They also receive broadcast messages from the catalogd daemon (introduced in Impala 1.2) whenever any Impala
node in the cluster creates, alters, or drops any type of object, or when an INSERT or LOAD DATA statement is
processed through Impala. This background communication minimizes the need for REFRESH or INVALIDATE
METADATA statements that were needed to coordinate metadata across nodes prior to Impala 1.2.

 | Impala Concepts and Architecture | 15

In Impala 2.9 and higher, you can control which hosts act as query coordinators and which act as query executors, to
improve scalability for highly concurrent workloads on large clusters. See Scalability Considerations for Impala on
page 672 for details.

Related information: Modifying Impala Startup Options on page 32, Starting Impala on page 31, Setting
the Idle Query and Idle Session Timeouts for impalad on page 77, Ports Used by Impala on page 775, Using
Impala through a Proxy for High Availability on page 78

The Impala Statestore

The Impala component known as the statestore checks on the health of Impala daemons on all the DataNodes in
a cluster, and continuously relays its findings to each of those daemons. It is physically represented by a daemon
process named statestored; you only need such a process on one host in the cluster. If an Impala daemon goes
offline due to hardware failure, network error, software issue, or other reason, the statestore informs all the other
Impala daemons so that future queries can avoid making requests to the unreachable node.

Because the statestore's purpose is to help when things go wrong, it is not critical to the normal operation of an Impala
cluster. If the statestore is not running or becomes unreachable, the Impala daemons continue running and distributing
work among themselves as usual; the cluster just becomes less robust if other Impala daemons fail while the statestore
is offline. When the statestore comes back online, it re-establishes communication with the Impala daemons and
resumes its monitoring function.

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored
and catalogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in data loss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a
different host, and restart the Impala service.

Related information:

Scalability Considerations for the Impala Statestore on page 673, Modifying Impala Startup Options on page
32, Starting Impala on page 31, Increasing the Statestore Timeout on page 76, Ports Used by Impala on
page 775

The Impala Catalog Service

The Impala component known as the catalog service relays the metadata changes from Impala SQL statements to all
the DataNodes in a cluster. It is physically represented by a daemon process named catalogd; you only need such
a process on one host in the cluster. Because the requests are passed through the statestore daemon, it makes sense to
run the statestored and catalogd services on the same host.

The catalog service avoids the need to issue REFRESH and INVALIDATE METADATA statements when the
metadata changes are performed by statements issued through Impala. When you create a table, load data, and so on
through Hive, you do need to issue REFRESH or INVALIDATE METADATA on an Impala node before executing a
query there.

This feature touches a number of aspects of Impala:

• See Installing Impala on page 24, Upgrading Impala on page 30 and Starting Impala on page 31, for
usage information for the catalogd daemon.

• The REFRESH and INVALIDATE METADATA statements are not needed when the CREATE TABLE, INSERT,
or other table-changing or data-changing operation is performed through Impala. These statements are still needed
if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the
statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement on
page 317 and INVALIDATE METADATA Statement on page 310 for the latest usage information for those
statements.

By default, the metadata loading and caching on startup happens asynchronously, so Impala can begin accepting
requests promptly. To enable the original behavior, where Impala waited until all metadata was loaded before
accepting any requests, set the catalogd configuration option --load_catalog_in_background=false.

 | Impala Concepts and Architecture | 16

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored
and catalogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in data loss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a
different host, and restart the Impala service.

Note:

In Impala 1.2.4 and higher, you can specify a table name with INVALIDATE METADATA after the table is created
in Hive, allowing you to make individual tables visible to Impala without doing a full reload of the catalog metadata.
Impala 1.2.4 also includes other changes to make the metadata broadcast mechanism faster and more responsive,
especially during Impala startup. See New Features in Impala 1.2.4 on page 799 for details.

Related information: Modifying Impala Startup Options on page 32, Starting Impala on page 31, Ports
Used by Impala on page 775

Developing Impala Applications
The core development language with Impala is SQL. You can also use Java or other languages to interact with Impala
through the standard JDBC and ODBC interfaces used by many business intelligence tools. For specialized kinds of
analysis, you can supplement the SQL built-in functions by writing user-defined functions (UDFs) in C++ or Java.

Overview of the Impala SQL Dialect

The Impala SQL dialect is highly compatible with the SQL syntax used in the Apache Hive component (HiveQL).
As such, it is familiar to users who are already familiar with running SQL queries on the Hadoop infrastructure.
Currently, Impala SQL supports a subset of HiveQL statements, data types, and built-in functions. Impala also
includes additional built-in functions for common industry features, to simplify porting SQL from non-Hadoop
systems.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might seem familiar:

• The SELECT statement includes familiar clauses such as WHERE, GROUP BY, ORDER BY, and WITH. You
will find familiar notions such as joins, built-in functions for processing strings, numbers, and dates, aggregate
functions, subqueries, and comparison operators such as IN() and BETWEEN. The SELECT statement is the
place where SQL standards compliance is most important.

• From the data warehousing world, you will recognize the notion of partitioned tables. One or more columns
serve as partition keys, and the data is physically arranged so that queries that refer to the partition key columns
in the WHERE clause can skip partitions that do not match the filter conditions. For example, if you have 10 years
worth of data and use a clause such as WHERE year = 2015, WHERE year > 2010, or WHERE year IN
(2014, 2015), Impala skips all the data for non-matching years, greatly reducing the amount of I/O for the
query.

• In Impala 1.2 and higher, UDFs let you perform custom comparisons and transformation logic during SELECT
and INSERT...SELECT statements.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might require some learning and practice for you to become proficient in the Hadoop environment:

• Impala SQL is focused on queries and includes relatively little DML. There is no UPDATE or DELETE statement.
Stale data is typically discarded (by DROP TABLE or ALTER TABLE ... DROP PARTITION statements) or
replaced (by INSERT OVERWRITE statements).

• All data creation is done by INSERT statements, which typically insert data in bulk by querying from other tables.
There are two variations, INSERT INTO which appends to the existing data, and INSERT OVERWRITE which
replaces the entire contents of a table or partition (similar to TRUNCATE TABLE followed by a new INSERT).
Although there is an INSERT ... VALUES syntax to create a small number of values in a single statement, it is
far more efficient to use the INSERT ... SELECT to copy and transform large amounts of data from one table
to another in a single operation.

 | Impala Concepts and Architecture | 17

• You often construct Impala table definitions and data files in some other environment, and then attach Impala so
that it can run real-time queries. The same data files and table metadata are shared with other components of the
Hadoop ecosystem. In particular, Impala can access tables created by Hive or data inserted by Hive, and Hive can
access tables and data produced by Impala. Many other Hadoop components can write files in formats such as
Parquet and Avro, that can then be queried by Impala.

• Because Hadoop and Impala are focused on data warehouse-style operations on large data sets, Impala SQL
includes some idioms that you might find in the import utilities for traditional database systems. For example, you
can create a table that reads comma-separated or tab-separated text files, specifying the separator in the CREATE
TABLE statement. You can create external tables that read existing data files but do not move or transform them.

• Because Impala reads large quantities of data that might not be perfectly tidy and predictable, it does not require
length constraints on string data types. For example, you can define a database column as STRING with unlimited
length, rather than CHAR(1) or VARCHAR(64). (Although in Impala 2.0 and later, you can also use length-
constrained CHAR and VARCHAR types.)

Related information: Impala SQL Language Reference on page 106, especially Impala SQL Statements on page
223 and Impala Built-In Functions on page 418

Overview of Impala Programming Interfaces

You can connect and submit requests to the Impala daemons through:

• The impala-shell interactive command interpreter.
• The Hue web-based user interface.
• JDBC.
• ODBC.

With these options, you can use Impala in heterogeneous environments, with JDBC or ODBC applications running on
non-Linux platforms. You can also use Impala on combination with various Business Intelligence tools that use the
JDBC and ODBC interfaces.

Each impalad daemon process, running on separate nodes in a cluster, listens to several ports for incoming
requests. Requests from impala-shell and Hue are routed to the impalad daemons through the same port. The
impalad daemons listen on separate ports for JDBC and ODBC requests.

How Impala Fits Into the Hadoop Ecosystem
Impala makes use of many familiar components within the Hadoop ecosystem. Impala can interchange data with
other Hadoop components, as both a consumer and a producer, so it can fit in flexible ways into your ETL and ELT
pipelines.

How Impala Works with Hive

A major Impala goal is to make SQL-on-Hadoop operations fast and efficient enough to appeal to new categories
of users and open up Hadoop to new types of use cases. Where practical, it makes use of existing Apache Hive
infrastructure that many Hadoop users already have in place to perform long-running, batch-oriented SQL queries.

In particular, Impala keeps its table definitions in a traditional MySQL or PostgreSQL database known as the
metastore, the same database where Hive keeps this type of data. Thus, Impala can access tables defined or loaded by
Hive, as long as all columns use Impala-supported data types, file formats, and compression codecs.

The initial focus on query features and performance means that Impala can read more types of data with the SELECT
statement than it can write with the INSERT statement. To query data using the Avro, RCFile, or SequenceFile file
formats, you load the data using Hive.

The Impala query optimizer can also make use of table statistics and column statistics. Originally, you gathered this
information with the ANALYZE TABLE statement in Hive; in Impala 1.2.2 and higher, use the Impala COMPUTE
STATS statement instead. COMPUTE STATS requires less setup, is more reliable, and does not require switching
back and forth between impala-shell and the Hive shell.

http://gethue.com/

 | Planning for Impala Deployment | 18

Overview of Impala Metadata and the Metastore

As discussed in How Impala Works with Hive on page 17, Impala maintains information about table definitions in
a central database known as the metastore. Impala also tracks other metadata for the low-level characteristics of data
files:

• The physical locations of blocks within HDFS.

For tables with a large volume of data and/or many partitions, retrieving all the metadata for a table can be time-
consuming, taking minutes in some cases. Thus, each Impala node caches all of this metadata to reuse for future
queries against the same table.

If the table definition or the data in the table is updated, all other Impala daemons in the cluster must receive the latest
metadata, replacing the obsolete cached metadata, before issuing a query against that table. In Impala 1.2 and higher,
the metadata update is automatic, coordinated through the catalogd daemon, for all DDL and DML statements
issued through Impala. See The Impala Catalog Service on page 15 for details.

For DDL and DML issued through Hive, or changes made manually to files in HDFS, you still use the REFRESH
statement (when new data files are added to existing tables) or the INVALIDATE METADATA statement (for entirely
new tables, or after dropping a table, performing an HDFS rebalance operation, or deleting data files). Issuing
INVALIDATE METADATA by itself retrieves metadata for all the tables tracked by the metastore. If you know that
only specific tables have been changed outside of Impala, you can issue REFRESH table_name for each affected
table to only retrieve the latest metadata for those tables.

How Impala Uses HDFS

Impala uses the distributed filesystem HDFS as its primary data storage medium. Impala relies on the redundancy
provided by HDFS to guard against hardware or network outages on individual nodes. Impala table data is physically
represented as data files in HDFS, using familiar HDFS file formats and compression codecs. When data files are
present in the directory for a new table, Impala reads them all, regardless of file name. New data is added in files with
names controlled by Impala.

How Impala Uses HBase

HBase is an alternative to HDFS as a storage medium for Impala data. It is a database storage system built on top of
HDFS, without built-in SQL support. Many Hadoop users already have it configured and store large (often sparse)
data sets in it. By defining tables in Impala and mapping them to equivalent tables in HBase, you can query the
contents of the HBase tables through Impala, and even perform join queries including both Impala and HBase tables.
See Using Impala to Query HBase Tables on page 738 for details.

Planning for Impala Deployment

Before you set up Impala in production, do some planning to make sure that your hardware setup has sufficient
capacity, that your cluster topology is optimal for Impala queries, and that your schema design and ETL processes
follow the best practices for Impala.

Impala Requirements
To perform as expected, Impala depends on the availability of the software, hardware, and configurations described in
the following sections.

Supported Operating Systems

Apache Impala runs on Linux systems only. See the README.md file for more information.

 | Planning for Impala Deployment | 19

Hive Metastore and Related Configuration

Impala can interoperate with data stored in Hive, and uses the same infrastructure as Hive for tracking metadata about
schema objects such as tables and columns. The following components are prerequisites for Impala:

• MySQL or PostgreSQL, to act as a metastore database for both Impala and Hive.

Note:

Installing and configuring a Hive metastore is an Impala requirement. Impala does not work without the metastore
database. For the process of installing and configuring the metastore, see Installing Impala on page 24.

Always configure a Hive metastore service rather than connecting directly to the metastore database. The Hive
metastore service is required to interoperate between different levels of metastore APIs if this is necessary for your
environment, and using it avoids known issues with connecting directly to the metastore database.

A summary of the metastore installation process is as follows:

• Install a MySQL or PostgreSQL database. Start the database if it is not started after installation.
• Download the MySQL connector or the PostgreSQL connector and place it in the /usr/share/java/

directory.
• Use the appropriate command line tool for your database to create the metastore database.
• Use the appropriate command line tool for your database to grant privileges for the metastore database to the

hive user.
• Modify hive-site.xml to include information matching your particular database: its URL, username, and

password. You will copy the hive-site.xml file to the Impala Configuration Directory later in the Impala
installation process.

• Optional: Hive. Although only the Hive metastore database is required for Impala to function, you might install
Hive on some client machines to create and load data into tables that use certain file formats. See How Impala
Works with Hadoop File Formats on page 690 for details. Hive does not need to be installed on the same
DataNodes as Impala; it just needs access to the same metastore database.

Java Dependencies

Although Impala is primarily written in C++, it does use Java to communicate with various Hadoop components:

• The officially supported JVM for Impala is the Oracle JVM. Other JVMs might cause issues, typically resulting in
a failure at impalad startup. In particular, the JamVM used by default on certain levels of Ubuntu systems can
cause impalad to fail to start.

• Internally, the impalad daemon relies on the JAVA_HOME environment variable to locate the system Java
libraries. Make sure the impalad service is not run from an environment with an incorrect setting for this
variable.

• All Java dependencies are packaged in the impala-dependencies.jar file, which is located at /usr/
lib/impala/lib/. These map to everything that is built under fe/target/dependency.

Networking Configuration Requirements

As part of ensuring best performance, Impala attempts to complete tasks on local data, as opposed to using network
connections to work with remote data. To support this goal, Impala matches the hostname provided to each Impala
daemon with the IP address of each DataNode by resolving the hostname flag to an IP address. For Impala to work
with local data, use a single IP interface for the DataNode and the Impala daemon on each machine. Ensure that
the Impala daemon's hostname flag resolves to the IP address of the DataNode. For single-homed machines, this is
usually automatic, but for multi-homed machines, ensure that the Impala daemon's hostname resolves to the correct
interface. Impala tries to detect the correct hostname at start-up, and prints the derived hostname at the start of the log
in a message of the form:

Using hostname: impala-daemon-1.example.com

In the majority of cases, this automatic detection works correctly. If you need to explicitly set the hostname, do so by
setting the --hostname flag.

http://www.mysql.com/products/connector/
http://jdbc.postgresql.org/download.html

 | Planning for Impala Deployment | 20

Hardware Requirements

During join operations, portions of data from each joined table are loaded into memory. Data sets can be very large,
so ensure your hardware has sufficient memory to accommodate the joins you anticipate completing.

While requirements vary according to data set size, the following is generally recommended:

• CPU - Impala version 2.2 and higher uses the SSSE3 instruction set, which is included in newer processors.

Note: This required level of processor is the same as in Impala version 1.x. The Impala 2.0 and 2.1 releases had a
stricter requirement for the SSE4.1 instruction set, which has now been relaxed.

• Memory - 128 GB or more recommended, ideally 256 GB or more. If the intermediate results during query
processing on a particular node exceed the amount of memory available to Impala on that node, the query writes
temporary work data to disk, which can lead to long query times. Note that because the work is parallelized, and
intermediate results for aggregate queries are typically smaller than the original data, Impala can query and join
tables that are much larger than the memory available on an individual node.

• Storage - DataNodes with 12 or more disks each. I/O speeds are often the limiting factor for disk performance
with Impala. Ensure that you have sufficient disk space to store the data Impala will be querying.

User Account Requirements

Impala creates and uses a user and group named impala. Do not delete this account or group and do not modify the
account's or group's permissions and rights. Ensure no existing systems obstruct the functioning of these accounts and
groups. For example, if you have scripts that delete user accounts not in a white-list, add these accounts to the list of
permitted accounts.

For correct file deletion during DROP TABLE operations, Impala must be able to move files to the HDFS trashcan.
You might need to create an HDFS directory /user/impala, writeable by the impala user, so that the trashcan
can be created. Otherwise, data files might remain behind after a DROP TABLE statement.

Impala should not run as root. Best Impala performance is achieved using direct reads, but root is not permitted to use
direct reads. Therefore, running Impala as root negatively affects performance.

By default, any user can connect to Impala and access all the associated databases and tables. You can enable
authorization and authentication based on the Linux OS user who connects to the Impala server, and the associated
groups for that user. Impala Security on page 82 for details. These security features do not change the underlying
file permission requirements; the impala user still needs to be able to access the data files.

Cluster Sizing Guidelines for Impala
This document provides a very rough guideline to estimate the size of a cluster needed for a specific customer
application. You can use this information when planning how much and what type of hardware to acquire for a new
cluster, or when adding Impala workloads to an existing cluster.

Note: Before making purchase or deployment decisions, consult organizations with relevant experience to verify the
conclusions about hardware requirements based on your data volume and workload.

Always use hosts with identical specifications and capacities for all the nodes in the cluster. Currently, Impala divides
the work evenly between cluster nodes, regardless of their exact hardware configuration. Because work can be
distributed in different ways for different queries, if some hosts are overloaded compared to others in terms of CPU,
memory, I/O, or network, you might experience inconsistent performance and overall slowness

For analytic workloads with star/snowflake schemas, and using consistent hardware for all nodes (64 GB RAM, 12 2
TB hard drives, 2x E5-2630L 12 cores total, 10 GB network), the following table estimates the number of DataNodes
needed in the cluster based on data size and the number of concurrent queries, for workloads similar to TPC-DS
benchmark queries:

 | Planning for Impala Deployment | 21

Table 1: Cluster size estimation based on the number of concurrent queries and data size with
a 20 second average query response time

Data Size 1 query 10 queries 100 queries 1000 queries 2000 queries

250 GB 2 2 5 35 70

500 GB 2 2 10 70 135

1 TB 2 2 15 135 270

15 TB 2 20 200 N/A N/A

30 TB 4 40 400 N/A N/A

60 TB 8 80 800 N/A N/A

Factors Affecting Scalability

A typical analytic workload (TPC-DS style queries) using recommended hardware is usually CPU-bound. Each node
can process roughly 1.6 GB/sec. Both CPU-bound and disk-bound workloads can scale almost linearly with cluster
size. However, for some workloads, the scalability might be bounded by the network, or even by memory.

If the workload is already network bound (on a 10 GB network), increasing the cluster size won’t reduce the network
load; in fact, a larger cluster could increase network traffic because some queries involve “broadcast” operations
to all DataNodes. Therefore, boosting the cluster size does not improve query throughput in a network-constrained
environment.

Let’s look at a memory-bound workload. A workload is memory-bound if Impala cannot run any additional
concurrent queries because all memory allocated has already been consumed, but neither CPU, disk, nor network
is saturated yet. This can happen because currently Impala uses only a single core per node to process join and
aggregation queries. For a node with 128 GB of RAM, if a join node takes 50 GB, the system cannot run more than 2
such queries at the same time.

Therefore, at most 2 cores are used. Throughput can still scale almost linearly even for a memory-bound workload.
It’s just that the CPU will not be saturated. Per-node throughput will be lower than 1.6 GB/sec. Consider increasing
the memory per node.

As long as the workload is not network- or memory-bound, we can use the 1.6 GB/second per node as the throughput
estimate.

A More Precise Approach

A more precise sizing estimate would require not only queries per minute (QPM), but also an average data size
scanned per query (D). With the proper partitioning strategy, D is usually a fraction of the total data size. The
following equation can be used as a rough guide to estimate the number of nodes (N) needed:

Eq 1: N > QPM * D / 100 GB

Here is an example. Suppose, on average, a query scans 50 GB of data and the average response time is required to be
15 seconds or less when there are 100 concurrent queries. The QPM is 100/15*60 = 400. We can estimate the number
of node using our equation above.

N > QPM * D / 100GB
N > 400 * 50GB / 100GB
N > 200

Because this figure is a rough estimate, the corresponding number of nodes could be between 100 and 500.

Depending on the complexity of the query, the processing rate of query might change. If the query has more joins,
aggregation functions, or CPU-intensive functions such as string processing or complex UDFs, the process rate will

 | Planning for Impala Deployment | 22

be lower than 1.6 GB/second per node. On the other hand, if the query only does scan and filtering on numbers, the
processing rate can be higher.

Estimating Memory Requirements

Impala can handle joins between multiple large tables. Make sure that statistics are collected for all the joined tables,
using the COMPUTE STATS statement. However, joining big tables does consume more memory. Follow the steps
below to calculate the minimum memory requirement.

Suppose you are running the following join:

select a.*, b.col_1, b.col_2, … b.col_n
from a, b
where a.key = b.key
and b.col_1 in (1,2,4...)
and b.col_4 in (....);

And suppose table B is smaller than table A (but still a large table).

The memory requirement for the query is the right-hand table (B), after decompression, filtering (b.col_n
in ...) and after projection (only using certain columns) must be less than the total memory of the entire cluster.

Cluster Total Memory Requirement = Size of the smaller table *
 selectivity factor from the predicate *
 projection factor * compression ratio

In this case, assume that table B is 100 TB in Parquet format with 200 columns. The predicate on B (b.col_1
in ...and b.col_4 in ...) will select only 10% of the rows from B and for projection, we are only
projecting 5 columns out of 200 columns. Usually, Snappy compression gives us 3 times compression, so we estimate
a 3x compression factor.

Cluster Total Memory Requirement = Size of the smaller table *
 selectivity factor from the predicate *
 projection factor * compression ratio
 = 100TB * 10% * 5/200 * 3
 = 0.75TB
 = 750GB

So, if you have a 10-node cluster, each node has 128 GB of RAM and you give 80% to Impala, then you have 1 TB
of usable memory for Impala, which is more than 750GB. Therefore, your cluster can handle join queries of this
magnitude.

Guidelines for Designing Impala Schemas
The guidelines in this topic help you to construct an optimized and scalable schema, one that integrates well with
your existing data management processes. Use these guidelines as a checklist when doing any proof-of-concept work,
porting exercise, or before deploying to production.

If you are adapting an existing database or Hive schema for use with Impala, read the guidelines in this section and
then see Porting SQL from Other Database Systems to Impala on page 606 for specific porting and compatibility
tips.

Prefer binary file formats over text-based formats.

To save space and improve memory usage and query performance, use binary file formats for any large or intensively
queried tables. Parquet file format is the most efficient for data warehouse-style analytic queries. Avro is the other
binary file format that Impala supports, that you might already have as part of a Hadoop ETL pipeline.

 | Planning for Impala Deployment | 23

Although Impala can create and query tables with the RCFile and SequenceFile file formats, such tables are relatively
bulky due to the text-based nature of those formats, and are not optimized for data warehouse-style queries due to
their row-oriented layout. Impala does not support INSERT operations for tables with these file formats.

Guidelines:

• For an efficient and scalable format for large, performance-critical tables, use the Parquet file format.
• To deliver intermediate data during the ETL process, in a format that can also be used by other Hadoop

components, Avro is a reasonable choice.
• For convenient import of raw data, use a text table instead of RCFile or SequenceFile, and convert to Parquet in a

later stage of the ETL process.

Use Snappy compression where practical.

Snappy compression involves low CPU overhead to decompress, while still providing substantial space savings. In
cases where you have a choice of compression codecs, such as with the Parquet and Avro file formats, use Snappy
compression unless you find a compelling reason to use a different codec.

Prefer numeric types over strings.

If you have numeric values that you could treat as either strings or numbers (such as YEAR, MONTH, and DAY for
partition key columns), define them as the smallest applicable integer types. For example, YEAR can be SMALLINT,
MONTH and DAY can be TINYINT. Although you might not see any difference in the way partitioned tables or text
files are laid out on disk, using numeric types will save space in binary formats such as Parquet, and in memory when
doing queries, particularly resource-intensive queries such as joins.

Partition, but do not over-partition.

Partitioning is an important aspect of performance tuning for Impala. Follow the procedures in Partitioning for
Impala Tables on page 681 to set up partitioning for your biggest, most intensively queried tables.

If you are moving to Impala from a traditional database system, or just getting started in the Big Data field, you might
not have enough data volume to take advantage of Impala parallel queries with your existing partitioning scheme.
For example, if you have only a few tens of megabytes of data per day, partitioning by YEAR, MONTH, and DAY
columns might be too granular. Most of your cluster might be sitting idle during queries that target a single day, or
each node might have very little work to do. Consider reducing the number of partition key columns so that each
partition directory contains several gigabytes worth of data.

For example, consider a Parquet table where each data file is 1 HDFS block, with a maximum block size of 1 GB.
(In Impala 2.0 and later, the default Parquet block size is reduced to 256 MB. For this exercise, let's assume you have
bumped the size back up to 1 GB by setting the query option PARQUET_FILE_SIZE=1g.) if you have a 10-node
cluster, you need 10 data files (up to 10 GB) to give each node some work to do for a query. But each core on each
machine can process a separate data block in parallel. With 16-core machines on a 10-node cluster, a query could
process up to 160 GB fully in parallel. If there are only a few data files per partition, not only are most cluster nodes
sitting idle during queries, so are most cores on those machines.

You can reduce the Parquet block size to as low as 128 MB or 64 MB to increase the number of files per partition and
improve parallelism. But also consider reducing the level of partitioning so that analytic queries have enough data to
work with.

Always compute stats after loading data.

Impala makes extensive use of statistics about data in the overall table and in each column, to help plan resource-
intensive operations such as join queries and inserting into partitioned Parquet tables. Because this information is only
available after data is loaded, run the COMPUTE STATS statement on a table after loading or replacing data in a table
or partition.

Having accurate statistics can make the difference between a successful operation, or one that fails due to an out-
of-memory error or a timeout. When you encounter performance or capacity issues, always use the SHOW STATS
statement to check if the statistics are present and up-to-date for all tables in the query.

 | Installing Impala | 24

When doing a join query, Impala consults the statistics for each joined table to determine their relative sizes and
to estimate the number of rows produced in each join stage. When doing an INSERT into a Parquet table, Impala
consults the statistics for the source table to determine how to distribute the work of constructing the data files for
each partition.

See COMPUTE STATS Statement on page 240 for the syntax of the COMPUTE STATS statement, and Table and
Column Statistics on page 636 for all the performance considerations for table and column statistics.

Verify sensible execution plans with EXPLAIN and SUMMARY.

Before executing a resource-intensive query, use the EXPLAIN statement to get an overview of how Impala intends
to parallelize the query and distribute the work. If you see that the query plan is inefficient, you can take tuning steps
such as changing file formats, using partitioned tables, running the COMPUTE STATS statement, or adding query
hints. For information about all of these techniques, see Tuning Impala for Performance on page 626.

After you run a query, you can see performance-related information about how it actually ran by issuing the
SUMMARY command in impala-shell. Prior to Impala 1.4, you would use the PROFILE command, but its highly
technical output was only useful for the most experienced users. SUMMARY, new in Impala 1.4, summarizes the most
useful information for all stages of execution, for all nodes rather than splitting out figures for each node.

Installing Impala

Impala is an open-source analytic database for Apache Hadoop that returns rapid responses to queries.

Follow these steps to set up Impala on a cluster by building from source:

• Download the latest release. See the Impala downloads page for the link to the latest release.
• Check the README.md file for a pointer to the build instructions.
• Please check the MD5 and SHA1 and GPG signature, the latter by using the code signing keys of the release

managers.
• Developers interested in working on Impala can clone the Impala source repository:

git clone https://git-wip-us.apache.org/repos/asf/impala.git

What is Included in an Impala Installation
Impala is made up of a set of components that can be installed on multiple nodes throughout your cluster. The key
installation step for performance is to install the impalad daemon (which does most of the query processing work)
on all DataNodes in the cluster.

Impala primarily consists of these executables, which should be available after you build from source:

• impalad - The Impala daemon. Plans and executes queries against HDFS, HBase, and Amazon S3 data. Run one
impalad process on each node in the cluster that has a DataNode.

• statestored - Name service that tracks location and status of all impalad instances in the cluster. Run
one instance of this daemon on a node in your cluster. Most production deployments run this daemon on the
namenode.

• catalogd - Metadata coordination service that broadcasts changes from Impala DDL and DML statements to
all affected Impala nodes, so that new tables, newly loaded data, and so on are immediately visible to queries
submitted through any Impala node. (Prior to Impala 1.2, you had to run the REFRESH or INVALIDATE
METADATA statement on each node to synchronize changed metadata. Now those statements are only required if
you perform the DDL or DML through an external mechanism such as Hive or by uploading data to the Amazon
S3 filesystem.) Run one instance of this daemon on a node in your cluster, preferably on the same host as the
statestored daemon.

http://impala.apache.org/downloads.html

 | Managing Impala | 25

• impala-shell - Command-line interface for issuing queries to the Impala daemon. You install this on one or
more hosts anywhere on your network, not necessarily DataNodes or even within the same cluster as Impala. It
can connect remotely to any instance of the Impala daemon.

Before starting working with Impala, ensure that you have all necessary prerequisites. See Impala Requirements on
page 18 for details.

Managing Impala

This section explains how to configure Impala to accept connections from applications that use popular programming
APIs:

• Post-Installation Configuration for Impala on page 25
• Configuring Impala to Work with ODBC on page 26
• Configuring Impala to Work with JDBC on page 27

This type of configuration is especially useful when using Impala in combination with Business Intelligence tools,
which use these standard interfaces to query different kinds of database and Big Data systems.

You can also configure these other aspects of Impala:

• Impala Security on page 82
• Modifying Impala Startup Options on page 32

Post-Installation Configuration for Impala
This section describes the mandatory and recommended configuration settings for Impala. If Impala is installed
using cluster management software, some of these configurations might be completed automatically; you must still
configure short-circuit reads manually. If you want to customize your environment, consider making the changes
described in this topic.

• You must enable short-circuit reads, whether or not Impala was installed with cluster management software. This
setting goes in the Impala configuration settings, not the Hadoop-wide settings.

• You must enable block location tracking, and you can optionally enable native checksumming for optimal
performance.

Mandatory: Short-Circuit Reads

Enabling short-circuit reads allows Impala to read local data directly from the file system. This removes the need to
communicate through the DataNodes, improving performance. This setting also minimizes the number of additional
copies of data. Short-circuit reads requires libhadoop.so (the Hadoop Native Library) to be accessible to both the
server and the client. libhadoop.so is not available if you have installed from a tarball. You must install from an
.rpm, .deb, or parcel to use short-circuit local reads.

To configure DataNodes for short-circuit reads:

1. Copy the client core-site.xml and hdfs-site.xml configuration files from the Hadoop configuration
directory to the Impala configuration directory. The default Impala configuration location is /etc/impala/
conf.

2. On all Impala nodes, configure the following properties in Impala's copy of hdfs-site.xml as shown:

<property>
 <name>dfs.client.read.shortcircuit</name>
 <value>true</value>
</property>

<property>

 | Managing Impala | 26

 <name>dfs.domain.socket.path</name>
 <value>/var/run/hdfs-sockets/dn</value>
</property>

<property>
 <name>dfs.client.file-block-storage-locations.timeout.millis</name>
 <value>10000</value>
</property>

3. If /var/run/hadoop-hdfs/ is group-writable, make sure its group is root.

Note: If you are also going to enable block location tracking, you can skip copying configuration files and
restarting DataNodes and go straight to Optional: Block Location Tracking. Configuring short-circuit reads and
block location tracking require the same process of copying files and restarting services, so you can complete that
process once when you have completed all configuration changes. Whether you copy files and restart services now
or during configuring block location tracking, short-circuit reads are not enabled until you complete those final
steps.

4. After applying these changes, restart all DataNodes.

Mandatory: Block Location Tracking

Enabling block location metadata allows Impala to know which disk data blocks are located on, allowing better
utilization of the underlying disks. Impala will not start unless this setting is enabled.

To enable block location tracking:

1. For each DataNode, adding the following to the hdfs-site.xml file:

<property>
 <name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
 <value>true</value>
</property>

2. Copy the client core-site.xml and hdfs-site.xml configuration files from the Hadoop configuration
directory to the Impala configuration directory. The default Impala configuration location is /etc/impala/
conf.

3. After applying these changes, restart all DataNodes.

Optional: Native Checksumming

Enabling native checksumming causes Impala to use an optimized native library for computing checksums, if that
library is available.

To enable native checksumming:

If you installed from packages, the native checksumming library is installed and setup correctly. In such a case, no
additional steps are required. Conversely, if you installed by other means, such as with tarballs, native checksumming
may not be available due to missing shared objects. Finding the message "Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable" in the
Impala logs indicates native checksumming may be unavailable. To enable native checksumming, you must build and
install libhadoop.so (the Hadoop Native Library).

Configuring Impala to Work with ODBC
Third-party products, especially business intelligence and reporting tools, can access Impala using the ODBC
protocol. For the best experience, ensure any third-party product you intend to use is supported. Verifying support
includes checking that the versions of Impala, ODBC, the operating system, the Apache Hadoop distribution, and
the third-party product have all been approved by the appropriate suppliers for use together. To configure your
systems to use ODBC, download and install a connector, typically from the supplier of the third-party product or the

 | Managing Impala | 27

Hadoop distribution. You may need to sign in and accept license agreements before accessing the pages required for
downloading ODBC connectors.

Configuring Impala to Work with JDBC
Impala supports the standard JDBC interface, allowing access from commercial Business Intelligence tools and
custom software written in Java or other programming languages. The JDBC driver allows you to access Impala from
a Java program that you write, or a Business Intelligence or similar tool that uses JDBC to communicate with various
database products.

Setting up a JDBC connection to Impala involves the following steps:

• Verifying the communication port where the Impala daemons in your cluster are listening for incoming JDBC
requests.

• Installing the JDBC driver on every system that runs the JDBC-enabled application.
• Specifying a connection string for the JDBC application to access one of the servers running the impalad

daemon, with the appropriate security settings.

Configuring the JDBC Port

The default port used by JDBC 2.0 and later (as well as ODBC 2.x) is 21050. Impala server accepts JDBC
connections through this same port 21050 by default. Make sure this port is available for communication with other
hosts on your network, for example, that it is not blocked by firewall software. If your JDBC client software connects
to a different port, specify that alternative port number with the --hs2_port option when starting impalad. See
Starting Impala on page 31 for details about Impala startup options. See Ports Used by Impala on page 775 for
information about all ports used for communication between Impala and clients or between Impala components.

Choosing the JDBC Driver

In Impala 2.0 and later, you can use the Hive 0.13 JDBC driver. If you are already using JDBC applications with an
earlier Impala release, you should update your JDBC driver, because the Hive 0.12 driver that was formerly the only
choice is not compatible with Impala 2.0 and later.

The Hive JDBC driver provides a substantial speed increase for JDBC applications with Impala 2.0 and higher, for
queries that return large result sets.

Complex type considerations:

The Impala complex types (STRUCT, ARRAY, or MAP) are available in Impala 2.3 and higher. To use these types with
JDBC requires version 2.5.28 or higher of the JDBC Connector for Impala. To use these types with ODBC requires
version 2.5.30 or higher of the ODBC Connector for Impala. Consider upgrading all JDBC and ODBC drivers at the
same time you upgrade from Impala 2.3 or higher.

Although the result sets from queries involving complex types consist of all scalar values, the queries involve join
notation and column references that might not be understood by a particular JDBC or ODBC connector. Consider
defining a view that represents the flattened version of a table containing complex type columns, and pointing the
JDBC or ODBC application at the view. See Complex Types (Impala 2.3 or higher only) on page 152 for details.

Enabling Impala JDBC Support on Client Systems

Using the Hive JDBC Driver

You install the Hive JDBC driver (hive-jdbc package) through the Linux package manager, on hosts within the
cluster. The driver consists of several Java JAR files. The same driver can be used by Impala and Hive.

To get the JAR files, install the Hive JDBC driver on each host in the cluster that will run JDBC applications.

Note: The latest JDBC driver, corresponding to Hive 0.13, provides substantial performance improvements for
Impala queries that return large result sets. Impala 2.0 and later are compatible with the Hive 0.13 driver. If you

 | Managing Impala | 28

already have an older JDBC driver installed, and are running Impala 2.0 or higher, consider upgrading to the latest
Hive JDBC driver for best performance with JDBC applications.

If you are using JDBC-enabled applications on hosts outside the cluster, you cannot use the the same install procedure
on the hosts. Install the JDBC driver on at least one cluster host using the preceding procedure. Then download the
JAR files to each client machine that will use JDBC with Impala:

commons-logging-X.X.X.jar
 hadoop-common.jar
 hive-common-X.XX.X.jar
 hive-jdbc-X.XX.X.jar
 hive-metastore-X.XX.X.jar
 hive-service-X.XX.X.jar
 httpclient-X.X.X.jar
 httpcore-X.X.X.jar
 libfb303-X.X.X.jar
 libthrift-X.X.X.jar
 log4j-X.X.XX.jar
 slf4j-api-X.X.X.jar
 slf4j-logXjXX-X.X.X.jar

To enable JDBC support for Impala on the system where you run the JDBC application:

1. Download the JAR files listed above to each client machine.

Note: For Maven users, see this sample github page for an example of the dependencies you could add to a pom
file instead of downloading the individual JARs.

2. Store the JAR files in a location of your choosing, ideally a directory already referenced in your CLASSPATH
setting. For example:

• On Linux, you might use a location such as /opt/jars/.
• On Windows, you might use a subdirectory underneath C:\Program Files.

3. To successfully load the Impala JDBC driver, client programs must be able to locate the associated JAR files.
This often means setting the CLASSPATH for the client process to include the JARs. Consult the documentation
for your JDBC client for more details on how to install new JDBC drivers, but some examples of how to set
CLASSPATH variables include:

• On Linux, if you extracted the JARs to /opt/jars/, you might issue the following command to prepend the
JAR files path to an existing classpath:

export CLASSPATH=/opt/jars/*.jar:$CLASSPATH

• On Windows, use the System Properties control panel item to modify the Environment Variables for your
system. Modify the environment variables to include the path to which you extracted the files.

Note: If the existing CLASSPATH on your client machine refers to some older version of the Hive JARs,
ensure that the new JARs are the first ones listed. Either put the new JAR files earlier in the listings, or delete
the other references to Hive JAR files.

Establishing JDBC Connections

The JDBC driver class depends on which driver you select.

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy, be cautious
about reusing the connections. If the load balancer has set up connection timeout values, either check the connection
frequently so that it never sits idle longer than the load balancer timeout value, or check the connection validity before
using it and create a new one if the connection has been closed.

https://github.com/onefoursix/Cloudera-Impala-JDBC-Example

 | Managing Impala | 29

Using the Hive JDBC Driver

For example, with the Hive JDBC driver, the class name is org.apache.hive.jdbc.HiveDriver.
Once you have configured Impala to work with JDBC, you can establish connections between the two.
To do so for a cluster that does not use Kerberos authentication, use a connection string of the form
jdbc:hive2://host:port/;auth=noSasl. For example, you might use:

jdbc:hive2://myhost.example.com:21050/;auth=noSasl

To connect to an instance of Impala that requires Kerberos authentication, use a connection string of the form
jdbc:hive2://host:port/;principal=principal_name. The principal must be the same user
principal you used when starting Impala. For example, you might use:

jdbc:hive2://myhost.example.com:21050/;principal=impala/
myhost.example.com@H2.EXAMPLE.COM

To connect to an instance of Impala that requires LDAP authentication, use a connection string of the form
jdbc:hive2://host:port/db_name;user=ldap_userid;password=ldap_password. For
example, you might use:

jdbc:hive2://myhost.example.com:21050/test_db;user=fred;password=xyz123

Note:

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication and SSL
encryption. If your cluster is running an older release that has this restriction, use an alternative JDBC driver that
supports both of these security features.

Notes about JDBC and ODBC Interaction with Impala SQL Features

Most Impala SQL features work equivalently through the impala-shell interpreter of the JDBC or ODBC APIs.
The following are some exceptions to keep in mind when switching between the interactive shell and applications
using the APIs:

• Complex type considerations:

• Queries involving the complex types (ARRAY, STRUCT, and MAP) require notation that might not be available
in all levels of JDBC and ODBC drivers. If you have trouble querying such a table due to the driver level or
inability to edit the queries used by the application, you can create a view that exposes a “flattened” version of
the complex columns and point the application at the view. See Complex Types (Impala 2.3 or higher only) on
page 152 for details.

• The complex types available in Impala 2.3 and higher are supported by the JDBC getColumns() API. Both
MAP and ARRAY are reported as the JDBC SQL Type ARRAY, because this is the closest matching Java SQL
type. This behavior is consistent with Hive. STRUCT types are reported as the JDBC SQL Type STRUCT.

To be consistent with Hive's behavior, the TYPE_NAME field is populated with the primitive type name
for scalar types, and with the full toSql() for complex types. The resulting type names are somewhat
inconsistent, because nested types are printed differently than top-level types. For example, the following list
shows how toSQL() for Impala types are translated to TYPE_NAME values:

DECIMAL(10,10) becomes DECIMAL
CHAR(10) becomes CHAR
VARCHAR(10) becomes VARCHAR
ARRAY<DECIMAL(10,10)> becomes ARRAY<DECIMAL(10,10)>
ARRAY<CHAR(10)> becomes ARRAY<CHAR(10)>
ARRAY<VARCHAR(10)> becomes ARRAY<VARCHAR(10)>

 | Upgrading Impala | 30

Kudu Considerations for DML Statements

Currently, Impala INSERT, UPDATE, or other DML statements issued through the JDBC interface against a
Kudu table do not return JDBC error codes for conditions such as duplicate primary key columns. Therefore, for
applications that issue a high volume of DML statements, prefer to use the Kudu Java API directly rather than a
JDBC application.

Upgrading Impala

Upgrading Impala involves building or acquiring new Impala-related binaries, and then restarting Impala services.

Upgrading Impala
• Shut down all Impala-related daemons on all relevant hosts in the cluster:

1. Stop impalad on each Impala node in your cluster:

$ sudo service impala-server stop

2. Stop any instances of the state store in your cluster:

$ sudo service impala-state-store stop

3. Stop any instances of the catalog service in your cluster:

$ sudo service impala-catalog stop

• Follow the build procedure in the README.md file to produce new Impala binaries.
• Replace the binaries for all Impala-related daemons on all relevant hosts in the cluster.
• Check if there are new recommended or required configuration settings to put into place in the configuration

files, typically under /etc/impala/conf. See Post-Installation Configuration for Impala on page 25 for
settings related to performance and scalability.

• Restart all Impala-related daemons on all relevant hosts in the cluster:

1. Restart the Impala state store service on the desired nodes in your cluster. Expect to see a process named
statestored if the service started successfully.

$ sudo service impala-state-store start
$ ps ax | grep [s]tatestored
 6819 ? Sl 0:07 /usr/lib/impala/sbin/statestored -log_dir=/
var/log/impala -state_store_port=24000

Restart the state store service before the Impala server service to avoid “Not connected” errors when you run
impala-shell.

2. Restart the Impala catalog service on whichever host it runs on in your cluster. Expect to see a process named
catalogd if the service started successfully.

$ sudo service impala-catalog restart
$ ps ax | grep [c]atalogd
 6068 ? Sl 4:06 /usr/lib/impala/sbin/catalogd

3. Restart the Impala daemon service on each node in your cluster. Expect to see a process named impalad if
the service started successfully.

$ sudo service impala-server start
$ ps ax | grep [i]mpalad

 | Starting Impala | 31

 7936 ? Sl 0:12 /usr/lib/impala/sbin/impalad -log_dir=/var/
log/impala -state_store_port=24000
 -state_store_host=127.0.0.1 -be_port=22000

Note:

If the services did not start successfully (even though the sudo service command might display [OK]), check for
errors in the Impala log file, typically in /var/log/impala.

Starting Impala

To activate Impala if it is installed but not yet started:

1. Set any necessary configuration options for the Impala services. See Modifying Impala Startup Options on page
32 for details.

2. Start one instance of the Impala statestore. The statestore helps Impala to distribute work efficiently, and
to continue running in the event of availability problems for other Impala nodes. If the statestore becomes
unavailable, Impala continues to function.

3. Start one instance of the Impala catalog service.
4. Start the main Impala service on one or more DataNodes, ideally on all DataNodes to maximize local processing

and avoid network traffic due to remote reads.

Once Impala is running, you can conduct interactive experiments using the instructions in Impala Tutorials on page
35 and try Using the Impala Shell (impala-shell Command) on page 611.

Starting Impala from the Command Line
To start the Impala state store and Impala from the command line or a script, you can either use the service
command or you can start the daemons directly through the impalad, statestored, and catalogd
executables.

Start the Impala statestore and then start impalad instances. You can modify the values the service initialization
scripts use when starting the statestore and Impala by editing /etc/default/impala.

Start the statestore service using a command similar to the following:

$ sudo service impala-state-store start

Start the catalog service using a command similar to the following:

$ sudo service impala-catalog start

Start the Impala service on each DataNode using a command similar to the following:

$ sudo service impala-server start

Note:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTION syntax
do not persist across restarts because they are held in the memory of the catalogd daemon. Until you re-create
such Java UDFs using the new CREATE FUNCTION syntax, you must reload those Java-based UDFs by running the
original CREATE FUNCTION statements again each time you restart the catalogd daemon. Prior to Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

 | Starting Impala | 32

If any of the services fail to start, review:

• Reviewing Impala Logs on page 765
• Troubleshooting Impala on page 767

Modifying Impala Startup Options
The configuration options for the Impala-related daemons let you choose which hosts and ports to use for the services
that run on a single host, specify directories for logging, control resource usage and security, and specify other aspects
of the Impala software.

Configuring Impala Startup Options through the Command Line

The Impala server, statestore, and catalog services start up using values provided in a defaults file, /etc/default/
impala.

This file includes information about many resources used by Impala. Most of the defaults included in this file should
be effective in most cases. For example, typically you would not change the definition of the CLASSPATH variable,
but you would always set the address used by the statestore server. Some of the content you might modify includes:

IMPALA_STATE_STORE_HOST=127.0.0.1
IMPALA_STATE_STORE_PORT=24000
IMPALA_BACKEND_PORT=22000
IMPALA_LOG_DIR=/var/log/impala
IMPALA_CATALOG_SERVICE_HOST=...
IMPALA_STATE_STORE_HOST=...

export IMPALA_STATE_STORE_ARGS=${IMPALA_STATE_STORE_ARGS:- \
 -log_dir=${IMPALA_LOG_DIR} -state_store_port=${IMPALA_STATE_STORE_PORT}}
IMPALA_SERVER_ARGS=" \
-log_dir=${IMPALA_LOG_DIR} \
-catalog_service_host=${IMPALA_CATALOG_SERVICE_HOST} \
-state_store_port=${IMPALA_STATE_STORE_PORT} \
-state_store_host=${IMPALA_STATE_STORE_HOST} \
-be_port=${IMPALA_BACKEND_PORT}"
export ENABLE_CORE_DUMPS=${ENABLE_COREDUMPS:-false}

To use alternate values, edit the defaults file, then restart all the Impala-related services so that the changes take
effect. Restart the Impala server using the following commands:

$ sudo service impala-server restart
Stopping Impala Server: [OK]
Starting Impala Server: [OK]

Restart the Impala statestore using the following commands:

$ sudo service impala-state-store restart
Stopping Impala State Store Server: [OK]
Starting Impala State Store Server: [OK]

Restart the Impala catalog service using the following commands:

$ sudo service impala-catalog restart
Stopping Impala Catalog Server: [OK]
Starting Impala Catalog Server: [OK]

Some common settings to change include:

 | Starting Impala | 33

• Statestore address. Where practical, put the statestore on a separate host not running the impalad daemon. In
that recommended configuration, the impalad daemon cannot refer to the statestore server using the loopback
address. If the statestore is hosted on a machine with an IP address of 192.168.0.27, change:

IMPALA_STATE_STORE_HOST=127.0.0.1

to:

IMPALA_STATE_STORE_HOST=192.168.0.27

• Catalog server address (including both the hostname and the port number). Update the value of the
IMPALA_CATALOG_SERVICE_HOST variable. Where practical, run the catalog server on the same host as the
statestore. In that recommended configuration, the impalad daemon cannot refer to the catalog server using
the loopback address. If the catalog service is hosted on a machine with an IP address of 192.168.0.27, add the
following line:

IMPALA_CATALOG_SERVICE_HOST=192.168.0.27:26000

The /etc/default/impala defaults file currently does not define an IMPALA_CATALOG_ARGS
environment variable, but if you add one it will be recognized by the service startup/shutdown
script. Add a definition for this variable to /etc/default/impala and add the option -
catalog_service_host=hostname. If the port is different than the default 26000, also add the option -
catalog_service_port=port.

• Memory limits. You can limit the amount of memory available to Impala. For example, to allow Impala to use no
more than 70% of system memory, change:

export IMPALA_SERVER_ARGS=${IMPALA_SERVER_ARGS:- \
 -log_dir=${IMPALA_LOG_DIR} \
 -state_store_port=${IMPALA_STATE_STORE_PORT} \
 -state_store_host=${IMPALA_STATE_STORE_HOST} \
 -be_port=${IMPALA_BACKEND_PORT}}

to:

export IMPALA_SERVER_ARGS=${IMPALA_SERVER_ARGS:- \
 -log_dir=${IMPALA_LOG_DIR} -state_store_port=
${IMPALA_STATE_STORE_PORT} \
 -state_store_host=${IMPALA_STATE_STORE_HOST} \
 -be_port=${IMPALA_BACKEND_PORT} -mem_limit=70%}

You can specify the memory limit using absolute notation such as 500m or 2G, or as a percentage of physical
memory such as 60%.

Note: Queries that exceed the specified memory limit are aborted. Percentage limits are based on the physical
memory of the machine and do not consider cgroups.

• Core dump enablement. To enable core dumps, change:

export ENABLE_CORE_DUMPS=${ENABLE_COREDUMPS:-false}

to:

export ENABLE_CORE_DUMPS=${ENABLE_COREDUMPS:-true}

Note:

• The location of core dump files may vary according to your operating system configuration.
• Other security settings may prevent Impala from writing core dumps even when this option is enabled.

• Authorization using the open source Sentry plugin. Specify the -server_name and -
authorization_policy_file options as part of the IMPALA_SERVER_ARGS and

 | Starting Impala | 34

IMPALA_STATE_STORE_ARGS settings to enable the core Impala support for authentication. See Starting the
impalad Daemon with Sentry Authorization Enabled on page 88 for details.

• Auditing for successful or blocked Impala queries, another aspect of security. Specify
the -audit_event_log_dir=directory_path option and optionally the
-max_audit_event_log_file_size=number_of_queries and -
abort_on_failed_audit_event options as part of the IMPALA_SERVER_ARGS settings, for each
Impala node, to enable and customize auditing. See Auditing Impala Operations on page 104 for details.

• Password protection for the Impala web UI, which listens on port 25000 by default. This feature involves adding
some or all of the --webserver_password_file, --webserver_authentication_domain,
and --webserver_certificate_file options to the IMPALA_SERVER_ARGS and
IMPALA_STATE_STORE_ARGS settings. See Security Guidelines for Impala on page 83 for details.

• Another setting you might add to IMPALA_SERVER_ARGS is a comma-separated list of query options and
values:

-default_query_options='option=value,option=value,...'

These options control the behavior of queries performed by this impalad instance. The option values you
specify here override the default values for Impala query options, as shown by the SET statement in impala-
shell.

• During troubleshooting, the appropriate support channel might direct you to change other values, particularly for
IMPALA_SERVER_ARGS, to work around issues or gather debugging information.

Note:

These startup options for the impalad daemon are different from the command-line options for the impala-
shell command. For the impala-shell options, see impala-shell Configuration Options on page 612.

Checking the Values of Impala Configuration Options

You can check the current runtime value of all these settings through the Impala web interface,
available by default at http://impala_hostname:25000/varz for the impalad
daemon, http://impala_hostname:25010/varz for the statestored daemon, or
http://impala_hostname:25020/varz for the catalogd daemon.

Startup Options for impalad Daemon

The impalad daemon implements the main Impala service, which performs query processing and reads and writes
the data files.

Startup Options for statestored Daemon

The statestored daemon implements the Impala statestore service, which monitors the availability of Impala
services across the cluster, and handles situations such as nodes becoming unavailable or becoming available again.

Startup Options for catalogd Daemon

The catalogd daemon implements the Impala catalog service, which broadcasts metadata changes to all the Impala
nodes when Impala creates a table, inserts data, or performs other kinds of DDL and DML operations.

By default, the metadata loading and caching on startup happens asynchronously, so Impala can begin accepting
requests promptly. To enable the original behavior, where Impala waited until all metadata was loaded before
accepting any requests, set the catalogd configuration option --load_catalog_in_background=false.

 | Impala Tutorials | 35

Impala Tutorials

This section includes tutorial scenarios that demonstrate how to begin using Impala once the software is installed. It
focuses on techniques for loading data, because once you have some data in tables and can query that data, you can
quickly progress to more advanced Impala features.

Note:

Where practical, the tutorials take you from “ground zero” to having the desired Impala tables and data. In some
cases, you might need to download additional files from outside sources, set up additional software components,
modify commands or scripts to fit your own configuration, or substitute your own sample data.

Before trying these tutorial lessons, install Impala using one of these procedures:

• If you already have some Apache Hadoop environment set up and just need to add Impala to it, follow the
installation process described in Installing Impala on page 24. Make sure to also install the Hive metastore
service if you do not already have Hive configured.

Tutorials for Getting Started
These tutorials demonstrate the basics of using Impala. They are intended for first-time users, and for trying out
Impala on any new cluster to make sure the major components are working correctly.

Explore a New Impala Instance

This tutorial demonstrates techniques for finding your way around the tables and databases of an unfamiliar (possibly
empty) Impala instance.

When you connect to an Impala instance for the first time, you use the SHOW DATABASES and SHOW TABLES
statements to view the most common types of objects. Also, call the version() function to confirm which version
of Impala you are running; the version number is important when consulting documentation and dealing with support
issues.

A completely empty Impala instance contains no tables, but still has two databases:

• default, where new tables are created when you do not specify any other database.
• _impala_builtins, a system database used to hold all the built-in functions.

The following example shows how to see the available databases, and the tables in each. If the list of databases or
tables is long, you can use wildcard notation to locate specific databases or tables based on their names.

$ impala-shell -i localhost --quiet
Starting Impala Shell without Kerberos authentication
Welcome to the Impala shell. Press TAB twice to see a list of available
 commands.
...
(Shell
 build version: Impala Shell v2.8.x (hash) built on
 date)
[localhost:21000] > select version();
+---
| version()
+---
| impalad version ...
| Built on ...
+---
[localhost:21000] > show databases;
+--------------------------+

 | Impala Tutorials | 36

| name |
+--------------------------+
| _impala_builtins |
| ctas |
| d1 |
| d2 |
| d3 |
| default |
| explain_plans |
| external_table |
| file_formats |
| tpc |
+--------------------------+
[localhost:21000] > select current_database();
+--------------------+
| current_database() |
+--------------------+
| default |
+--------------------+
[localhost:21000] > show tables;
+-------+
| name |
+-------+
| ex_t |
| t1 |
+-------+
[localhost:21000] > show tables in d3;

[localhost:21000] > show tables in tpc;
+------------------------+
| name |
+------------------------+
| city |
| customer |
| customer_address |
| customer_demographics |
| household_demographics |
| item |
| promotion |
| store |
| store2 |
| store_sales |
| ticket_view |
| time_dim |
| tpc_tables |
+------------------------+
[localhost:21000] > show tables in tpc like 'customer*';
+-----------------------+
| name |
+-----------------------+
| customer |
| customer_address |
| customer_demographics |
+-----------------------+

Once you know what tables and databases are available, you descend into a database with the USE statement. To
understand the structure of each table, you use the DESCRIBE command. Once inside a database, you can issue
statements such as INSERT and SELECT that operate on particular tables.

The following example explores a database named TPC whose name we learned in the previous example. It shows
how to filter the table names within a database based on a search string, examine the columns of a table, and run
queries to examine the characteristics of the table data. For example, for an unfamiliar table you might want to know
the number of rows, the number of different values for a column, and other properties such as whether the column

 | Impala Tutorials | 37

contains any NULL values. When sampling the actual data values from a table, use a LIMIT clause to avoid excessive
output if the table contains more rows or distinct values than you expect.

[localhost:21000] > use tpc;
[localhost:21000] > show tables like '*view*';
+-------------+
| name |
+-------------+
| ticket_view |
+-------------+
[localhost:21000] > describe city;
+-------------+--------+---------+
| name | type | comment |
+-------------+--------+---------+
id	int	
name	string	
countrycode	string	
district	string	
population	int	
+-------------+--------+---------+		
[localhost:21000] > select count(*) from city;		
+----------+		
count(*)		
+----------+		
0		
+----------+		
[localhost:21000] > desc customer;		
+------------------------+--------+---------+		
name	type	comment
+------------------------+--------+---------+		
c_customer_sk	int	
c_customer_id	string	
c_current_cdemo_sk	int	
c_current_hdemo_sk	int	
c_current_addr_sk	int	
c_first_shipto_date_sk	int	
c_first_sales_date_sk	int	
c_salutation	string	
c_first_name	string	
c_last_name	string	
c_preferred_cust_flag	string	
c_birth_day	int	
c_birth_month	int	
c_birth_year	int	
c_birth_country	string	
c_login	string	
c_email_address	string	
c_last_review_date	string	
+------------------------+--------+---------+		
[localhost:21000] > select count(*) from customer;		
+----------+		
count(*)		
+----------+		
100000		
+----------+		
[localhost:21000] > select count(distinct c_birth_month) from customer;		
+-------------------------------+		
count(distinct c_birth_month)		
+-------------------------------+		
12		
+-------------------------------+
[localhost:21000] > select count(*) from customer where c_email_address is
 null;

 | Impala Tutorials | 38

+----------+
| count(*) |
+----------+
| 0 |
+----------+
[localhost:21000] > select distinct c_salutation from customer limit 10;
+--------------+
| c_salutation |
+--------------+
| Mr. |
| Ms. |
| Dr. |
| |
| Miss |
| Sir |
| Mrs. |
+--------------+

When you graduate from read-only exploration, you use statements such as CREATE DATABASE and CREATE
TABLE to set up your own database objects.

The following example demonstrates creating a new database holding a new table. Although the last example ended
inside the TPC database, the new EXPERIMENTS database is not nested inside TPC; all databases are arranged in a
single top-level list.

[localhost:21000] > create database experiments;
[localhost:21000] > show databases;
+--------------------------+
| name |
+--------------------------+
| _impala_builtins |
| ctas |
| d1 |
| d2 |
| d3 |
| default |
| experiments |
| explain_plans |
| external_table |
| file_formats |
| tpc |
+--------------------------+
[localhost:21000] > show databases like 'exp*';
+---------------+
| name |
+---------------+
| experiments |
| explain_plans |
+---------------+

The following example creates a new table, T1. To illustrate a common mistake, it creates this table inside the wrong
database, the TPC database where the previous example ended. The ALTER TABLE statement lets you move the
table to the intended database, EXPERIMENTS, as part of a rename operation. The USE statement is always needed
to switch to a new database, and the current_database() function confirms which database the session is in, to
avoid these kinds of mistakes.

[localhost:21000] > create table t1 (x int);

[localhost:21000] > show tables;
+------------------------+
| name |
+------------------------+

 | Impala Tutorials | 39

| city |
| customer |
| customer_address |
| customer_demographics |
| household_demographics |
| item |
| promotion |
| store |
| store2 |
| store_sales |
| t1 |
| ticket_view |
| time_dim |
| tpc_tables |
+------------------------+
[localhost:21000] > select current_database();
+--------------------+
| current_database() |
+--------------------+
| tpc |
+--------------------+
[localhost:21000] > alter table t1 rename to experiments.t1;
[localhost:21000] > use experiments;
[localhost:21000] > show tables;
+------+
| name |
+------+
| t1 |
+------+
[localhost:21000] > select current_database();
+--------------------+
| current_database() |
+--------------------+
| experiments |
+--------------------+

For your initial experiments with tables, you can use ones with just a few columns and a few rows, and text-format
data files.

Note: As you graduate to more realistic scenarios, you will use more elaborate tables with many columns, features
such as partitioning, and file formats such as Parquet. When dealing with realistic data volumes, you will bring in data
using LOAD DATA or INSERT ... SELECT statements to operate on millions or billions of rows at once.

The following example sets up a couple of simple tables with a few rows, and performs queries involving sorting,
aggregate functions and joins.

[localhost:21000] > insert into t1 values (1), (3), (2), (4);
[localhost:21000] > select x from t1 order by x desc;
+---+
| x |
+---+
| 4 |
| 3 |
| 2 |
| 1 |
+---+
[localhost:21000] > select min(x), max(x), sum(x), avg(x) from t1;
+--------+--------+--------+--------+
| min(x) | max(x) | sum(x) | avg(x) |
+--------+--------+--------+--------+
| 1 | 4 | 10 | 2.5 |
+--------+--------+--------+--------+

 | Impala Tutorials | 40

[localhost:21000] > create table t2 (id int, word string);
[localhost:21000] > insert into t2 values (1, "one"), (3, "three"), (5,
 'five');
[localhost:21000] > select word from t1 join t2 on (t1.x = t2.id);
+-------+
| word |
+-------+
| one |
| three |
+-------+

After completing this tutorial, you should now know:

• How to tell which version of Impala is running on your system.
• How to find the names of databases in an Impala instance, either displaying the full list or searching for specific

names.
• How to find the names of tables in an Impala database, either displaying the full list or searching for specific

names.
• How to switch between databases and check which database you are currently in.
• How to learn the column names and types of a table.
• How to create databases and tables, insert small amounts of test data, and run simple queries.

Load CSV Data from Local Files

This scenario illustrates how to create some very small tables, suitable for first-time users to experiment with Impala
SQL features. TAB1 and TAB2 are loaded with data from files in HDFS. A subset of data is copied from TAB1 into
TAB3.

Populate HDFS with the data you want to query. To begin this process, create one or more new subdirectories
underneath your user directory in HDFS. The data for each table resides in a separate subdirectory. Substitute your
own username for username where appropriate. This example uses the -p option with the mkdir operation to
create any necessary parent directories if they do not already exist.

$ whoami
username
$ hdfs dfs -ls /user
Found 3 items
drwxr-xr-x - username username 0 2013-04-22 18:54 /user/
username
drwxrwx--- - mapred mapred 0 2013-03-15 20:11 /user/history
drwxr-xr-x - hue supergroup 0 2013-03-15 20:10 /user/hive

$ hdfs dfs -mkdir -p /user/username/sample_data/tab1 /user/username/
sample_data/tab2

Here is some sample data, for two tables named TAB1 and TAB2.

Copy the following content to .csv files in your local filesystem:

tab1.csv:

1,true,123.123,2012-10-24 08:55:00
2,false,1243.5,2012-10-25 13:40:00
3,false,24453.325,2008-08-22 09:33:21.123
4,false,243423.325,2007-05-12 22:32:21.33454
5,true,243.325,1953-04-22 09:11:33

tab2.csv:

1,true,12789.123
2,false,1243.5

 | Impala Tutorials | 41

3,false,24453.325
4,false,2423.3254
5,true,243.325
60,false,243565423.325
70,true,243.325
80,false,243423.325
90,true,243.325

Put each .csv file into a separate HDFS directory using commands like the following, which use paths available in
the Impala Demo VM:

$ hdfs dfs -put tab1.csv /user/username/sample_data/tab1
$ hdfs dfs -ls /user/username/sample_data/tab1
Found 1 items
-rw-r--r-- 1 username username 192 2013-04-02 20:08 /user/username/
sample_data/tab1/tab1.csv

$ hdfs dfs -put tab2.csv /user/username/sample_data/tab2
$ hdfs dfs -ls /user/username/sample_data/tab2
Found 1 items
-rw-r--r-- 1 username username 158 2013-04-02 20:09 /user/username/
sample_data/tab2/tab2.csv

The name of each data file is not significant. In fact, when Impala examines the contents of the data directory for the
first time, it considers all files in the directory to make up the data of the table, regardless of how many files there are
or what the files are named.

To understand what paths are available within your own HDFS filesystem and what the permissions are for the
various directories and files, issue hdfs dfs -ls / and work your way down the tree doing -ls operations for
the various directories.

Use the impala-shell command to create tables, either interactively or through a SQL script.

The following example shows creating three tables. For each table, the example shows creating columns with various
attributes such as Boolean or integer types. The example also includes commands that provide information about how
the data is formatted, such as rows terminating with commas, which makes sense in the case of importing data from a
.csv file. Where we already have .csv files containing data in the HDFS directory tree, we specify the location of
the directory containing the appropriate .csv file. Impala considers all the data from all the files in that directory to
represent the data for the table.

DROP TABLE IF EXISTS tab1;
-- The EXTERNAL clause means the data is located outside the central
 location
-- for Impala data files and is preserved when the associated Impala table
 is dropped.
-- We expect the data to already exist in the directory specified by the
 LOCATION clause.
CREATE EXTERNAL TABLE tab1
(
 id INT,
 col_1 BOOLEAN,
 col_2 DOUBLE,
 col_3 TIMESTAMP
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/username/sample_data/tab1';

DROP TABLE IF EXISTS tab2;
-- TAB2 is an external table, similar to TAB1.
CREATE EXTERNAL TABLE tab2
(

 | Impala Tutorials | 42

 id INT,
 col_1 BOOLEAN,
 col_2 DOUBLE
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/username/sample_data/tab2';

DROP TABLE IF EXISTS tab3;
-- Leaving out the EXTERNAL clause means the data will be managed
-- in the central Impala data directory tree. Rather than reading
-- existing data files when the table is created, we load the
-- data after creating the table.
CREATE TABLE tab3
(
 id INT,
 col_1 BOOLEAN,
 col_2 DOUBLE,
 month INT,
 day INT
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

Note: Getting through these CREATE TABLE statements successfully is an important validation step to confirm
everything is configured correctly with the Hive metastore and HDFS permissions. If you receive any errors during
the CREATE TABLE statements:

• Make sure you followed the installation instructions closely, in Installing Impala on page 24.
• Make sure the hive.metastore.warehouse.dir property points to a directory that Impala can write to.

The ownership should be hive:hive, and the impala user should also be a member of the hive group.

Point an Impala Table at Existing Data Files

A convenient way to set up data for Impala to access is to use an external table, where the data already exists in a set
of HDFS files and you just point the Impala table at the directory containing those files. For example, you might run
in impala-shell a *.sql file with contents similar to the following, to create an Impala table that accesses an
existing data file used by Hive.

The following examples set up 2 tables, referencing the paths and sample data from the sample TPC-DS kit for
Impala. For historical reasons, the data physically resides in an HDFS directory tree under /user/hive, although
this particular data is entirely managed by Impala rather than Hive. When we create an external table, we specify
the directory containing one or more data files, and Impala queries the combined content of all the files inside that
directory. Here is how we examine the directories and files within the HDFS filesystem:

$ cd ~/username/datasets
$./tpcds-setup.sh
... Downloads and unzips the kit, builds the data and loads it into HDFS ...
$ hdfs dfs -ls /user/hive/tpcds/customer
Found 1 items
-rw-r--r-- 1 username supergroup 13209372 2013-03-22 18:09 /user/hive/
tpcds/customer/customer.dat
$ hdfs dfs -cat /user/hive/tpcds/customer/customer.dat | more
1|AAAAAAAABAAAAAAA|980124|7135|32946|2452238|2452208|Mr.|Javier|Lewis|Y|9|
12|1936|CHILE||Javie
r.Lewis@VFAxlnZEvOx.org|2452508|
2|AAAAAAAACAAAAAAA|819667|1461|31655|2452318|2452288|Dr.|Amy|Moses|Y|9|4|
1966|TOGO||Amy.Moses@
Ovk9KjHH.com|2452318|
3|AAAAAAAADAAAAAAA|1473522|6247|48572|2449130|2449100|Miss|Latisha|Hamilton|
N|18|9|1979|NIUE||
Latisha.Hamilton@V.com|2452313|
4|AAAAAAAAEAAAAAAA|1703214|3986|39558|2450030|2450000|Dr.|Michael|White|N|7|
6|1983|MEXICO||Mic

 | Impala Tutorials | 43

hael.White@i.org|2452361|
5|AAAAAAAAFAAAAAAA|953372|4470|36368|2449438|2449408|Sir|Robert|Moran|N|8|5|
1956|FIJI||Robert.
Moran@Hh.edu|2452469|
...

Here is a SQL script to set up Impala tables pointing to some of these data files in HDFS. (The script in the VM
sets up tables like this through Hive; ignore those tables for purposes of this demonstration.) Save the following as
customer_setup.sql:

--
-- store_sales fact table and surrounding dimension tables only
--
create database tpcds;
use tpcds;

drop table if exists customer;
create external table customer
(
 c_customer_sk int,
 c_customer_id string,
 c_current_cdemo_sk int,
 c_current_hdemo_sk int,
 c_current_addr_sk int,
 c_first_shipto_date_sk int,
 c_first_sales_date_sk int,
 c_salutation string,
 c_first_name string,
 c_last_name string,
 c_preferred_cust_flag string,
 c_birth_day int,
 c_birth_month int,
 c_birth_year int,
 c_birth_country string,
 c_login string,
 c_email_address string,
 c_last_review_date string
)
row format delimited fields terminated by '|'
location '/user/hive/tpcds/customer';

drop table if exists customer_address;
create external table customer_address
(
 ca_address_sk int,
 ca_address_id string,
 ca_street_number string,
 ca_street_name string,
 ca_street_type string,
 ca_suite_number string,
 ca_city string,
 ca_county string,
 ca_state string,
 ca_zip string,
 ca_country string,
 ca_gmt_offset float,
 ca_location_type string
)
row format delimited fields terminated by '|'
location '/user/hive/tpcds/customer_address';

 | Impala Tutorials | 44

We would run this script with a command such as:

impala-shell -i localhost -f customer_setup.sql

Describe the Impala Table

Now that you have updated the database metadata that Impala caches, you can confirm that the expected tables are
accessible by Impala and examine the attributes of one of the tables. We created these tables in the database named
default. If the tables were in a database other than the default, we would issue a command use db_name
to switch to that database before examining or querying its tables. We could also qualify the name of a table by
prepending the database name, for example default.customer and default.customer_name.

[impala-host:21000] > show databases
Query finished, fetching results ...
default
Returned 1 row(s) in 0.00s
[impala-host:21000] > show tables
Query finished, fetching results ...
customer
customer_address
Returned 2 row(s) in 0.00s
[impala-host:21000] > describe customer_address
+------------------+--------+---------+
| name | type | comment |
+------------------+--------+---------+
ca_address_sk	int	
ca_address_id	string	
ca_street_number	string	
ca_street_name	string	
ca_street_type	string	
ca_suite_number	string	
ca_city	string	
ca_county	string	
ca_state	string	
ca_zip	string	
ca_country	string	
ca_gmt_offset	float	
ca_location_type	string	
+------------------+--------+---------+
Returned 13 row(s) in 0.01

Query the Impala Table

You can query data contained in the tables. Impala coordinates the query execution across a single node or multiple
nodes depending on your configuration, without the overhead of running MapReduce jobs to perform the intermediate
processing.

There are a variety of ways to execute queries on Impala:

• Using the impala-shell command in interactive mode:

$ impala-shell -i impala-host
Connected to localhost:21000
[impala-host:21000] > select count(*) from customer_address;
50000
Returned 1 row(s) in 0.37s

• Passing a set of commands contained in a file:

$ impala-shell -i impala-host -f myquery.sql
Connected to localhost:21000

 | Impala Tutorials | 45

50000
Returned 1 row(s) in 0.19s

• Passing a single command to the impala-shell command. The query is executed, the results are returned, and
the shell exits. Make sure to quote the command, preferably with single quotation marks to avoid shell expansion
of characters such as *.

$ impala-shell -i impala-host -q 'select count(*) from customer_address'
Connected to localhost:21000
50000
Returned 1 row(s) in 0.29s

Data Loading and Querying Examples

This section describes how to create some sample tables and load data into them. These tables can then be queried
using the Impala shell.

Loading Data

Loading data involves:

• Establishing a data set. The example below uses .csv files.
• Creating tables to which to load data.
• Loading the data into the tables you created.

Sample Queries

To run these sample queries, create a SQL query file query.sql, copy and paste each query into the query file,
and then run the query file using the shell. For example, to run query.sql on impala-host, you might use the
command:

impala-shell.sh -i impala-host -f query.sql

The examples and results below assume you have loaded the sample data into the tables as described above.

Example: Examining Contents of Tables

Let's start by verifying that the tables do contain the data we expect. Because Impala often deals
with tables containing millions or billions of rows, when examining tables of unknown size, include
the LIMIT clause to avoid huge amounts of unnecessary output, as in the final query. (If your
interactive query starts displaying an unexpected volume of data, press Ctrl-C in impala-
shell to cancel the query.)

SELECT * FROM tab1;
SELECT * FROM tab2;
SELECT * FROM tab2 LIMIT 5;

Results:

+----+-------+------------+-------------------------------+
| id | col_1 | col_2 | col_3 |
+----+-------+------------+-------------------------------+
1	true	123.123	2012-10-24 08:55:00
2	false	1243.5	2012-10-25 13:40:00
3	false	24453.325	2008-08-22 09:33:21.123000000
4	false	243423.325	2007-05-12 22:32:21.334540000
5	true	243.325	1953-04-22 09:11:33
+----+-------+------------+-------------------------------+

+----+-------+---------------+
| id | col_1 | col_2 |

 | Impala Tutorials | 46

+----+-------+---------------+
1	true	12789.123
2	false	1243.5
3	false	24453.325
4	false	2423.3254
5	true	243.325
60	false	243565423.325
70	true	243.325
80	false	243423.325
90	true	243.325
+----+-------+---------------+

+----+-------+-----------+
| id | col_1 | col_2 |
+----+-------+-----------+
1	true	12789.123
2	false	1243.5
3	false	24453.325
4	false	2423.3254
5	true	243.325
+----+-------+-----------+

Example: Aggregate and Join

SELECT tab1.col_1, MAX(tab2.col_2), MIN(tab2.col_2)
FROM tab2 JOIN tab1 USING (id)
GROUP BY col_1 ORDER BY 1 LIMIT 5;

Results:

+-------+-----------------+-----------------+
| col_1 | max(tab2.col_2) | min(tab2.col_2) |
+-------+-----------------+-----------------+
| false | 24453.325 | 1243.5 |
| true | 12789.123 | 243.325 |
+-------+-----------------+-----------------+

Example: Subquery, Aggregate and Joins

SELECT tab2.*
FROM tab2,
(SELECT tab1.col_1, MAX(tab2.col_2) AS max_col2
 FROM tab2, tab1
 WHERE tab1.id = tab2.id
 GROUP BY col_1) subquery1
WHERE subquery1.max_col2 = tab2.col_2;

Results:

+----+-------+-----------+
| id | col_1 | col_2 |
+----+-------+-----------+
| 1 | true | 12789.123 |
| 3 | false | 24453.325 |
+----+-------+-----------+

 | Impala Tutorials | 47

Example: INSERT Query

INSERT OVERWRITE TABLE tab3
SELECT id, col_1, col_2, MONTH(col_3), DAYOFMONTH(col_3)
FROM tab1 WHERE YEAR(col_3) = 2012;

Query TAB3 to check the result:

SELECT * FROM tab3;

Results:

+----+-------+---------+-------+-----+
| id | col_1 | col_2 | month | day |
+----+-------+---------+-------+-----+
| 1 | true | 123.123 | 10 | 24 |
| 2 | false | 1243.5 | 10 | 25 |
+----+-------+---------+-------+-----+

Advanced Tutorials
These tutorials walk you through advanced scenarios or specialized features.

Attaching an External Partitioned Table to an HDFS Directory Structure

This tutorial shows how you might set up a directory tree in HDFS, put data files into the lowest-level subdirectories,
and then use an Impala external table to query the data files from their original locations.

The tutorial uses a table with web log data, with separate subdirectories for the year, month, day, and host. For
simplicity, we use a tiny amount of CSV data, loading the same data into each partition.

First, we make an Impala partitioned table for CSV data, and look at the underlying HDFS directory structure to
understand the directory structure to re-create elsewhere in HDFS. The columns field1, field2, and field3
correspond to the contents of the CSV data files. The year, month, day, and host columns are all represented as
subdirectories within the table structure, and are not part of the CSV files. We use STRING for each of these columns
so that we can produce consistent subdirectory names, with leading zeros for a consistent length.

create database external_partitions;
use external_partitions;
create table logs (field1 string, field2 string, field3 string)
 partitioned by (year string, month string , day string, host string)
 row format delimited fields terminated by ',';
insert into logs partition (year="2013", month="07", day="28", host="host1")
 values ("foo","foo","foo");
insert into logs partition (year="2013", month="07", day="28", host="host2")
 values ("foo","foo","foo");
insert into logs partition (year="2013", month="07", day="29", host="host1")
 values ("foo","foo","foo");
insert into logs partition (year="2013", month="07", day="29", host="host2")
 values ("foo","foo","foo");
insert into logs partition (year="2013", month="08", day="01", host="host1")
 values ("foo","foo","foo");

Back in the Linux shell, we examine the HDFS directory structure. (Your Impala data directory might be in a different
location; for historical reasons, it is sometimes under the HDFS path /user/hive/warehouse.) We use the
hdfs dfs -ls command to examine the nested subdirectories corresponding to each partitioning column, with
separate subdirectories at each level (with = in their names) representing the different values for each partitioning

 | Impala Tutorials | 48

column. When we get to the lowest level of subdirectory, we use the hdfs dfs -cat command to examine the
data file and see CSV-formatted data produced by the INSERT statement in Impala.

$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db
Found 1 items
drwxrwxrwt - impala hive 0 2013-08-07 12:24 /user/impala/
warehouse/external_partitions.db/logs
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs
Found 1 items
drwxr-xr-x - impala hive 0 2013-08-07 12:24 /user/impala/
warehouse/external_partitions.db/logs/year=2013
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs/year=2013
Found 2 items
drwxr-xr-x - impala hive 0 2013-08-07 12:23 /user/impala/
warehouse/external_partitions.db/logs/year=2013/month=07
drwxr-xr-x - impala hive 0 2013-08-07 12:24 /user/impala/
warehouse/external_partitions.db/logs/year=2013/month=08
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs/year=2013/
month=07
Found 2 items
drwxr-xr-x - impala hive 0 2013-08-07 12:22 /user/impala/
warehouse/external_partitions.db/logs/year=2013/month=07/day=28
drwxr-xr-x - impala hive 0 2013-08-07 12:23 /user/impala/
warehouse/external_partitions.db/logs/year=2013/month=07/day=29
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs/year=2013/
month=07/day=28
Found 2 items
drwxr-xr-x - impala hive 0 2013-08-07 12:21 /user/impala/
warehouse/external_partitions.db/logs/year=2013/month=07/day=28/host=host1
drwxr-xr-x - impala hive 0 2013-08-07 12:22 /user/impala/
warehouse/external_partitions.db/logs/year=2013/month=07/day=28/host=host2
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs/year=2013/
month=07/day=28/host=host1
Found 1 items
-rw-r--r-- 3 impala hive 12 2013-08-07 12:21 /user/impala/
warehouse/external_partiti
ons.db/logs/year=2013/month=07/day=28/
host=host1/3981726974111751120--8907184999369517436_822630111_data.0
$ hdfs dfs -cat /user/impala/warehouse/external_partitions.db/logs/
year=2013/month=07/day=28/\
host=host1/3981726974111751120--8 907184999369517436_822630111_data.0
foo,foo,foo

Still in the Linux shell, we use hdfs dfs -mkdir to create several data directories outside the HDFS directory
tree that Impala controls (/user/impala/warehouse in this example, maybe different in your case). Depending
on your configuration, you might need to log in as a user with permission to write into this HDFS directory tree; for
example, the commands shown here were run while logged in as the hdfs user.

$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/
host=host1
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/
host=host2
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/
host=host1
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=29/
host=host1
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=08/day=01/
host=host1

 | Impala Tutorials | 49

We make a tiny CSV file, with values different than in the INSERT statements used earlier, and put a copy within
each subdirectory that we will use as an Impala partition.

$ cat >dummy_log_data
bar,baz,bletch
$ hdfs dfs -mkdir -p /user/impala/data/external_partitions/year=2013/
month=08/day=01/host=host1
$ hdfs dfs -mkdir -p /user/impala/data/external_partitions/year=2013/
month=07/day=28/host=host1
$ hdfs dfs -mkdir -p /user/impala/data/external_partitions/year=2013/
month=07/day=28/host=host2
$ hdfs dfs -mkdir -p /user/impala/data/external_partitions/year=2013/
month=07/day=29/host=host1
$ hdfs dfs -put dummy_log_data /user/impala/data/logs/year=2013/month=07/
day=28/host=host1
$ hdfs dfs -put dummy_log_data /user/impala/data/logs/year=2013/month=07/
day=28/host=host2
$ hdfs dfs -put dummy_log_data /user/impala/data/logs/year=2013/month=07/
day=29/host=host1
$ hdfs dfs -put dummy_log_data /user/impala/data/logs/year=2013/month=08/
day=01/host=host1

Back in the impala-shell interpreter, we move the original Impala-managed table aside, and create a new
external table with a LOCATION clause pointing to the directory under which we have set up all the partition
subdirectories and data files.

use external_partitions;
alter table logs rename to logs_original;
create external table logs (field1 string, field2 string, field3 string)
 partitioned by (year string, month string, day string, host string)
 row format delimited fields terminated by ','
 location '/user/impala/data/logs';

Because partition subdirectories and data files come and go during the data lifecycle, you must identify each of the
partitions through an ALTER TABLE statement before Impala recognizes the data files they contain.

alter table logs add partition
 (year="2013",month="07",day="28",host="host1")
alter table log_type add partition
 (year="2013",month="07",day="28",host="host2");
alter table log_type add partition
 (year="2013",month="07",day="29",host="host1");
alter table log_type add partition
 (year="2013",month="08",day="01",host="host1");

We issue a REFRESH statement for the table, always a safe practice when data files have been manually added,
removed, or changed. Then the data is ready to be queried. The SELECT * statement illustrates that the data from
our trivial CSV file was recognized in each of the partitions where we copied it. Although in this case there are only a
few rows, we include a LIMIT clause on this test query just in case there is more data than we expect.

refresh log_type;
select * from log_type limit 100;
+--------+--------+--------+------+-------+-----+-------+
| field1 | field2 | field3 | year | month | day | host |
+--------+--------+--------+------+-------+-----+-------+
bar	baz	bletch	2013	07	28	host1
bar	baz	bletch	2013	08	01	host1
bar	baz	bletch	2013	07	29	host1
bar	baz	bletch	2013	07	28	host2
+--------+--------+--------+------+-------+-----+-------+

 | Impala Tutorials | 50

Switching Back and Forth Between Impala and Hive

Sometimes, you might find it convenient to switch to the Hive shell to perform some data loading or transformation
operation, particularly on file formats such as RCFile, SequenceFile, and Avro that Impala currently can query but not
write to.

Whenever you create, drop, or alter a table or other kind of object through Hive, the next time you switch back to the
impala-shell interpreter, issue a one-time INVALIDATE METADATA statement so that Impala recognizes the
new or changed object.

Whenever you load, insert, or change data in an existing table through Hive (or even through manual HDFS
operations such as the hdfs command), the next time you switch back to the impala-shell interpreter, issue a
one-time REFRESH table_name statement so that Impala recognizes the new or changed data.

For examples showing how this process works for the REFRESH statement, look at the examples of creating RCFile
and SequenceFile tables in Impala, loading data through Hive, and then querying the data through Impala. See Using
the RCFile File Format with Impala Tables on page 719 and Using the SequenceFile File Format with Impala
Tables on page 722 for those examples.

For examples showing how this process works for the INVALIDATE METADATA statement, look at the example
of creating and loading an Avro table in Hive, and then querying the data through Impala. See Using the Avro File
Format with Impala Tables on page 714 for that example.

Note:

Originally, Impala did not support UDFs, but this feature is available in Impala starting in Impala 1.2. Some
INSERT ... SELECT transformations that you originally did through Hive can now be done through Impala. See
Impala User-Defined Functions (UDFs) on page 587 for details.

Prior to Impala 1.2, the REFRESH and INVALIDATE METADATA statements needed to be issued on each Impala
node to which you connected and issued queries. In Impala 1.2 and higher, when you issue either of those statements
on any Impala node, the results are broadcast to all the Impala nodes in the cluster, making it truly a one-step
operation after each round of DDL or ETL operations in Hive.

Cross Joins and Cartesian Products with the CROSS JOIN Operator

Originally, Impala restricted join queries so that they had to include at least one equality comparison between the
columns of the tables on each side of the join operator. With the huge tables typically processed by Impala, any
miscoded query that produced a full Cartesian product as a result set could consume a huge amount of cluster
resources.

In Impala 1.2.2 and higher, this restriction is lifted when you use the CROSS JOIN operator in the query. You still
cannot remove all WHERE clauses from a query like SELECT * FROM t1 JOIN t2 to produce all combinations
of rows from both tables. But you can use the CROSS JOIN operator to explicitly request such a Cartesian product.
Typically, this operation is applicable for smaller tables, where the result set still fits within the memory of a single
Impala node.

The following example sets up data for use in a series of comic books where characters battle each other. At first, we
use an equijoin query, which only allows characters from the same time period and the same planet to meet.

[localhost:21000] > create table heroes (name string, era string, planet
 string);
[localhost:21000] > create table villains (name string, era string, planet
 string);
[localhost:21000] > insert into heroes values
 > ('Tesla','20th century','Earth'),
 > ('Pythagoras','Antiquity','Earth'),
 > ('Zopzar','Far Future','Mars');
Inserted 3 rows in 2.28s
[localhost:21000] > insert into villains values
 > ('Caligula','Antiquity','Earth'),
 > ('John Dillinger','20th century','Earth'),
 > ('Xibulor','Far Future','Venus');

 | Impala Tutorials | 51

Inserted 3 rows in 1.93s
[localhost:21000] > select concat(heroes.name,' vs. ',villains.name) as
 battle
 > from heroes join villains
 > where heroes.era = villains.era and heroes.planet =
 villains.planet;
+--------------------------+
| battle |
+--------------------------+
| Tesla vs. John Dillinger |
| Pythagoras vs. Caligula |
+--------------------------+
Returned 2 row(s) in 0.47s

Readers demanded more action, so we added elements of time travel and space travel so that any hero could face any
villain. Prior to Impala 1.2.2, this type of query was impossible because all joins had to reference matching values
between the two tables:

[localhost:21000] > -- Cartesian product not possible in Impala 1.1.
 > select concat(heroes.name,' vs. ',villains.name) as
 battle from heroes join villains;
ERROR: NotImplementedException: Join between 'heroes' and 'villains'
 requires at least one conjunctive equality predicate between the two tables

With Impala 1.2.2, we rewrite the query slightly to use CROSS JOIN rather than JOIN, and now the result set
includes all combinations:

[localhost:21000] > -- Cartesian product available in Impala 1.2.2 with the
 CROSS JOIN syntax.
 > select concat(heroes.name,' vs. ',villains.name) as
 battle from heroes cross join villains;
+-------------------------------+
| battle |
+-------------------------------+
| Tesla vs. Caligula |
| Tesla vs. John Dillinger |
| Tesla vs. Xibulor |
| Pythagoras vs. Caligula |
| Pythagoras vs. John Dillinger |
| Pythagoras vs. Xibulor |
| Zopzar vs. Caligula |
| Zopzar vs. John Dillinger |
| Zopzar vs. Xibulor |
+-------------------------------+
Returned 9 row(s) in 0.33s

The full combination of rows from both tables is known as the Cartesian product. This type of result set is often
used for creating grid data structures. You can also filter the result set by including WHERE clauses that do not
explicitly compare columns between the two tables. The following example shows how you might produce a list of
combinations of year and quarter for use in a chart, and then a shorter list with only selected quarters.

[localhost:21000] > create table x_axis (x int);
[localhost:21000] > create table y_axis (y int);
[localhost:21000] > insert into x_axis values (1),(2),(3),(4);
Inserted 4 rows in 2.14s
[localhost:21000] > insert into y_axis values (2010),(2011),(2012),(2013),
(2014);
Inserted 5 rows in 1.32s
[localhost:21000] > select y as year, x as quarter from x_axis cross join
 y_axis;
+------+---------+
| year | quarter |

 | Impala Tutorials | 52

+------+---------+
2010	1
2011	1
2012	1
2013	1
2014	1
2010	2
2011	2
2012	2
2013	2
2014	2
2010	3
2011	3
2012	3
2013	3
2014	3
2010	4
2011	4
2012	4
2013	4
2014	4
+------+---------+	
Returned 20 row(s) in 0.38s	
[localhost:21000] > select y as year, x as quarter from x_axis cross join	
y_axis where x in (1,3);	
+------+---------+	
year	quarter
+------+---------+	
2010	1
2011	1
2012	1
2013	1
2014	1
2010	3
2011	3
2012	3
2013	3
2014	3
+------+---------+
Returned 10 row(s) in 0.39s

Dealing with Parquet Files with Unknown Schema
As data pipelines start to include more aspects such as NoSQL or loosely specified schemas, you might encounter
situations where you have data files (particularly in Parquet format) where you do not know the precise table
definition. This tutorial shows how you can build an Impala table around data that comes from non-Impala or even
non-SQL sources, where you do not have control of the table layout and might not be familiar with the characteristics
of the data.

The data used in this tutorial represents airline on-time arrival statistics, from October 1987 through April 2008. See
the details on the 2009 ASA Data Expo web site. You can also see the explanations of the columns; for purposes of
this exercise, wait until after following the tutorial before examining the schema, to better simulate a real-life situation
where you cannot rely on assumptions and assertions about the ranges and representations of data values.

We will download Parquet files containing this data from the Ibis blog. First, we download and unpack the data files.
There are 8 files totalling 1.4 GB. Each file is less than 256 MB.

$ wget -O airlines_parquet.tar.gz https://www.dropbox.com/s/ol9x51tqp6cv4yc/
airlines_parquet.tar.gz?dl=0
...
Length: 1245204740 (1.2G) [application/octet-stream]

http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/the-data.html

 | Impala Tutorials | 53

Saving to: “airlines_parquet.tar.gz”

2015-08-12 17:14:24 (23.6 MB/s) - “airlines_parquet.tar.gz” saved
 [1245204740/1245204740]

$ tar xvzf airlines_parquet.tar.gz
airlines_parquet/
airlines_parquet/93459d994898a9ba-77674173b331fa9a_2073981944_data.0.parq
airlines_parquet/93459d994898a9ba-77674173b331fa99_1555718317_data.1.parq
airlines_parquet/93459d994898a9ba-77674173b331fa99_1555718317_data.0.parq
airlines_parquet/93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq
airlines_parquet/93459d994898a9ba-77674173b331fa97_574780876_data.0.parq
airlines_parquet/93459d994898a9ba-77674173b331fa96_2118228804_data.1.parq
airlines_parquet/93459d994898a9ba-77674173b331fa98_1194408366_data.0.parq
airlines_parquet/93459d994898a9ba-77674173b331fa9b_1413430552_data.0.parq
$ cd airlines_parquet/
$ du -kch *.parq
253M 93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq
65M 93459d994898a9ba-77674173b331fa96_2118228804_data.1.parq
156M 93459d994898a9ba-77674173b331fa97_574780876_data.0.parq
240M 93459d994898a9ba-77674173b331fa98_1194408366_data.0.parq
253M 93459d994898a9ba-77674173b331fa99_1555718317_data.0.parq
16M 93459d994898a9ba-77674173b331fa99_1555718317_data.1.parq
177M 93459d994898a9ba-77674173b331fa9a_2073981944_data.0.parq
213M 93459d994898a9ba-77674173b331fa9b_1413430552_data.0.parq
1.4G total

Next, we put the Parquet data files in HDFS, all together in a single directory, with permissions on the directory and
the files so that the impala user will be able to read them.

Note: After unpacking, we saw the largest Parquet file was 253 MB. When copying Parquet files into HDFS for
Impala to use, for maximum query performance, make sure that each file resides in a single HDFS data block.
Therefore, we pick a size larger than any single file and specify that as the block size, using the argument -
Ddfs.block.size=256m on the hdfs dfs -put command.

$ hdfs dfs -mkdir -p hdfs://demo_host.example.com:8020/user/impala/staging/
airlines
$ hdfs dfs -Ddfs.block.size=256m -put *.parq /user/impala/staging/airlines
$ hdfs dfs -ls /user/impala/staging
Found 1 items
drwxrwxrwx - hdfs supergroup 0 2015-08-12 13:52 /user/impala/
staging/airlines
$ hdfs dfs -ls hdfs://demo_host.example.com:8020/user/impala/staging/
airlines
Found 8 items
-rw-r--r-- 3 jrussell supergroup 265107489 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq
-rw-r--r-- 3 jrussell supergroup 67544715 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9ba-77674173b331fa96_2118228804_data.1.parq
-rw-r--r-- 3 jrussell supergroup 162556490 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9ba-77674173b331fa97_574780876_data.0.parq
-rw-r--r-- 3 jrussell supergroup 251603518 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9ba-77674173b331fa98_1194408366_data.0.parq
-rw-r--r-- 3 jrussell supergroup 265186603 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9ba-77674173b331fa99_1555718317_data.0.parq
-rw-r--r-- 3 jrussell supergroup 16663754 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9ba-77674173b331fa99_1555718317_data.1.parq
-rw-r--r-- 3 jrussell supergroup 185511677 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9ba-77674173b331fa9a_2073981944_data.0.parq
-rw-r--r-- 3 jrussell supergroup 222794621 2015-08-12 17:18 /user/impala/
staging/airlines/93459d994898a9ba-77674173b331fa9b_1413430552_data.0.parq

 | Impala Tutorials | 54

With the files in an accessible location in HDFS, we create a database table that uses the data in those files. The
CREATE EXTERNAL syntax and the LOCATION attribute point Impala at the appropriate HDFS directory. The
LIKE PARQUET 'path_to_any_parquet_file' clause means we skip the list of column names and types;
Impala automatically gets the column names and data types straight from the data files. (Currently, this technique
only works for Parquet files.) We ignore the warning about lack of READ_WRITE access to the files in HDFS; the
impala user can read the files, which will be sufficient for us to experiment with queries and perform some copy
and transform operations into other tables.

$ impala-shell -i localhost
Starting Impala Shell without Kerberos authentication

Connected to localhost:21000
Server version: impalad version 2.8.x (build
 x.y.z)
Welcome to the Impala shell. Press TAB twice to see a list of available
 commands.
...
(Shell
 build version: Impala Shell v2.8.x (hash) built on
 date)
[localhost:21000] > create database airline_data;
[localhost:21000] > use airline_data;
[localhost:21000] > create external table airlines_external
 > like parquet 'hdfs://demo_host.example.com:8020/user/
impala/staging/
airlines/93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq'
 > stored as parquet location 'hdfs://
demo_host.example.com:8020/user/impala/staging/airlines';
WARNINGS: Impala does not have READ_WRITE access to path 'hdfs://
demo_host.example.com:8020/user/impala/staging'

With the table created, we examine its physical and logical characteristics to confirm that the data is really there and
in a format and shape that we can work with. The SHOW TABLE STATS statement gives a very high-level summary
of the table, showing how many files and how much total data it contains. Also, it confirms that the table is expecting
all the associated data files to be in Parquet format. (The ability to work with all kinds of HDFS data files in different
formats means that it is possible to have a mismatch between the format of the data files, and the format that the table
expects the data files to be in.) The SHOW FILES statement confirms that the data in the table has the expected
number, names, and sizes of the original Parquet files. The DESCRIBE statement (or its abbreviation DESC) confirms
the names and types of the columns that Impala automatically created after reading that metadata from the Parquet
file. The DESCRIBE FORMATTED statement prints out some extra detail along with the column definitions; the
pieces we care about for this exercise are the containing database for the table, the location of the associated data files
in HDFS, the fact that it's an external table so Impala will not delete the HDFS files when we finish the experiments
and drop the table, and the fact that the table is set up to work exclusively with files in the Parquet format.

[localhost:21000] > show table stats airlines_external;
+-------+--------+--------+--------------+-------------------+---------
+-------------------+
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format |
 Incremental stats |
+-------+--------+--------+--------------+-------------------+---------
+-------------------+
| -1 | 8 | 1.34GB | NOT CACHED | NOT CACHED | PARQUET |
 false |
+-------+--------+--------+--------------+-------------------+---------
+-------------------+
[localhost:21000] > show files in airlines_external;
+--
+----------+-----------+
| path
 | size | partition |

 | Impala Tutorials | 55

+--
+----------+-----------+
| /user/impala/staging/
airlines/93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq | 252.83MB
 | |
| /user/impala/staging/
airlines/93459d994898a9ba-77674173b331fa96_2118228804_data.1.parq | 64.42MB
 | |
| /user/impala/staging/
airlines/93459d994898a9ba-77674173b331fa97_574780876_data.0.parq | 155.03MB
 | |
| /user/impala/staging/
airlines/93459d994898a9ba-77674173b331fa98_1194408366_data.0.parq | 239.95MB
 | |
| /user/impala/staging/
airlines/93459d994898a9ba-77674173b331fa99_1555718317_data.0.parq | 252.90MB
 | |
| /user/impala/staging/
airlines/93459d994898a9ba-77674173b331fa99_1555718317_data.1.parq | 15.89MB
 | |
| /user/impala/staging/
airlines/93459d994898a9ba-77674173b331fa9a_2073981944_data.0.parq | 176.92MB
 | |
| /user/impala/staging/
airlines/93459d994898a9ba-77674173b331fa9b_1413430552_data.0.parq | 212.47MB
 | |
+--
+----------+-----------+
[localhost:21000] > describe airlines_external;
+---------------------+--------
+---+
| name | type | comment
 |
+---------------------+--------
+---+
| year | int | inferred from: optional int32 year
 |
| month | int | inferred from: optional int32 month
 |
| day | int | inferred from: optional int32 day
 |
| dayofweek | int | inferred from: optional int32 dayofweek
 |
| dep_time | int | inferred from: optional int32 dep_time
 |
| crs_dep_time | int | inferred from: optional int32 crs_dep_time
 |
| arr_time | int | inferred from: optional int32 arr_time
 |
| crs_arr_time | int | inferred from: optional int32 crs_arr_time
 |
| carrier | string | inferred from: optional binary carrier
 |
| flight_num | int | inferred from: optional int32 flight_num
 |
| tail_num | int | inferred from: optional int32 tail_num
 |
| actual_elapsed_time | int | inferred from: optional int32
 actual_elapsed_time |
| crs_elapsed_time | int | inferred from: optional int32
 crs_elapsed_time |
| airtime | int | inferred from: optional int32 airtime
 |

 | Impala Tutorials | 56

| arrdelay | int | inferred from: optional int32 arrdelay
 |
| depdelay | int | inferred from: optional int32 depdelay
 |
| origin | string | inferred from: optional binary origin
 |
| dest | string | inferred from: optional binary dest
 |
| distance | int | inferred from: optional int32 distance
 |
| taxi_in | int | inferred from: optional int32 taxi_in
 |
| taxi_out | int | inferred from: optional int32 taxi_out
 |
| cancelled | int | inferred from: optional int32 cancelled
 |
| cancellation_code | string | inferred from: optional binary
 cancellation_code |
| diverted | int | inferred from: optional int32 diverted
 |
| carrier_delay | int | inferred from: optional int32 carrier_delay
 |
| weather_delay | int | inferred from: optional int32 weather_delay
 |
| nas_delay | int | inferred from: optional int32 nas_delay
 |
| security_delay | int | inferred from: optional int32
 security_delay |
| late_aircraft_delay | int | inferred from: optional int32
 late_aircraft_delay |
+---------------------+--------
+---+
[localhost:21000] > desc formatted airlines_external;
+------------------------------+-------------------------------
| name | type
+------------------------------+-------------------------------
...
| # Detailed Table Information | NULL
| Database: | airline_data
| Owner: | jrussell
...
| Location: | /user/impala/staging/airlines
| Table Type: | EXTERNAL_TABLE
...
| # Storage Information | NULL
| SerDe Library: | parquet.hive.serde.ParquetHiveSerDe
| InputFormat: | parquet.hive.DeprecatedParquetInputFormat
| OutputFormat: | parquet.hive.DeprecatedParquetOutputFormat
...

Now that we are confident that the connections are solid between the Impala table and the underlying Parquet files,
we run some initial queries to understand the characteristics of the data: the overall number of rows, and the ranges
and how many different values are in certain columns. For convenience in understanding the magnitude of the
COUNT(*) result, we run another query dividing the number of rows by 1 million, demonstrating that there are 123
million rows in the table.

[localhost:21000] > select count(*) from airlines_external;
+-----------+
| count(*) |
+-----------+
| 123534969 |
+-----------+
Fetched 1 row(s) in 1.32s

 | Impala Tutorials | 57

[localhost:21000] > select count(*) / 1e6 as 'millions of rows' from
 airlines_external;
+------------------+
| millions of rows |
+------------------+
| 123.534969 |
+------------------+
Fetched 1 row(s) in 1.24s

The NDV() function stands for “number of distinct values”, which for performance reasons is an estimate when there
are lots of different values in the column, but is precise when the cardinality is less than 16 K. Use NDV() calls for
this kind of exploration rather than COUNT(DISTINCT colname), because Impala can evaluate multiple NDV()
functions in a single query, but only a single instance of COUNT DISTINCT. Here we see that there are modest
numbers of different airlines, flight numbers, and origin and destination airports. Two things jump out from this
query: the number of tail_num values is much smaller than we might have expected, and there are more destination
airports than origin airports. Let's dig further. What we find is that most tail_num values are NULL. It looks like
this was an experimental column that wasn't filled in accurately. We make a mental note that if we use this data as
a starting point, we'll ignore this column. We also find that certain airports are represented in the ORIGIN column
but not the DEST column; now we know that we cannot rely on the assumption that those sets of airport codes are
identical.

Note: A slight digression for some performance tuning. Notice how the first SELECT DISTINCT DEST query
takes almost 40 seconds. We expect all queries on such a small data set, less than 2 GB, to take a few seconds at
most. The reason is because the expression NOT IN (SELECT origin FROM airlines_external)
produces an intermediate result set of 123 million rows, then runs 123 million comparisons on each data node against
the tiny set of destination airports. The way the NOT IN operator works internally means that this intermediate
result set with 123 million rows might be transmitted across the network to each data node in the cluster. Applying
another DISTINCT inside the NOT IN subquery means that the intermediate result set is only 340 items, resulting in
much less network traffic and fewer comparison operations. The more efficient query with the added DISTINCT is
approximately 7 times as fast.

[localhost:21000] > select ndv(carrier), ndv(flight_num), ndv(tail_num),
 > ndv(origin), ndv(dest) from airlines_external;
+--------------+-----------------+---------------+-------------+-----------+
| ndv(carrier) | ndv(flight_num) | ndv(tail_num) | ndv(origin) | ndv(dest) |
+--------------+-----------------+---------------+-------------+-----------+
| 29 | 9086 | 3 | 340 | 347 |
+--------------+-----------------+---------------+-------------+-----------+
[localhost:21000] > select tail_num, count(*) as howmany from
 airlines_external
 > group by tail_num;
+----------+-----------+
| tail_num | howmany |
+----------+-----------+
715	1
0	406405
112	6562
NULL	123122001
+----------+-----------+
Fetched 1 row(s) in 5.18s
[localhost:21000] > select distinct dest from airlines_external
 > where dest not in (select origin from
 airlines_external);
+------+
| dest |
+------+
| LBF |
| CBM |
| RCA |
| SKA |
| LAR |

 | Impala Tutorials | 58

+------+
Fetched 5 row(s) in 39.64s
[localhost:21000] > select distinct dest from airlines_external
 > where dest not in (select distinct origin from
 airlines_external);
+------+
| dest |
+------+
| LBF |
| RCA |
| CBM |
| SKA |
| LAR |
+------+
Fetched 5 row(s) in 5.59s
[localhost:21000] > select distinct origin from airlines_external
 > where origin not in (select distinct dest from
 airlines_external);
Fetched 0 row(s) in 5.37s

Next, we try doing a simple calculation, with results broken down by year. This reveals that some years have no data
in the AIRTIME column. That means we might be able to use that column in queries involving certain date ranges,
but we cannot count on it to always be reliable. The question of whether a column contains any NULL values, and if
so what is their number, proportion, and distribution, comes up again and again when doing initial exploration of a
data set.

[localhost:21000] > select year, sum(airtime) from airlines_external
 > group by year order by year desc;
+------+--------------+
| year | sum(airtime) |
+------+--------------+
2008	713050445
2007	748015545
2006	720372850
2005	708204026
2004	714276973
2003	665706940
2002	549761849
2001	590867745
2000	583537683
1999	561219227
1998	538050663
1997	536991229
1996	519440044
1995	513364265
1994	NULL
1993	NULL
1992	NULL
1991	NULL
1990	NULL
1989	NULL
1988	NULL
1987	NULL
+------+--------------+

With the notion of NULL values in mind, let's come back to the TAILNUM column that we discovered had a lot of
NULLs. Let's quantify the NULL and non-NULL values in that column for better understanding. First, we just count
the overall number of rows versus the non-NULL values in that column. That initial result gives the appearance
of relatively few non-NULL values, but we can break it down more clearly in a single query. Once we have the
COUNT(*) and the COUNT(colname) numbers, we can encode that initial query in a WITH clause, then run a

 | Impala Tutorials | 59

followon query that performs multiple arithmetic operations on those values. Seeing that only one-third of one percent
of all rows have non-NULL values for the TAILNUM column clearly illustrates that that column is not of much use.

[localhost:21000] > select count(*) as 'rows', count(tail_num) as 'non-null
 tail numbers'
 > from airlines_external;
+-----------+-----------------------+
| rows | non-null tail numbers |
+-----------+-----------------------+
| 123534969 | 412968 |
+-----------+-----------------------+
Fetched 1 row(s) in 1.51s
[localhost:21000] > with t1 as
 > (select count(*) as 'rows', count(tail_num) as
 'nonnull'
 > from airlines_external)
 > select `rows`, `nonnull`, `rows` - `nonnull` as 'nulls',
 > (`nonnull` / `rows`) * 100 as 'percentage non-null'
 > from t1;
+-----------+---------+-----------+---------------------+
| rows | nonnull | nulls | percentage non-null |
+-----------+---------+-----------+---------------------+
| 123534969 | 412968 | 123122001 | 0.3342923897119365 |
+-----------+---------+-----------+---------------------+

By examining other columns using these techniques, we can form a mental picture of the way data is distributed
throughout the table, and which columns are most significant for query purposes. For this tutorial, we focus
mostly on the fields likely to hold discrete values, rather than columns such as ACTUAL_ELAPSED_TIME whose
names suggest they hold measurements. We would dig deeper into those columns once we had a clear picture of
which questions were worthwhile to ask, and what kinds of trends we might look for. For the final piece of initial
exploration, let's look at the YEAR column. A simple GROUP BY query shows that it has a well-defined range, a
manageable number of distinct values, and relatively even distribution of rows across the different years.

[localhost:21000] > select min(year), max(year), ndv(year) from
 airlines_external;
+-----------+-----------+-----------+
| min(year) | max(year) | ndv(year) |
+-----------+-----------+-----------+
| 1987 | 2008 | 22 |
+-----------+-----------+-----------+
Fetched 1 row(s) in 2.03s
[localhost:21000] > select year, count(*) howmany from airlines_external
 > group by year order by year desc;
+------+---------+
| year | howmany |
+------+---------+
2008	7009728
2007	7453215
2006	7141922
2005	7140596
2004	7129270
2003	6488540
2002	5271359
2001	5967780
2000	5683047
1999	5527884
1998	5384721
1997	5411843
1996	5351983
1995	5327435
1994	5180048
1993	5070501

 | Impala Tutorials | 60

1992	5092157
1991	5076925
1990	5270893
1989	5041200
1988	5202096
1987	1311826
+------+---------+
Fetched 22 row(s) in 2.13s

We could go quite far with the data in this initial raw format, just as we downloaded it from the web. If the data set
proved to be useful and worth persisting in Impala for extensive queries, we might want to copy it to an internal table,
letting Impala manage the data files and perhaps reorganizing a little for higher efficiency. In this next stage of the
tutorial, we copy the original data into a partitioned table, still in Parquet format. Partitioning based on the YEAR
column lets us run queries with clauses such as WHERE year = 2001 or WHERE year BETWEEN 1989 AND
1999, which can dramatically cut down on I/O by ignoring all the data from years outside the desired range. Rather
than reading all the data and then deciding which rows are in the matching years, Impala can zero in on only the data
files from specific YEAR partitions. To do this, Impala physically reorganizes the data files, putting the rows from
each year into data files in a separate HDFS directory for each YEAR value. Along the way, we'll also get rid of the
TAIL_NUM column that proved to be almost entirely NULL.

The first step is to create a new table with a layout very similar to the original AIRLINES_EXTERNAL table. We'll
do that by reverse-engineering a CREATE TABLE statement for the first table, then tweaking it slightly to include a
PARTITION BY clause for YEAR, and excluding the TAIL_NUM column. The SHOW CREATE TABLE statement
gives us the starting point.

[localhost:21000] > show create table airlines_external;
+---
| result
+---
| CREATE EXTERNAL TABLE airline_data.airlines_external (
| year INT COMMENT 'inferred from: optional int32 year',
| month INT COMMENT 'inferred from: optional int32 month',
| day INT COMMENT 'inferred from: optional int32 day',
| dayofweek INT COMMENT 'inferred from: optional int32 dayofweek',
| dep_time INT COMMENT 'inferred from: optional int32 dep_time',
| crs_dep_time INT COMMENT 'inferred from: optional int32 crs_dep_time',
| arr_time INT COMMENT 'inferred from: optional int32 arr_time',
| crs_arr_time INT COMMENT 'inferred from: optional int32 crs_arr_time',
| carrier STRING COMMENT 'inferred from: optional binary carrier',
| flight_num INT COMMENT 'inferred from: optional int32 flight_num',
| tail_num INT COMMENT 'inferred from: optional int32 tail_num',
| actual_elapsed_time INT COMMENT 'inferred from: optional int32
 actual_elapsed_time',
| crs_elapsed_time INT COMMENT 'inferred from: optional int32
 crs_elapsed_time',
| airtime INT COMMENT 'inferred from: optional int32 airtime',
| arrdelay INT COMMENT 'inferred from: optional int32 arrdelay',
| depdelay INT COMMENT 'inferred from: optional int32 depdelay',
| origin STRING COMMENT 'inferred from: optional binary origin',
| dest STRING COMMENT 'inferred from: optional binary dest',
| distance INT COMMENT 'inferred from: optional int32 distance',
| taxi_in INT COMMENT 'inferred from: optional int32 taxi_in',
| taxi_out INT COMMENT 'inferred from: optional int32 taxi_out',
| cancelled INT COMMENT 'inferred from: optional int32 cancelled',
| cancellation_code STRING COMMENT 'inferred from: optional binary
 cancellation_code',
| diverted INT COMMENT 'inferred from: optional int32 diverted',
| carrier_delay INT COMMENT 'inferred from: optional int32 carrier_delay',
| weather_delay INT COMMENT 'inferred from: optional int32 weather_delay',
| nas_delay INT COMMENT 'inferred from: optional int32 nas_delay',
| security_delay INT COMMENT 'inferred from: optional int32
 security_delay',

 | Impala Tutorials | 61

| late_aircraft_delay INT COMMENT 'inferred from: optional int32
 late_aircraft_delay'
|)
| STORED AS PARQUET
| LOCATION 'hdfs://a1730.example.com:8020/user/impala/staging/airlines'
| TBLPROPERTIES ('numFiles'='0', 'COLUMN_STATS_ACCURATE'='false',
| 'transient_lastDdlTime'='1439425228', 'numRows'='-1', 'totalSize'='0',
| 'rawDataSize'='-1')
+---
Fetched 1 row(s) in 0.03s
[localhost:21000] > quit;

Although we could edit that output into a new SQL statement, all the ASCII box characters make such editing
inconvenient. To get a more stripped-down CREATE TABLE to start with, we restart the impala-shell command
with the -B option, which turns off the box-drawing behavior.

[localhost:21000] > quit;
Goodbye jrussell
$ impala-shell -i localhost -B -d airline_data;
Starting Impala Shell without Kerberos authentication
Connected to localhost:21000
Server version: impalad version 2.8.x (build
 x.y.z)
Welcome to the Impala shell. Press TAB twice to see a list of available
 commands.
...
(Shell
 build version: Impala Shell v2.8.x (hash) built on
 date)
[localhost:21000] > show create table airlines_external;
"CREATE EXTERNAL TABLE airline_data.airlines_external (
 year INT COMMENT 'inferred from: optional int32 year',
 month INT COMMENT 'inferred from: optional int32 month',
 day INT COMMENT 'inferred from: optional int32 day',
 dayofweek INT COMMENT 'inferred from: optional int32 dayofweek',
 dep_time INT COMMENT 'inferred from: optional int32 dep_time',
 crs_dep_time INT COMMENT 'inferred from: optional int32 crs_dep_time',
 arr_time INT COMMENT 'inferred from: optional int32 arr_time',
 crs_arr_time INT COMMENT 'inferred from: optional int32 crs_arr_time',
 carrier STRING COMMENT 'inferred from: optional binary carrier',
 flight_num INT COMMENT 'inferred from: optional int32 flight_num',
 tail_num INT COMMENT 'inferred from: optional int32 tail_num',
 actual_elapsed_time INT COMMENT 'inferred from: optional int32
 actual_elapsed_time',
 crs_elapsed_time INT COMMENT 'inferred from: optional int32
 crs_elapsed_time',
 airtime INT COMMENT 'inferred from: optional int32 airtime',
 arrdelay INT COMMENT 'inferred from: optional int32 arrdelay',
 depdelay INT COMMENT 'inferred from: optional int32 depdelay',
 origin STRING COMMENT 'inferred from: optional binary origin',
 dest STRING COMMENT 'inferred from: optional binary dest',
 distance INT COMMENT 'inferred from: optional int32 distance',
 taxi_in INT COMMENT 'inferred from: optional int32 taxi_in',
 taxi_out INT COMMENT 'inferred from: optional int32 taxi_out',
 cancelled INT COMMENT 'inferred from: optional int32 cancelled',
 cancellation_code STRING COMMENT 'inferred from: optional binary
 cancellation_code',
 diverted INT COMMENT 'inferred from: optional int32 diverted',
 carrier_delay INT COMMENT 'inferred from: optional int32 carrier_delay',
 weather_delay INT COMMENT 'inferred from: optional int32 weather_delay',
 nas_delay INT COMMENT 'inferred from: optional int32 nas_delay',
 security_delay INT COMMENT 'inferred from: optional int32 security_delay',

 | Impala Tutorials | 62

 late_aircraft_delay INT COMMENT 'inferred from: optional int32
 late_aircraft_delay'
)
STORED AS PARQUET
LOCATION 'hdfs://a1730.example.com:8020/user/impala/staging/airlines'
TBLPROPERTIES ('numFiles'='0', 'COLUMN_STATS_ACCURATE'='false',
 'transient_lastDdlTime'='1439425228', 'numRows'='-1', 'totalSize'='0',
 'rawDataSize'='-1')"
Fetched 1 row(s) in 0.01s

After copying and pasting the CREATE TABLE statement into a text editor for fine-tuning, we quit and restart
impala-shell without the -B option, to switch back to regular output.

Next we run the CREATE TABLE statement that we adapted from the SHOW CREATE TABLE output. We kept
the STORED AS PARQUET clause because we want to rearrange the data somewhat but still keep it in the high-
performance Parquet format. The LOCATION and TBLPROPERTIES clauses are not relevant for this new table, so
we edit those out. Because we are going to partition the new table based on the YEAR column, we move that column
name (and its type) into a new PARTITIONED BY clause.

[localhost:21000] > CREATE TABLE airline_data.airlines
 > (
 > month INT,
 > day INT,
 > dayofweek INT,
 > dep_time INT,
 > crs_dep_time INT,
 > arr_time INT,
 > crs_arr_time INT,
 > carrier STRING,
 > flight_num INT,
 > actual_elapsed_time INT,
 > crs_elapsed_time INT,
 > airtime INT,
 > arrdelay INT,
 > depdelay INT,
 > origin STRING,
 > dest STRING,
 > distance INT,
 > taxi_in INT,
 > taxi_out INT,
 > cancelled INT,
 > cancellation_code STRING,
 > diverted INT,
 > carrier_delay INT,
 > weather_delay INT,
 > nas_delay INT,
 > security_delay INT,
 > late_aircraft_delay INT
 >)
 > STORED AS PARQUET
 > PARTITIONED BY (year INT);
Fetched 0 row(s) in 0.10s

Next, we copy all the rows from the original table into this new one with an INSERT statement. (We edited
the CREATE TABLE statement to make an INSERT statement with the column names in the same order.)
The only change is to add a PARTITION(year) clause, and move the YEAR column to the very end of the
SELECT list of the INSERT statement. Specifying PARTITION(year), rather than a fixed value such as
PARTITION(year=2000), means that Impala figures out the partition value for each row based on the value of
the very last column in the SELECT list. This is the first SQL statement that legitimately takes any substantial time,

 | Impala Tutorials | 63

because the rows from different years are shuffled around the cluster; the rows that go into each partition are collected
on one node, before being written to one or more new data files.

[localhost:21000] > INSERT INTO airline_data.airlines
 > PARTITION (year)
 > SELECT
 > month,
 > day,
 > dayofweek,
 > dep_time,
 > crs_dep_time,
 > arr_time,
 > crs_arr_time,
 > carrier,
 > flight_num,
 > actual_elapsed_time,
 > crs_elapsed_time,
 > airtime,
 > arrdelay,
 > depdelay,
 > origin,
 > dest,
 > distance,
 > taxi_in,
 > taxi_out,
 > cancelled,
 > cancellation_code,
 > diverted,
 > carrier_delay,
 > weather_delay,
 > nas_delay,
 > security_delay,
 > late_aircraft_delay,
 > year
 > FROM airline_data.airlines_external;
Inserted 123534969 row(s) in 202.70s

Once partitioning or join queries come into play, it's important to have statistics that Impala can use to optimize
queries on the corresponding tables. The COMPUTE INCREMENTAL STATS statement is the way to collect
statistics for partitioned tables. Then the SHOW TABLE STATS statement confirms that the statistics are in place for
each partition, and also illustrates how many files and how much raw data is in each partition.

[localhost:21000] > compute incremental stats airlines;
+---+
| summary |
+---+
| Updated 22 partition(s) and 27 column(s). |
+---+
[localhost:21000] > show table stats airlines;
+-------+-----------+--------+----------+--------------+------------
+---------+-------------------+
| year | #Rows | #Files | Size | Bytes Cached | Cache Repl | Format
 | Incremental stats |
+-------+-----------+--------+----------+--------------+------------
+---------+-----
| 1987 | 1311826 | 1 | 9.32MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1988 | 5202096 | 1 | 37.04MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1989 | 5041200 | 1 | 36.25MB | NOT CACHED | NOT CACHED |
 PARQUET | true

 | Impala Tutorials | 64

| 1990 | 5270893 | 1 | 38.39MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1991 | 5076925 | 1 | 37.23MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1992 | 5092157 | 1 | 36.85MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1993 | 5070501 | 1 | 37.16MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1994 | 5180048 | 1 | 38.31MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1995 | 5327435 | 1 | 53.14MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1996 | 5351983 | 1 | 53.64MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1997 | 5411843 | 1 | 54.41MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1998 | 5384721 | 1 | 54.01MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 1999 | 5527884 | 1 | 56.32MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 2000 | 5683047 | 1 | 58.15MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 2001 | 5967780 | 1 | 60.65MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 2002 | 5271359 | 1 | 57.99MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 2003 | 6488540 | 1 | 81.33MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 2004 | 7129270 | 1 | 103.19MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 2005 | 7140596 | 1 | 102.61MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 2006 | 7141922 | 1 | 106.03MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 2007 | 7453215 | 1 | 112.15MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| 2008 | 7009728 | 1 | 105.76MB | NOT CACHED | NOT CACHED |
 PARQUET | true
| Total | 123534969 | 22 | 1.30GB | 0B | |
 |
+-------+-----------+--------+----------+--------------+------------
+---------+-----

At this point, we go through a quick thought process to sanity check the partitioning we did. All the partitions have
exactly one file, which is on the low side. A query that includes a clause WHERE year=2004 will only read a single
data block; that data block will be read and processed by a single data node; therefore, for a query targeting a single
year, all the other nodes in the cluster will sit idle while all the work happens on a single machine. It's even possible
that by chance (depending on HDFS replication factor and the way data blocks are distributed across the cluster), that
multiple year partitions selected by a filter such as WHERE year BETWEEN 1999 AND 2001 could all be read
and processed by the same data node. The more data files each partition has, the more parallelism you can get and
the less probability of “hotspots” occurring on particular nodes, therefore a bigger performance boost by having a big
cluster.

However, the more data files, the less data goes in each one. The overhead of dividing the work in a parallel query
might not be worth it if each node is only reading a few megabytes. 50 or 100 megabytes is a decent size for a Parquet
data block; 9 or 37 megabytes is on the small side. Which is to say, the data distribution we ended up with based on
this partitioning scheme is on the borderline between sensible (reasonably large files) and suboptimal (few files in
each partition). The way to see how well it works in practice is to run the same queries against the original flat table
and the new partitioned table, and compare times.

Spoiler: in this case, with my particular 4-node cluster with its specific distribution of data blocks and my particular
exploratory queries, queries against the partitioned table do consistently run faster than the same queries against

 | Impala Tutorials | 65

the unpartitioned table. But I could not be sure that would be the case without some real measurements. Here are
some queries I ran to draw that conclusion, first against AIRLINES_EXTERNAL (no partitioning), then against
AIRLINES (partitioned by year). The AIRLINES queries are consistently faster. Changing the volume of data,
changing the size of the cluster, running queries that did or didn't refer to the partition key columns, or other factors
could change the results to favor one table layout or the other.

Note: If you find the volume of each partition is only in the low tens of megabytes, consider lowering the granularity
of partitioning. For example, instead of partitioning by year, month, and day, partition by year and month or even just
by year. The ideal layout to distribute work efficiently in a parallel query is many tens or even hundreds of megabytes
per Parquet file, and the number of Parquet files in each partition somewhat higher than the number of data nodes.

[localhost:21000] > select sum(airtime) from airlines_external;
+--------------+
| sum(airtime) |
+--------------+
| 8662859484 |
+--------------+
Fetched 1 row(s) in 2.02s
[localhost:21000] > select sum(airtime) from airlines;
+--------------+
| sum(airtime) |
+--------------+
| 8662859484 |
+--------------+
Fetched 1 row(s) in 1.21s

[localhost:21000] > select sum(airtime) from airlines_external where year =
 2005;
+--------------+
| sum(airtime) |
+--------------+
| 708204026 |
+--------------+
Fetched 1 row(s) in 2.61s
[localhost:21000] > select sum(airtime) from airlines where year = 2005;
+--------------+
| sum(airtime) |
+--------------+
| 708204026 |
+--------------+
Fetched 1 row(s) in 1.19s

[localhost:21000] > select sum(airtime) from airlines_external where
 dayofweek = 1;
+--------------+
| sum(airtime) |
+--------------+
| 1264945051 |
+--------------+
Fetched 1 row(s) in 2.82s
[localhost:21000] > select sum(airtime) from airlines where dayofweek = 1;
+--------------+
| sum(airtime) |
+--------------+
| 1264945051 |
+--------------+
Fetched 1 row(s) in 1.61s

Now we can finally do some serious analysis with this data set that, remember, a few minutes ago all we had were
some raw data files and we didn't even know what columns they contained. Let's see whether the “air time” of a flight

 | Impala Tutorials | 66

tends to be different depending on the day of the week. We can see that the average is a little higher on day number 6;
perhaps Saturday is a busy flying day and planes have to circle for longer at the destination airport before landing.

[localhost:21000] > select dayofweek, avg(airtime) from airlines
 > group by dayofweek order by dayofweek;
+-----------+-------------------+
| dayofweek | avg(airtime) |
+-----------+-------------------+
1	102.1560425016671
2	102.1582931538807
3	102.2170009256653
4	102.37477661846
5	102.2697358763511
6	105.3627448363705
7	103.4144351202054
+-----------+-------------------+
Fetched 7 row(s) in 2.25s

To see if the apparent trend holds up over time, let's do the same breakdown by day of week, but also split up by year.
Now we can see that day number 6 consistently has a higher average air time in each year. We can also see that the
average air time increased over time across the board. And the presence of NULL for this column in years 1987 to
1994 shows that queries involving this column need to be restricted to a date range of 1995 and higher.

[localhost:21000] > select year, dayofweek, avg(airtime) from airlines
 > group by year, dayofweek order by year desc, dayofweek;
+------+-----------+-------------------+
| year | dayofweek | avg(airtime) |
+------+-----------+-------------------+
2008	1	103.1821651651355
2008	2	103.2149301386094
2008	3	103.0585076622796
2008	4	103.4671383539038
2008	5	103.5575385182659
2008	6	107.4006306562128
2008	7	104.8648851041755
2007	1	102.2196114337825
2007	2	101.9317791906348
2007	3	102.0964767689043
2007	4	102.6215927201686
2007	5	102.4289399000661
2007	6	105.1477448215756
2007	7	103.6305945644095
...		
1996	1	99.33860750862108
1996	2	99.54225446396656
1996	3	99.41129336113134
1996	4	99.5110373340348
1996	5	99.22120745027595
1996	6	101.1717447111921
1996	7	99.95410136133704
1995	1	96.93779698300494
1995	2	96.93458674589712
1995	3	97.00972311337051
1995	4	96.90843832024412
1995	5	96.78382115425562
1995	6	98.70872826057003
1995	7	97.85570478374616
1994	1	NULL
1994	2	NULL
1994	3	NULL
...		
1987	5	NULL

 | Impala Administration | 67

| 1987 | 6 | NULL |
| 1987 | 7 | NULL |
+------+-----------+-------------------+

Impala Administration

As an administrator, you monitor Impala's use of resources and take action when necessary to keep Impala running
smoothly and avoid conflicts with other Hadoop components running on the same cluster. When you detect that an
issue has happened or could happen in the future, you reconfigure Impala or other components such as HDFS or even
the hardware of the cluster itself to resolve or avoid problems.

Related tasks:

As an administrator, you can expect to perform installation, upgrade, and configuration tasks for Impala on all
machines in a cluster. See Installing Impala on page 24, Upgrading Impala on page 30, and Managing
Impala on page 25 for details.

For security tasks typically performed by administrators, see Impala Security on page 82.

Administrators also decide how to allocate cluster resources so that all Hadoop components can run smoothly
together. For Impala, this task primarily involves:

• Deciding how many Impala queries can run concurrently and with how much memory, through the admission
control feature. See Admission Control and Query Queuing on page 67 for details.

• Dividing cluster resources such as memory between Impala and other components, using YARN for overall
resource management, and Llama to mediate resource requests from Impala to YARN. See Resource Management
for Impala on page 76 for details.

Admission Control and Query Queuing
Admission control is an Impala feature that imposes limits on concurrent SQL queries, to avoid resource usage spikes
and out-of-memory conditions on busy clusters. It is a form of “throttling”. New queries are accepted and executed
until certain conditions are met, such as too many queries or too much total memory used across the cluster. When
one of these thresholds is reached, incoming queries wait to begin execution. These queries are queued and are
admitted (that is, begin executing) when the resources become available.

In addition to the threshold values for currently executing queries, you can place limits on the maximum number
of queries that are queued (waiting) and a limit on the amount of time they might wait before returning with an
error. These queue settings let you ensure that queries do not wait indefinitely, so that you can detect and correct
“starvation” scenarios.

Enable this feature if your cluster is underutilized at some times and overutilized at others. Overutilization is indicated
by performance bottlenecks and queries being cancelled due to out-of-memory conditions, when those same queries
are successful and perform well during times with less concurrent load. Admission control works as a safeguard to
avoid out-of-memory conditions during heavy concurrent usage.

Note:

The use of the Llama component for integrated resource management within YARN is no longer supported with
Impala 2.3 and higher. The Llama support code is removed entirely in Impala 2.8 and higher.

For clusters running Impala alongside other data management components, you define static service pools to define
the resources available to Impala and other components. Then within the area allocated for Impala, you can create
dynamic service pools, each with its own settings for the Impala admission control feature.

 | Impala Administration | 68

Overview of Impala Admission Control

On a busy cluster, you might find there is an optimal number of Impala queries that run concurrently. For example,
when the I/O capacity is fully utilized by I/O-intensive queries, you might not find any throughput benefit in running
more concurrent queries. By allowing some queries to run at full speed while others wait, rather than having all
queries contend for resources and run slowly, admission control can result in higher overall throughput.

For another example, consider a memory-bound workload such as many large joins or aggregation queries. Each such
query could briefly use many gigabytes of memory to process intermediate results. Because Impala by default cancels
queries that exceed the specified memory limit, running multiple large-scale queries at once might require re-running
some queries that are cancelled. In this case, admission control improves the reliability and stability of the overall
workload by only allowing as many concurrent queries as the overall memory of the cluster can accomodate.

The admission control feature lets you set an upper limit on the number of concurrent Impala queries and on the
memory used by those queries. Any additional queries are queued until the earlier ones finish, rather than being
cancelled or running slowly and causing contention. As other queries finish, the queued queries are allowed to
proceed.

In Impala 2.5 and higher, you can specify these limits and thresholds for each pool rather than globally. That way,
you can balance the resource usage and throughput between steady well-defined workloads, rare resource-intensive
queries, and ad hoc exploratory queries.

For details on the internal workings of admission control, see How Impala Schedules and Enforces Limits on
Concurrent Queries on page 69.

Concurrent Queries and Admission Control

One way to limit resource usage through admission control is to set an upper limit on the number of concurrent
queries. This is the initial technique you might use when you do not have extensive information about memory usage
for your workload. This setting can be specified separately for each dynamic resource pool.

You can combine this setting with the memory-based approach described in Memory Limits and Admission Control
on page 68. If either the maximum number of or the expected memory usage of the concurrent queries is
exceeded, subsequent queries are queued until the concurrent workload falls below the threshold again.

Memory Limits and Admission Control

Each dynamic resource pool can have an upper limit on the cluster-wide memory used by queries executing in that
pool. This is the technique to use once you have a stable workload with well-understood memory requirements.

Always specify the Default Query Memory Limit for the expected maximum amount of RAM that a query might
require on each host, which is equivalent to setting the MEM_LIMIT query option for every query run in that
pool. That value affects the execution of each query, preventing it from overallocating memory on each host, and
potentially activating the spill-to-disk mechanism or cancelling the query when necessary.

Optionally, specify the Max Memory setting, a cluster-wide limit that determines how many queries can be safely
run concurrently, based on the upper memory limit per host multiplied by the number of Impala nodes in the cluster.

For example, consider the following scenario:

• The cluster is running impalad daemons on five DataNodes.
• A dynamic resource pool has Max Memory set to 100 GB.
• The Default Query Memory Limit for the pool is 10 GB. Therefore, any query running in this pool could use up

to 50 GB of memory (default query memory limit * number of Impala nodes).
• The maximum number of queries that Impala executes concurrently within this dynamic resource pool is two,

which is the most that could be accomodated within the 100 GB Max Memory cluster-wide limit.
• There is no memory penalty if queries use less memory than the Default Query Memory Limit per-host setting

or the Max Memory cluster-wide limit. These values are only used to estimate how many queries can be run
concurrently within the resource constraints for the pool.

 | Impala Administration | 69

Note: If you specify Max Memory for an Impala dynamic resource pool, you must also specify the Default Query
Memory Limit. Max Memory relies on the Default Query Memory Limit to produce a reliable estimate of overall
memory consumption for a query.

You can combine the memory-based settings with the upper limit on concurrent queries described in Concurrent
Queries and Admission Control on page 68. If either the maximum number of or the expected memory usage
of the concurrent queries is exceeded, subsequent queries are queued until the concurrent workload falls below the
threshold again.

How Impala Admission Control Relates to Other Resource Management Tools

The admission control feature is similar in some ways to the YARN resource management framework. These features
can be used separately or together. This section describes some similarities and differences, to help you decide which
combination of resource management features to use for Impala.

Admission control is a lightweight, decentralized system that is suitable for workloads consisting primarily of Impala
queries and other SQL statements. It sets “soft” limits that smooth out Impala memory usage during times of heavy
load, rather than taking an all-or-nothing approach that cancels jobs that are too resource-intensive.

Because the admission control system does not interact with other Hadoop workloads such as MapReduce jobs, you
might use YARN with static service pools on clusters where resources are shared between Impala and other Hadoop
components. This configuration is recommended when using Impala in a multitenant cluster. Devote a percentage
of cluster resources to Impala, and allocate another percentage for MapReduce and other batch-style workloads. Let
admission control handle the concurrency and memory usage for the Impala work within the cluster, and let YARN
manage the work for other components within the cluster. In this scenario, Impala's resources are not managed by
YARN.

The Impala admission control feature uses the same configuration mechanism as the YARN resource manager to map
users to pools and authenticate them.

Although the Impala admission control feature uses a fair-scheduler.xml configuration file behind the scenes,
this file does not depend on which scheduler is used for YARN. You still use this file even when YARN is using the
capacity scheduler.

How Impala Schedules and Enforces Limits on Concurrent Queries

The admission control system is decentralized, embedded in each Impala daemon and communicating through the
statestore mechanism. Although the limits you set for memory usage and number of concurrent queries apply cluster-
wide, each Impala daemon makes its own decisions about whether to allow each query to run immediately or to queue
it for a less-busy time. These decisions are fast, meaning the admission control mechanism is low-overhead, but might
be imprecise during times of heavy load across many coordinators. There could be times when the more queries were
queued (in aggregate across the cluster) than the specified limit, or when number of admitted queries exceeds the
expected number. Thus, you typically err on the high side for the size of the queue, because there is not a big penalty
for having a large number of queued queries; and you typically err on the low side for configuring memory resources,
to leave some headroom in case more queries are admitted than expected, without running out of memory and being
cancelled as a result.

To avoid a large backlog of queued requests, you can set an upper limit on the size of the queue for queries that
are queued. When the number of queued queries exceeds this limit, further queries are cancelled rather than being
queued. You can also configure a timeout period per pool, after which queued queries are cancelled, to avoid
indefinite waits. If a cluster reaches this state where queries are cancelled due to too many concurrent requests or long
waits for query execution to begin, that is a signal for an administrator to take action, either by provisioning more
resources, scheduling work on the cluster to smooth out the load, or by doing Impala performance tuning to enable
higher throughput.

How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)

Most aspects of admission control work transparently with client interfaces such as JDBC and ODBC:

 | Impala Administration | 70

• If a SQL statement is put into a queue rather than running immediately, the API call blocks until the statement is
dequeued and begins execution. At that point, the client program can request to fetch results, which might also
block until results become available.

• If a SQL statement is cancelled because it has been queued for too long or because it exceeded the memory limit
during execution, the error is returned to the client program with a descriptive error message.

In Impala 2.0 and higher, you can submit a SQL SET statement from the client application to change the
REQUEST_POOL query option. This option lets you submit queries to different resource pools, as described in
REQUEST_POOL Query Option on page 388.

At any time, the set of queued queries could include queries submitted through multiple different Impala daemon
hosts. All the queries submitted through a particular host will be executed in order, so a CREATE TABLE followed
by an INSERT on the same table would succeed. Queries submitted through different hosts are not guaranteed to be
executed in the order they were received. Therefore, if you are using load-balancing or other round-robin scheduling
where different statements are submitted through different hosts, set up all table structures ahead of time so that the
statements controlled by the queuing system are primarily queries, where order is not significant. Or, if a sequence of
statements needs to happen in strict order (such as an INSERT followed by a SELECT), submit all those statements
through a single session, while connected to the same Impala daemon host.

Admission control has the following limitations or special behavior when used with JDBC or ODBC applications:

• The other resource-related query options, RESERVATION_REQUEST_TIMEOUT and V_CPU_CORES, are no
longer used. Those query options only applied to using Impala with Llama, which is no longer supported.

SQL and Schema Considerations for Admission Control

When queries complete quickly and are tuned for optimal memory usage, there is less chance of performance or
capacity problems during times of heavy load. Before setting up admission control, tune your Impala queries to
ensure that the query plans are efficient and the memory estimates are accurate. Understanding the nature of your
workload, and which queries are the most resource-intensive, helps you to plan how to divide the queries into
different pools and decide what limits to define for each pool.

For large tables, especially those involved in join queries, keep their statistics up to date after loading substantial
amounts of new data or adding new partitions. Use the COMPUTE STATS statement for unpartitioned tables, and
COMPUTE INCREMENTAL STATS for partitioned tables.

When you use dynamic resource pools with a Max Memory setting enabled, you typically override the memory
estimates that Impala makes based on the statistics from the COMPUTE STATS statement. You either set the
MEM_LIMIT query option within a particular session to set an upper memory limit for queries within that session, or
a default MEM_LIMIT setting for all queries processed by the impalad instance, or a default MEM_LIMIT setting
for all queries assigned to a particular dynamic resource pool. By designating a consistent memory limit for a set of
similar queries that use the same resource pool, you avoid unnecessary query queuing or out-of-memory conditions
that can arise during high-concurrency workloads when memory estimates for some queries are inaccurate.

Follow other steps from Tuning Impala for Performance on page 626 to tune your queries.

Configuring Admission Control

The configuration options for admission control range from the simple (a single resource pool with a single set of
options) to the complex (multiple resource pools with different options, each pool handling queries for a different set
of users and groups).

Impala Service Flags for Admission Control (Advanced)

The following Impala configuration options let you adjust the settings of the admission control feature. When
supplying the options on the impalad command line, prepend the option name with --.

 queue_wait_timeout_ms Purpose: Maximum amount of time (in milliseconds)
that a request waits to be admitted before timing out.

Type: int64

 | Impala Administration | 71

Default: 60000

 default_pool_max_requests Purpose: Maximum number of concurrent outstanding
requests allowed to run before incoming requests are
queued. Because this limit applies cluster-wide, but each
Impala node makes independent decisions to run queries
immediately or queue them, it is a soft limit; the overall
number of concurrent queries might be slightly higher
during times of heavy load. A negative value indicates no
limit. Ignored if fair_scheduler_config_path
and llama_site_path are set.

Type: int64

Default: -1, meaning unlimited (prior to Impala 2.5 the
default was 200)

 default_pool_max_queued Purpose: Maximum number of requests allowed
to be queued before rejecting requests. Because
this limit applies cluster-wide, but each Impala
node makes independent decisions to run queries
immediately or queue them, it is a soft limit; the
overall number of queued queries might be slightly
higher during times of heavy load. A negative value
or 0 indicates requests are always rejected once
the maximum concurrent requests are executing.
Ignored if fair_scheduler_config_path and
llama_site_path are set.

Type: int64

Default: unlimited

 default_pool_mem_limit Purpose: Maximum amount of memory (across the
entire cluster) that all outstanding requests in this pool
can use before new requests to this pool are queued.
Specified in bytes, megabytes, or gigabytes by a number
followed by the suffix b (optional), m, or g, either
uppercase or lowercase. You can specify floating-
point values for megabytes and gigabytes, to represent
fractional numbers such as 1.5. You can also specify
it as a percentage of the physical memory by specifying
the suffix %. 0 or no setting indicates no limit. Defaults
to bytes if no unit is given. Because this limit applies
cluster-wide, but each Impala node makes independent
decisions to run queries immediately or queue them, it
is a soft limit; the overall memory used by concurrent
queries might be slightly higher during times of heavy
load. Ignored if fair_scheduler_config_path
and llama_site_path are set.

Note: Impala relies on the statistics produced by the
COMPUTE STATS statement to estimate memory usage
for each query. See COMPUTE STATS Statement on
page 240 for guidelines about how and when to use
this statement.

Type: string

Default: "" (empty string, meaning unlimited)

 | Impala Administration | 72

 disable_admission_control Purpose: Turns off the admission control feature
entirely, regardless of other configuration option settings.

Type: Boolean

Default: false

 disable_pool_max_requests Purpose: Disables all per-pool limits on the maximum
number of running requests.

Type: Boolean

Default: false

 disable_pool_mem_limits Purpose: Disables all per-pool mem limits.

Type: Boolean

Default: false

 fair_scheduler_allocation_path Purpose: Path to the fair scheduler allocation file
(fair-scheduler.xml).

Type: string

Default: "" (empty string)

Usage notes: Admission control only uses a small subset
of the settings that can go in this file, as described below.
For details about all the Fair Scheduler configuration
settings, see the Apache wiki.

 llama_site_path Purpose: Path to the configuration file used by
admission control (llama-site.xml). If set,
fair_scheduler_allocation_path must also
be set.

Type: string

Default: "" (empty string)

Usage notes: Admission control only uses a few of the
settings that can go in this file, as described below.

Configuring Admission Control Using the Command Line

To configure admission control, use a combination of startup options for the Impala daemon and edit or create the
configuration files fair-scheduler.xml and llama-site.xml.

For a straightforward configuration using a single resource pool named default, you can specify configuration
options on the command line and skip the fair-scheduler.xml and llama-site.xml configuration files.

For an advanced configuration with multiple resource pools using different settings, set up the fair-
scheduler.xml and llama-site.xml configuration files manually. Provide the paths to each one using the
impalad command-line options, --fair_scheduler_allocation_path and --llama_site_path
respectively.

The Impala admission control feature only uses the Fair Scheduler configuration settings to determine how to map
users and groups to different resource pools. For example, you might set up different resource pools with separate
memory limits, and maximum number of concurrent and queued queries, for different categories of users within your
organization. For details about all the Fair Scheduler configuration settings, see the Apache wiki.

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration

 | Impala Administration | 73

The Impala admission control feature only uses a small subset of possible settings from the llama-site.xml
configuration file:

llama.am.throttling.maximum.placed.reservations.queue_name
llama.am.throttling.maximum.queued.reservations.queue_name
impala.admission-control.pool-default-query-options.queue_name
impala.admission-control.pool-queue-timeout-ms.queue_name

The impala.admission-control.pool-queue-timeout-ms setting specifies the timeout value for
this pool, in milliseconds. Theimpala.admission-control.pool-default-query-options settings
designates the default query options for all queries that run in this pool. Its argument value is a comma-delimited
string of 'key=value' pairs, for example,'key1=val1,key2=val2'. For example, this is where you might set a
default memory limit for all queries in the pool, using an argument such as MEM_LIMIT=5G.

The impala.admission-control.* configuration settings are available in Impala 2.5 and higher.

Example of Admission Control Configuration

Here are sample fair-scheduler.xml and llama-site.xml files that define resource pools
root.default, root.development, and root.production. These sample files are stripped down: in a
real deployment they might contain other settings for use with various aspects of the YARN component. The settings
shown here are the significant ones for the Impala admission control feature.

fair-scheduler.xml:

Although Impala does not use the vcores value, you must still specify it to satisfy YARN requirements for the file
contents.

Each <aclSubmitApps> tag (other than the one for root) contains a comma-separated list of users, then a space,
then a comma-separated list of groups; these are the users and groups allowed to submit Impala statements to the
corresponding resource pool.

If you leave the <aclSubmitApps> element empty for a pool, nobody can submit directly to that pool; child pools
can specify their own <aclSubmitApps> values to authorize users and groups to submit to those pools.

<allocations>

 <queue name="root">
 <aclSubmitApps> </aclSubmitApps>
 <queue name="default">
 <maxResources>50000 mb, 0 vcores</maxResources>
 <aclSubmitApps>*</aclSubmitApps>
 </queue>
 <queue name="development">
 <maxResources>200000 mb, 0 vcores</maxResources>
 <aclSubmitApps>user1,user2 dev,ops,admin</aclSubmitApps>
 </queue>
 <queue name="production">
 <maxResources>1000000 mb, 0 vcores</maxResources>
 <aclSubmitApps> ops,admin</aclSubmitApps>
 </queue>
 </queue>
 <queuePlacementPolicy>
 <rule name="specified" create="false"/>
 <rule name="default" />
 </queuePlacementPolicy>
</allocations>

llama-site.xml:

<?xml version="1.0" encoding="UTF-8"?>

 | Impala Administration | 74

<configuration>
 <property>
 <name>llama.am.throttling.maximum.placed.reservations.root.default</
name>
 <value>10</value>
 </property>
 <property>
 <name>llama.am.throttling.maximum.queued.reservations.root.default</
name>
 <value>50</value>
 </property>
 <property>
 <name>impala.admission-control.pool-default-query-options.root.default</
name>
 <value>mem_limit=128m,query_timeout_s=20,max_io_buffers=10</value>
 </property>
 <property>
 <name>impala.admission-control.pool-queue-timeout-ms.root.default</name>
 <value>30000</value>
 </property>
 <property>
 <name>llama.am.throttling.maximum.placed.reservations.root.development</
name>
 <value>50</value>
 </property>
 <property>
 <name>llama.am.throttling.maximum.queued.reservations.root.development</
name>
 <value>100</value>
 </property>
 <property>
 <name>impala.admission-control.pool-default-query-
options.root.development</name>
 <value>mem_limit=256m,query_timeout_s=30,max_io_buffers=10</value>
 </property>
 <property>
 <name>impala.admission-control.pool-queue-timeout-ms.root.development</
name>
 <value>15000</value>
 </property>
 <property>
 <name>llama.am.throttling.maximum.placed.reservations.root.production</
name>
 <value>100</value>
 </property>
 <property>
 <name>llama.am.throttling.maximum.queued.reservations.root.production</
name>
 <value>200</value>
 </property>
<!--
 Default query options for the 'root.production' pool.
 THIS IS A NEW PARAMETER in Impala 2.5.
 Note that the MEM_LIMIT query option still shows up in here even
 though it is a
 separate box in the UI. We do that because it is the most important
 query option
 that people will need (everything else is somewhat advanced).

 MEM_LIMIT takes a per-node memory limit which is specified using one
 of the following:
 - '<int>[bB]?' -> bytes (default if no unit given)
 - '<float>[mM(bB)]' -> megabytes
 - '<float>[gG(bB)]' -> in gigabytes

 | Impala Administration | 75

 E.g. 'MEM_LIMIT=12345' (no unit) means 12345 bytes, and you can
 append m or g
 to specify megabytes or gigabytes, though that is not required.
-->
 <property>
 <name>impala.admission-control.pool-default-query-
options.root.production</name>
 <value>mem_limit=386m,query_timeout_s=30,max_io_buffers=10</value>
 </property>
<!--
 Default queue timeout (ms) for the pool 'root.production'.
 If this isn’t set, the process-wide flag is used.
 THIS IS A NEW PARAMETER in Impala 2.5.
-->
 <property>
 <name>impala.admission-control.pool-queue-timeout-ms.root.production</
name>
 <value>30000</value>
 </property>
</configuration>

Guidelines for Using Admission Control

To see how admission control works for particular queries, examine the profile output for the query. This information
is available through the PROFILE statement in impala-shell immediately after running a query in the shell, on
the queries page of the Impala debug web UI, or in the Impala log file (basic information at log level 1, more detailed
information at log level 2). The profile output contains details about the admission decision, such as whether the
query was queued or not and which resource pool it was assigned to. It also includes the estimated and actual memory
usage for the query, so you can fine-tune the configuration for the memory limits of the resource pools.

Remember that the limits imposed by admission control are “soft” limits. The decentralized nature of this mechanism
means that each Impala node makes its own decisions about whether to allow queries to run immediately or to queue
them. These decisions rely on information passed back and forth between nodes by the statestore service. If a sudden
surge in requests causes more queries than anticipated to run concurrently, then throughput could decrease due to
queries spilling to disk or contending for resources; or queries could be cancelled if they exceed the MEM_LIMIT
setting while running.

In impala-shell, you can also specify which resource pool to direct queries to by setting the REQUEST_POOL
query option.

The statements affected by the admission control feature are primarily queries, but also include statements that
write data such as INSERT and CREATE TABLE AS SELECT. Most write operations in Impala are not resource-
intensive, but inserting into a Parquet table can require substantial memory due to buffering intermediate data before
writing out each Parquet data block. See Loading Data into Parquet Tables on page 701 for instructions about
inserting data efficiently into Parquet tables.

Although admission control does not scrutinize memory usage for other kinds of DDL statements, if a query is
queued due to a limit on concurrent queries or memory usage, subsequent statements in the same session are also
queued so that they are processed in the correct order:

-- This query could be queued to avoid out-of-memory at times of heavy load.
select * from huge_table join enormous_table using (id);
-- If so, this subsequent statement in the same session is also queued
-- until the previous statement completes.
drop table huge_table;

If you set up different resource pools for different users and groups, consider reusing any classifications you
developed for use with Sentry security. See Enabling Sentry Authorization for Impala on page 87 for details.

For details about all the Fair Scheduler configuration settings, see Fair Scheduler Configuration, in particular the tags
such as <queue> and <aclSubmitApps> to map users and groups to particular resource pools (queues).

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration

 | Impala Administration | 76

Resource Management for Impala
Note:

The use of the Llama component for integrated resource management within YARN is no longer supported with
Impala 2.3 and higher. The Llama support code is removed entirely in Impala 2.8 and higher.

For clusters running Impala alongside other data management components, you define static service pools to define
the resources available to Impala and other components. Then within the area allocated for Impala, you can create
dynamic service pools, each with its own settings for the Impala admission control feature.

You can limit the CPU and memory resources used by Impala, to manage and prioritize workloads on clusters that run
jobs from many Hadoop components.

How Resource Limits Are Enforced

Limits on memory usage are enforced by Impala's process memory limit (the MEM_LIMIT query option setting). The
admission control feature checks this setting to decide how many queries can be safely run at the same time. Then the
Impala daemon enforces the limit by activating the spill-to-disk mechanism when necessary, or cancelling a query
altogether if the limit is exceeded at runtime.

impala-shell Query Options for Resource Management

Before issuing SQL statements through the impala-shell interpreter, you can use the SET command to configure
the following parameters related to resource management:

• EXPLAIN_LEVEL Query Option on page 366
• MEM_LIMIT Query Option on page 378

Limitations of Resource Management for Impala

The MEM_LIMIT query option, and the other resource-related query options, are settable through the ODBC or JDBC
interfaces in Impala 2.0 and higher. This is a former limitation that is now lifted.

Setting Timeout Periods for Daemons, Queries, and Sessions
Depending on how busy your cluster is, you might increase or decrease various timeout values. Increase timeouts if
Impala is cancelling operations prematurely, when the system is responding slower than usual but the operations are
still successful if given extra time. Decrease timeouts if operations are idle or hanging for long periods, and the idle or
hung operations are consuming resources and reducing concurrency.

Increasing the Statestore Timeout

If you have an extensive Impala schema, for example with hundreds of databases, tens of thousands of
tables, and so on, you might encounter timeout errors during startup as the Impala catalog service broadcasts
metadata to all the Impala nodes using the statestore service. To avoid such timeout errors on startup,
increase the statestore timeout value from its default of 10 seconds. Specify the timeout value using the -
statestore_subscriber_timeout_seconds option for the statestore service, using the configuration
instructions in Modifying Impala Startup Options on page 32. The symptom of this problem is messages in the
impalad log such as:

Connection with state-store lost
Trying to re-register with state-store

See Scalability Considerations for the Impala Statestore on page 673 for more details about statestore operation
and settings on clusters with a large number of Impala-related objects such as tables and partitions.

 | Impala Administration | 77

Setting the Idle Query and Idle Session Timeouts for impalad

To keep long-running queries or idle sessions from tying up cluster resources, you can set timeout intervals for both
individual queries, and entire sessions.

Note:

The timeout clock for queries and sessions only starts ticking when the query or session is idle. For queries, this
means the query has results ready but is waiting for a client to fetch the data. A query can run for an arbitrary time
without triggering a timeout, because the query is computing results rather than sitting idle waiting for the results to
be fetched. The timeout period is intended to prevent unclosed queries from consuming resources and taking up slots
in the admission count of running queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.

Specify the following startup options for the impalad daemon:

• The --idle_query_timeout option specifies the time in seconds after which an idle query is cancelled. This
could be a query whose results were all fetched but was never closed, or one whose results were partially fetched
and then the client program stopped requesting further results. This condition is most likely to occur in a client
program using the JDBC or ODBC interfaces, rather than in the interactive impala-shell interpreter. Once the
query is cancelled, the client program cannot retrieve any further results.

You can reduce the idle query timeout by using the QUERY_TIMEOUT_S query option. Any non-zero
value specified for the --idle_query_timeout startup option serves as an upper limit for the
QUERY_TIMEOUT_S query option. A zero value for --idle_query_timeout disables query timeouts. See
QUERY_TIMEOUT_S Query Option (Impala 2.0 or higher only) on page 388 for details.

• The --idle_session_timeout option specifies the time in seconds after which an idle session is expired.
A session is idle when no activity is occurring for any of the queries in that session, and the session has not started
any new queries. Once a session is expired, you cannot issue any new query requests to it. The session remains
open, but the only operation you can perform is to close it. The default value of 0 means that sessions never
expire.

For instructions on changing impalad startup options, see Modifying Impala Startup Options on page 32.

Note:

Impala checks periodically for idle sessions and queries to cancel. The actual idle time before cancellation might be
up to 50% greater than the specified configuration setting. For example, if the timeout setting was 60, the session or
query might be cancelled after being idle between 60 and 90 seconds.

Setting Timeout and Retries for Thrift Connections to the Backend Client

Impala connections to the backend client are subject to failure in cases when the network is momentarily overloaded.
To avoid failed queries due to transient network problems, you can configure the number of Thrift connection retries
using the following option:

• The --backend_client_connection_num_retries option specifies the number of times Impala will
try connecting to the backend client after the first connection attempt fails. By default, impalad will attempt
three re-connections before it returns a failure.

You can configure timeouts for sending and receiving data from the backend client. Therefore, if for some reason a
query hangs, instead of waiting indefinitely for a response, Impala will terminate the connection after a configurable
timeout.

• The --backend_client_rpc_timeout_ms option can be used to specify the number of milliseconds
Impala should wait for a response from the backend client before it terminates the connection and signals a failure.
The default value for this property is 300000 milliseconds, or 5 minutes.

Cancelling a Query

Sometimes, an Impala query might run for an unexpectedly long time, tying up resources in the cluster. You can
cancel the query explicitly, independent of the timeout period, by going into the web UI for the impalad host (on

 | Impala Administration | 78

port 25000 by default), and using the link on the /queries tab to cancel the running query. For example, press ^C
in impala-shell.

Using Impala through a Proxy for High Availability
For most clusters that have multiple users and production availability requirements, you might set up a proxy server to
relay requests to and from Impala.

Currently, the Impala statestore mechanism does not include such proxying and load-balancing features. Set up a
software package of your choice to perform these functions.

Note:

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored
and catalogd daemons do not have special requirements for high availability, because problems with those
daemons do not result in data loss. If those daemons become unavailable due to an outage on a particular host, you
can stop the Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a
different host, and restart the Impala service.

Overview of Proxy Usage and Load Balancing for Impala

Using a load-balancing proxy server for Impala has the following advantages:

• Applications connect to a single well-known host and port, rather than keeping track of the hosts where the
impalad daemon is running.

• If any host running the impalad daemon becomes unavailable, application connection requests still succeed
because you always connect to the proxy server rather than a specific host running the impalad daemon.

• The coordinator node for each Impala query potentially requires more memory and CPU cycles than the other
nodes that process the query. The proxy server can issue queries using round-robin scheduling, so that each
connection uses a different coordinator node. This load-balancing technique lets the Impala nodes share this
additional work, rather than concentrating it on a single machine.

The following setup steps are a general outline that apply to any load-balancing proxy software:

1. Download the load-balancing proxy software. It should only need to be installed and configured on a single host.
Pick a host other than the DataNodes where impalad is running, because the intention is to protect against the
possibility of one or more of these DataNodes becoming unavailable.

2. Configure the load balancer (typically by editing a configuration file). In particular:

• Set up a port that the load balancer will listen on to relay Impala requests back and forth.
• Consider enabling “sticky sessions”. Where practical, enable this setting so that stateless client applications

such as impalad and Hue are not disconnected from long-running queries. Evaluate whether this setting is
appropriate for your combination of workload and client applications.

• For Kerberized clusters, follow the instructions in Special Proxy Considerations for Clusters Using Kerberos
on page 79.

3. Specify the host and port settings for each Impala node. These are the hosts that the load balancer will choose
from when relaying each Impala query. See Ports Used by Impala on page 775 for when to use port 21000,
21050, or another value depending on what type of connections you are load balancing.

Note:

In particular, if you are using Hue or JDBC-based applications, you typically set up load balancing for both ports
21000 and 21050, because these client applications connect through port 21050 while the impala-shell
command connects through port 21000.

4. Run the load-balancing proxy server, pointing it at the configuration file that you set up.
5. For any scripts, jobs, or configuration settings for applications that formerly connected to a specific datanode to

run Impala SQL statements, change the connection information (such as the -i option in impala-shell) to
point to the load balancer instead.

 | Impala Administration | 79

Note: The following sections use the HAProxy software as a representative example of a load balancer that you can
use with Impala.

Special Proxy Considerations for Clusters Using Kerberos

In a cluster using Kerberos, applications check host credentials to verify that the host they are connecting to is the
same one that is actually processing the request, to prevent man-in-the-middle attacks. To clarify that the load-
balancing proxy server is legitimate, perform these extra Kerberos setup steps:

1. This section assumes you are starting with a Kerberos-enabled cluster. See Enabling Kerberos Authentication
for Impala on page 98 for instructions for setting up Impala with Kerberos. See the documentation for your
Apache Hadoop distribution for general steps to set up Kerberos.

2. Choose the host you will use for the proxy server. Based on the Kerberos setup procedure, it should already have
an entry impala/proxy_host@realm in its keytab. If not, go back over the initial Kerberos configuration
steps for the keytab on each host running the impalad daemon.

3. Copy the keytab file from the proxy host to all other hosts in the cluster that run the impalad daemon. (For
optimal performance, impalad should be running on all DataNodes in the cluster.) Put the keytab file in a secure
location on each of these other hosts.

4. Add an entry impala/actual_hostname@realm to the keytab on each host running the impalad daemon.
5. For each impalad node, merge the existing keytab with the proxy’s keytab using ktutil, producing a new

keytab file. For example:

$ ktutil
 ktutil: read_kt proxy.keytab
 ktutil: read_kt impala.keytab
 ktutil: write_kt proxy_impala.keytab
 ktutil: quit

6. To verify that the keytabs are merged, run the command:

klist -k keytabfile

which lists the credentials for both principal and be_principal on all nodes.
7. Make sure that the impala user has permission to read this merged keytab file.
8. Change the following configuration settings for each host in the cluster that participates in the load balancing:

• In the impalad option definition, add:

--principal=impala/proxy_host@realm
 --be_principal=impala/actual_host@realm
 --keytab_file=path_to_merged_keytab

Note: Every host has different --be_principal because the actual hostname is different on each host.
Specify the fully qualified domain name (FQDN) for the proxy host, not the IP address. Use the exact FQDN
as returned by a reverse DNS lookup for the associated IP address.

• Modify the startup options. See Modifying Impala Startup Options on page 32 for the procedure to modify
the startup options.

9. Restart Impala to make the changes take effect. Restart the impalad daemons on all hosts in the cluster, as well
as the statestored and catalogd daemons.

Example of Configuring HAProxy Load Balancer for Impala

If you are not already using a load-balancing proxy, you can experiment with HAProxy a free, open source load
balancer. This example shows how you might install and configure that load balancer on a Red Hat Enterprise Linux
system.

• Install the load balancer: yum install haproxy

http://haproxy.1wt.eu/

 | Impala Administration | 80

• Set up the configuration file: /etc/haproxy/haproxy.cfg. See the following section for a sample
configuration file.

• Run the load balancer (on a single host, preferably one not running impalad):

/usr/sbin/haproxy –f /etc/haproxy/haproxy.cfg

• In impala-shell, JDBC applications, or ODBC applications, connect to the listener port of the proxy host,
rather than port 21000 or 21050 on a host actually running impalad. The sample configuration file sets haproxy
to listen on port 25003, therefore you would send all requests to haproxy_host:25003.

This is the sample haproxy.cfg used in this example:

global
 # To have these messages end up in /var/log/haproxy.log you will
 # need to:
 #
 # 1) configure syslog to accept network log events. This is done
 # by adding the '-r' option to the SYSLOGD_OPTIONS in
 # /etc/sysconfig/syslog
 #
 # 2) configure local2 events to go to the /var/log/haproxy.log
 # file. A line like the following can be added to
 # /etc/sysconfig/syslog
 #
 # local2.* /var/log/haproxy.log
 #
 log 127.0.0.1 local0
 log 127.0.0.1 local1 notice
 chroot /var/lib/haproxy
 pidfile /var/run/haproxy.pid
 maxconn 4000
 user haproxy
 group haproxy
 daemon

 # turn on stats unix socket
 #stats socket /var/lib/haproxy/stats

#---
common defaults that all the 'listen' and 'backend' sections will
use if not designated in their block
#
You might need to adjust timing values to prevent timeouts.
#---
defaults
 mode http
 log global
 option httplog
 option dontlognull
 option http-server-close
 option forwardfor except 127.0.0.0/8
 option redispatch
 retries 3
 maxconn 3000
 contimeout 5000
 clitimeout 50000
 srvtimeout 50000

#
This sets up the admin page for HA Proxy at port 25002.
#
listen stats :25002
 balance

 | Impala Administration | 81

 mode http
 stats enable
 stats auth username:password

This is the setup for Impala. Impala client connect to
 load_balancer_host:25003.
HAProxy will balance connections among the list of servers listed below.
The list of Impalad is listening at port 21000 for beeswax (impala-shell)
 or original ODBC driver.
For JDBC or ODBC version 2.x driver, use port 21050 instead of 21000.
listen impala :25003
 mode tcp
 option tcplog
 balance leastconn

 server symbolic_name_1 impala-host-1.example.com:21000
 server symbolic_name_2 impala-host-2.example.com:21000
 server symbolic_name_3 impala-host-3.example.com:21000
 server symbolic_name_4 impala-host-4.example.com:21000

Setup for Hue or other JDBC-enabled applications.
In particular, Hue requires sticky sessions.
The application connects to load_balancer_host:21051, and HAProxy balances
connections to the associated hosts, where Impala listens for JDBC
requests on port 21050.
listen impalajdbc :21051
 mode tcp
 option tcplog
 balance source
 server symbolic_name_5 impala-host-1.example.com:21050
 server symbolic_name_6 impala-host-2.example.com:21050
 server symbolic_name_7 impala-host-3.example.com:21050
 server symbolic_name_8 impala-host-4.example.com:21050

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy, be cautious
about reusing the connections. If the load balancer has set up connection timeout values, either check the connection
frequently so that it never sits idle longer than the load balancer timeout value, or check the connection validity before
using it and create a new one if the connection has been closed.

Managing Disk Space for Impala Data
Although Impala typically works with many large files in an HDFS storage system with plenty of capacity, there are
times when you might perform some file cleanup to reclaim space, or advise developers on techniques to minimize
space consumption and file duplication.

• Use compact binary file formats where practical. Numeric and time-based data in particular can be stored in more
compact form in binary data files. Depending on the file format, various compression and encoding features can
reduce file size even further. You can specify the STORED AS clause as part of the CREATE TABLE statement,
or ALTER TABLE with the SET FILEFORMAT clause for an existing table or partition within a partitioned
table. See How Impala Works with Hadoop File Formats on page 690 for details about file formats, especially
Using the Parquet File Format with Impala Tables on page 699. See CREATE TABLE Statement on page
256 and ALTER TABLE Statement on page 225 for syntax details.

• You manage underlying data files differently depending on whether the corresponding Impala table is defined as
an internal or external table:

• Use the DESCRIBE FORMATTED statement to check if a particular table is internal (managed by Impala) or
external, and to see the physical location of the data files in HDFS. See DESCRIBE Statement on page 274
for details.

• For Impala-managed (“internal”) tables, use DROP TABLE statements to remove data files. See DROP
TABLE Statement on page 295 for details.

 | Impala Security | 82

• For tables not managed by Impala (“external” tables), use appropriate HDFS-related commands such as
hadoop fs, hdfs dfs, or distcp, to create, move, copy, or delete files within HDFS directories that are
accessible by the impala user. Issue a REFRESH table_name statement after adding or removing any
files from the data directory of an external table. See REFRESH Statement on page 317 for details.

• Use external tables to reference HDFS data files in their original location. With this technique, you avoid
copying the files, and you can map more than one Impala table to the same set of data files. When you drop the
Impala table, the data files are left undisturbed. See External Tables on page 215 for details.

• Use the LOAD DATA statement to move HDFS files into the data directory for an Impala table from inside
Impala, without the need to specify the HDFS path of the destination directory. This technique works for both
internal and external tables. See LOAD DATA Statement on page 313 for details.

• Make sure that the HDFS trashcan is configured correctly. When you remove files from HDFS, the space might
not be reclaimed for use by other files until sometime later, when the trashcan is emptied. See DROP TABLE
Statement on page 295 for details. See User Account Requirements on page 20 for permissions needed for
the HDFS trashcan to operate correctly.

• Drop all tables in a database before dropping the database itself. See DROP DATABASE Statement on page 286
for details.

• Clean up temporary files after failed INSERT statements. If an INSERT statement encounters an error, and you
see a directory named .impala_insert_staging or _impala_insert_staging left behind in the
data directory for the table, it might contain temporary data files taking up space in HDFS. You might be able to
salvage these data files, for example if they are complete but could not be moved into place due to a permission
error. Or, you might delete those files through commands such as hadoop fs or hdfs dfs, to reclaim space
before re-trying the INSERT. Issue DESCRIBE FORMATTED table_name to see the HDFS path where you
can check for temporary files.

• By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored
in the directory /tmp/impala-scratch . These files are removed when the operation finishes. (Multiple
concurrent queries can perform operations that use the “spill to disk” technique, without any name conflicts
for these temporary files.) You can specify a different location by starting the impalad daemon with the --
scratch_dirs="path_to_directory" configuration option. You can specify a single directory, or a
comma-separated list of directories. The scratch directories must be on the local filesystem, not in HDFS. You
might specify different directory paths for different hosts, depending on the capacity and speed of the available
storage devices. In Impala 2.3 or higher, Impala successfully starts (with a warning Impala successfully starts
(with a warning written to the log) if it cannot create or read and write files in one of the scratch directories. If
there is less than 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a warning
message to its log. If Impala encounters an error reading or writing files in a scratch directory during a query,
Impala logs the error and the query fails.

• If you use the Amazon Simple Storage Service (S3) as a place to offload data to reduce the volume of local
storage, Impala 2.2.0 and higher can query the data directly from S3. See Using Impala with the Amazon S3
Filesystem on page 748 for details.

Impala Security

Impala includes a fine-grained authorization framework for Hadoop, based on Apache Sentry. Sentry authorization
was added in Impala 1.1.0. Together with the Kerberos authentication framework, Sentry takes Hadoop security to
a new level needed for the requirements of highly regulated industries such as healthcare, financial services, and
government. Impala also includes an auditing capability which was added in Impala 1.1.1; Impala generates the audit
data which can be consumed, filtered, and visualized by cluster-management components focused on governance.

The Impala security features have several objectives. At the most basic level, security prevents accidents or mistakes
that could disrupt application processing, delete or corrupt data, or reveal data to unauthorized users. More advanced
security features and practices can harden the system against malicious users trying to gain unauthorized access
or perform other disallowed operations. The auditing feature provides a way to confirm that no unauthorized
access occurred, and detect whether any such attempts were made. This is a critical set of features for production

 | Impala Security | 83

deployments in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where
multiple applications run concurrently and are prevented from interfering with each other.

The material in this section presumes that you are already familiar with administering secure Linux systems. That
is, you should know the general security practices for Linux and Hadoop, and their associated commands and
configuration files. For example, you should know how to create Linux users and groups, manage Linux group
membership, set Linux and HDFS file permissions and ownership, and designate the default permissions and
ownership for new files. You should be familiar with the configuration of the nodes in your Hadoop cluster, and know
how to apply configuration changes or run a set of commands across all the nodes.

The security features are divided into these broad categories:

authorization Which users are allowed to access which resources, and
what operations are they allowed to perform? Impala
relies on the open source Sentry project for authorization.
By default (when authorization is not enabled), Impala
does all read and write operations with the privileges of
the impala user, which is suitable for a development/
test environment but not for a secure production
environment. When authorization is enabled, Impala uses
the OS user ID of the user who runs impala-shell
or other client program, and associates various privileges
with each user. See Enabling Sentry Authorization for
Impala on page 87 for details about setting up and
managing authorization.

authentication How does Impala verify the identity of the user to
confirm that they really are allowed to exercise the
privileges assigned to that user? Impala relies on the
Kerberos subsystem for authentication. See Enabling
Kerberos Authentication for Impala on page 98 for
details about setting up and managing authentication.

auditing What operations were attempted, and did they succeed
or not? This feature provides a way to look back and
diagnose whether attempts were made to perform
unauthorized operations. You use this information to
track down suspicious activity, and to see where changes
are needed in authorization policies. The audit data
produced by this feature can be collected and presented
in a user-friendly form by cluster-management software.
See Auditing Impala Operations on page 104 for
details about setting up and managing auditing.

Security Guidelines for Impala
The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious
attackers trying to access sensitive data:

• Secure the root account. The root user can tamper with the impalad daemon, read and write the data files in
HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

• Restrict membership in the sudoers list (in the /etc/sudoers file). The users who can run the sudo
command can do many of the same things as the root user.

• Ensure the Hadoop ownership and permissions for Impala data files are restricted.
• Ensure the Hadoop ownership and permissions for Impala log files are restricted.
• Ensure that the Impala web UI (available by default on port 25000 on each Impala node) is password-protected.

See Impala Web User Interface for Debugging on page 770 for details.

 | Impala Security | 84

• Create a policy file that specifies which Impala privileges are available to users in particular Hadoop groups
(which by default map to Linux OS groups). Create the associated Linux groups using the groupadd command
if necessary.

• The Impala authorization feature makes use of the HDFS file ownership and permissions mechanism; for
background information, see the HDFS Permissions Guide. Set up users and assign them to groups at the OS
level, corresponding to the different categories of users with different access levels for various databases, tables,
and HDFS locations (URIs). Create the associated Linux users using the useradd command if necessary, and
add them to the appropriate groups with the usermod command.

• Design your databases, tables, and views with database and table structure to allow policy rules to specify simple,
consistent rules. For example, if all tables related to an application are inside a single database, you can assign
privileges for that database and use the * wildcard for the table name. If you are creating views with different
privileges than the underlying base tables, you might put the views in a separate database so that you can use the
* wildcard for the database containing the base tables, while specifying the precise names of the individual views.
(For specifying table or database names, you either specify the exact name or * to mean all the databases on a
server, or all the tables and views in a database.)

• Enable authorization by running the impalad daemons with the -server_name and -
authorization_policy_file options on all nodes. (The authorization feature does not apply to the
statestored daemon, which has no access to schema objects or data files.)

• Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files
One aspect of security is to protect files from unauthorized access at the filesystem level. For example, if you store
sensitive data in HDFS, you specify permissions on the associated files and directories in HDFS to restrict read and
write permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values
are stored in Impala log files in the Linux filesystem and you must secure those files also. For the locations of Impala
log files, see Using Impala Logging on page 764.

All Impala read and write operations are performed under the filesystem privileges of the impala user. The impala
user must be able to read all directories and data files that you query, and write into all the directories and data files
for INSERT and LOAD DATA statements. At a minimum, make sure the impala user is in the hive group so that it
can access files and directories shared between Impala and Hive. See User Account Requirements on page 20 for
more details.

Setting file permissions is necessary for Impala to function correctly, but is not an effective security practice by itself:

• The way to ensure that only authorized users can submit requests for databases and tables they are allowed to
access is to set up Sentry authorization, as explained in Enabling Sentry Authorization for Impala on page 87.
With authorization enabled, the checking of the user ID and group is done by Impala, and unauthorized access is
blocked by Impala itself. The actual low-level read and write requests are still done by the impala user, so you
must have appropriate file and directory permissions for that user ID.

• You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on
page 98, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new
host to the network and creates user IDs that match your privileged IDs, they will be blocked from connecting to
Impala at all from that host.

Installation Considerations for Impala Security
Impala 1.1 comes set up with all the software and settings needed to enable security when you run the impalad
daemon with the new security-related options (-server_name and -authorization_policy_file). You do
not need to change any environment variables or install any additional JAR files.

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html

 | Impala Security | 85

Securing the Hive Metastore Database
It is important to secure the Hive metastore, so that users cannot access the names or other information about
databases and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive
metastore security, using the instructions in the documentation for your Apache Hadoop distribution for securing
different Hive components:

• Secure the Hive Metastore.
• In addition, allow access to the metastore only from the HiveServer2 server, and then disable local access to the

HiveServer2 server.

Securing the Impala Web User Interface
The instructions in this section presume you are familiar with the .htpasswd mechanism commonly used to
password-protect pages on web servers.

Password-protect the Impala web UI that listens on port 25000 by default. Set up a .htpasswd file in
the $IMPALA_HOME directory, or start both the impalad and statestored daemons with the --
webserver_password_file option to specify a different location (including the filename).

This file should only be readable by the Impala process and machine administrators, because it contains (hashed)
versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or
any other system. The domain field in the password file must match the domain supplied to Impala by the new
command-line option --webserver_authentication_domain. The default is mydomain.com.

Impala also supports using HTTPS for secure web traffic. To do so, set --webserver_certificate_file
to refer to a valid .pem TLS/SSL certificate file. Impala will automatically start using HTTPS once the TLS/
SSL certificate has been read and validated. A .pem file is basically a private key, followed by a signed TLS/SSL
certificate; make sure to concatenate both parts when constructing the .pem file.

If Impala cannot find or parse the .pem file, it prints an error message and quits.

Note:

If the private key is encrypted using a passphrase, Impala will ask for that passphrase on startup, which is not
useful for a large cluster. In that case, remove the passphrase and make the .pem file readable only by Impala and
administrators.

When you turn on TLS/SSL for the Impala web UI, the associated URLs change from http:// prefixes to
https://. Adjust any bookmarks or application code that refers to those URLs.

Configuring TLS/SSL for Impala
Impala supports TLS/SSL network encryption, between Impala and client programs, and between the Impala-related
daemons running on different nodes in the cluster. This feature is important when you also use other features such as
Kerberos authentication or Sentry authorization, where credentials are being transmitted back and forth.

Using the Command Line

To enable SSL for when client applications connect to Impala, add both of the following flags to the impalad
startup options:

• --ssl_server_certificate: the full path to the server certificate, on the local filesystem.
• --ssl_private_key: the full path to the server private key, on the local filesystem.

In Impala 2.3 and higher, Impala can also use SSL for its own internal communication between the
impalad, statestored, and catalogd daemons. To enable this additional SSL encryption, set the --
ssl_server_certificate and --ssl_private_key flags in the startup options for impalad,

http://en.wikipedia.org/wiki/.htpasswd

 | Impala Security | 86

catalogd, and statestored, and also add the --ssl_client_ca_certificate flag for all three of those
daemons.

Warning: Prior to Impala 2.3.2, you could enable Kerberos authentication between Impala internal
components, or SSL encryption between Impala internal components, but not both at the same time. This
restriction has now been lifted. See IMPALA-2598 to see the maintenance releases for different levels of
Impala where the fix has been published.

If either of these flags are set, both must be set. In that case, Impala starts listening for Beeswax and HiveServer2
requests on SSL-secured ports only. (The port numbers stay the same; see Ports Used by Impala on page 775 for
details.)

Since Impala uses passphrase-less certificates in PEM format, you can reuse a host's existing Java keystore by using
the openssl toolkit to convert it to the PEM format.

Configuring TLS/SSL Communication for the Impala Shell

With SSL enabled for Impala, use the following options when starting the impala-shell interpreter:

• --ssl: enables TLS/SSL for impala-shell.
• --ca_cert: the local pathname pointing to the third-party CA certificate, or to a copy of the server certificate

for self-signed server certificates.

If --ca_cert is not set, impala-shell enables TLS/SSL, but does not validate the server certificate. This is
useful for connecting to a known-good Impala that is only running over TLS/SSL, when a copy of the certificate is
not available (such as when debugging customer installations).

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC
applications to Impala. See Configuring Impala to Work with JDBC on page 27 and Configuring Impala to Work
with ODBC on page 26 for details.

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication and SSL
encryption. If your cluster is running an older release that has this restriction, use an alternative JDBC driver that
supports both of these security features.

Specifying TLS/SSL Minimum Allowed Version and Ciphers

Depending on your cluster configuration and the security practices in your organization, you might need to restrict
the allowed versions of TLS/SSL used by Impala. Older TLS/SSL versions might have vulnerabilities or lack certain
features. In Impala 2.10, you can use startup options for the impalad, catalogd, and statestored daemons to
specify a minimum allowed version of TLS/SSL.

Specify one of the following values for the --ssl_minimum_version configuration setting:

• tlsv1: Allow any TLS version of 1.0 or higher. This setting is the default when TLS/SSL is enabled.
• tlsv1.1: Allow any TLS version of 1.1 or higher.
• tlsv1.2: Allow any TLS version of 1.2 or higher.

Note:

As of Impala 2.10, TLSv1.2 may not work for Impala on RHEL 6 or CentOS 6, even if OpenSSL 1.0.1 is available.
The daemons fail to start, with a socket error stating the TLS version is not supported. The underlying cause is related
to Red Hat issue 1497859. The issue applies if you build on a RHEL 6 or CentOS 6 system with OpenSSL 1.0.0, and
run on a RHEL 6 or CentOS 6 system with OpenSSL 1.0.1.

Along with specifying the version, you can also specify the allowed set of TLS ciphers by using the --
ssl_cipher_list configuration setting. The argument to this option is a list of keywords, separated by colons,
commas, or spaces, and optionally including other notation. For example:

https://issues.apache.org/jira/browse/IMPALA-2598
https://bugzilla.redhat.com/show_bug.cgi?id=1497859

 | Impala Security | 87

--ssl_cipher_list="RC4-SHA,RC4-MD5"

By default, the cipher list is empty, and Impala uses the default cipher list for the underlying platform. See the output
of man ciphers for the full set of keywords and notation allowed in the argument string.

Enabling Sentry Authorization for Impala
Authorization determines which users are allowed to access which resources, and what operations they are allowed to
perform. In Impala 1.1 and higher, you use Apache Sentry for authorization. Sentry adds a fine-grained authorization
framework for Hadoop. By default (when authorization is not enabled), Impala does all read and write operations
with the privileges of the impala user, which is suitable for a development/test environment but not for a secure
production environment. When authorization is enabled, Impala uses the OS user ID of the user who runs impala-
shell or other client program, and associates various privileges with each user.

Note: Sentry is typically used in conjunction with Kerberos authentication, which defines which hosts are allowed
to connect to each server. Using the combination of Sentry and Kerberos prevents malicious users from being able to
connect by creating a named account on an untrusted machine. See Enabling Kerberos Authentication for Impala on
page 98 for details about Kerberos authentication.

The Sentry Privilege Model

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with
a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object
automatically inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The object hierarchy for Impala covers Server, URI, Database, Table, and Column. (The Table privileges apply to
views as well; anywhere you specify a table name, you can specify a view name instead.) Column-level authorization
is available in Impala 2.3 and higher. Previously, you constructed views to query specific columns and assigned
privilege based on the views rather than the base tables. Now, you can use Impala's GRANT Statement (Impala 2.0 or
higher only) on page 300 and REVOKE Statement (Impala 2.0 or higher only) on page 321 statements to assign
and revoke privileges from specific columns in a table.

A restricted set of privileges determines what you can do with each object:

 SELECT privilege Lets you read data from a table or view, for example
with the SELECT statement, the INSERT...SELECT
syntax, or CREATE TABLE...LIKE. Also required
to issue the DESCRIBE statement or the EXPLAIN
statement for a query against a particular table. Only
objects for which a user has this privilege are shown in
the output for SHOW DATABASES and SHOW TABLES
statements. The REFRESH statement and INVALIDATE
METADATA statements only access metadata for tables
for which the user has this privilege.

 INSERT privilege Lets you write data to a table. Applies to the INSERT
and LOAD DATA statements.

 ALL privilege Lets you create or modify the object. Required to run
DDL statements such as CREATE TABLE, ALTER
TABLE, or DROP TABLE for a table, CREATE
DATABASE or DROP DATABASE for a database, or
CREATE VIEW, ALTER VIEW, or DROP VIEW for
a view. Also required for the URI of the “location”
parameter for the CREATE EXTERNAL TABLE and
LOAD DATA statements.

 | Impala Security | 88

Privileges can be specified for a table or view before that object actually exists. If you do not have sufficient privilege
to perform an operation, the error message does not disclose if the object exists or not.

Originally, privileges were encoded in a policy file, stored in HDFS. This mode of operation is still an option, but the
emphasis of privilege management is moving towards being SQL-based. Although currently Impala does not have
GRANT or REVOKE statements, Impala can make use of privileges assigned through GRANT and REVOKE statements
done through Hive. The mode of operation with GRANT and REVOKE statements instead of the policy file requires
that a special Sentry service be enabled; this service stores, retrieves, and manipulates privilege information stored
inside the metastore database.

Starting the impalad Daemon with Sentry Authorization Enabled

To run the impalad daemon with authorization enabled, you add one or more options to the
IMPALA_SERVER_ARGS declaration in the /etc/default/impala configuration file:

• The -server_name option turns on Sentry authorization for Impala. The authorization rules refer to a symbolic
server name, and you specify the name to use as the argument to the -server_name option.

• If you specify just -server_name, Impala uses the Sentry service for authorization, relying on the results of
GRANT and REVOKE statements issued through Hive. (This mode of operation is available in Impala 1.4.0 and
higher.) Prior to Impala 1.4.0, or if you want to continue storing privilege rules in the policy file, also specify the -
authorization_policy_file option as in the following item.

• Specifying the -authorization_policy_file option in addition to -server_name makes Impala
read privilege information from a policy file, rather than from the metastore database. The argument to the -
authorization_policy_file option specifies the HDFS path to the policy file that defines the privileges
on different schema objects.

For example, you might adapt your /etc/default/impala configuration to contain lines like the following. To
use the Sentry service rather than the policy file:

IMPALA_SERVER_ARGS=" \
-server_name=server1 \
...

Or to use the policy file, as in releases prior to Impala 1.4:

IMPALA_SERVER_ARGS=" \
-authorization_policy_file=/user/hive/warehouse/auth-policy.ini \
-server_name=server1 \
...

The preceding examples set up a symbolic name of server1 to refer to the current instance of Impala. This
symbolic name is used in the following ways:

• Specify the server1 value for the sentry.hive.server property in the sentry-site.xml
configuration file for Hive, as well as in the -server_name option for impalad.

If the impalad daemon is not already running, start it as described in Starting Impala on page 31. If it is
already running, restart it with the command sudo /etc/init.d/impala-server restart. Run the
appropriate commands on all the nodes where impalad normally runs.

• If you use the mode of operation using the policy file, the rules in the [roles] section of the policy file refer to
this same server1 name. For example, the following rule sets up a role report_generator that lets users
with that role query any table in a database named reporting_db on a node where the impalad daemon was
started up with the -server_name=server1 option:

[roles]
report_generator = server=server1->db=reporting_db->table=*->action=SELECT

When impalad is started with one or both of the -server_name=server1 and -
authorization_policy_file options, Impala authorization is enabled. If Impala detects any errors or
inconsistencies in the authorization settings or the policy file, the daemon refuses to start.

 | Impala Security | 89

Using Impala with the Sentry Service (Impala 1.4 or higher only)

When you use the Sentry service rather than the policy file, you set up privileges through GRANT and REVOKE
statement in either Impala or Hive, then both components use those same privileges automatically. (Impala added the
GRANT and REVOKE statements in Impala 2.0.)

Using Impala with the Sentry Policy File

The policy file is a file that you put in a designated location in HDFS, and is read during the startup of the impalad
daemon when you specify both the -server_name and -authorization_policy_file startup options. It
controls which objects (databases, tables, and HDFS directory paths) can be accessed by the user who connects to
impalad, and what operations that user can perform on the objects.

Note:

The Sentry service, as described in Using Impala with the Sentry Service (Impala 1.4 or higher only) on page 89,
stores authorization metadata in a relational database. This means you can manage user privileges for Impala tables
using traditional GRANT and REVOKE SQL statements, rather than the policy file approach described here.If you are
still using policy files, migrate to the database-backed service whenever practical.

The location of the policy file is listed in the auth-site.xml configuration file. To minimize overhead, the
security information from this file is cached by each impalad daemon and refreshed automatically, with a default
interval of 5 minutes. After making a substantial change to security policies, restart all Impala daemons to pick up the
changes immediately.

Policy File Location and Format

The policy file uses the familiar .ini format, divided into the major sections [groups] and [roles]. There is
also an optional [databases] section, which allows you to specify a specific policy file for a particular database,
as explained in Using Multiple Policy Files for Different Databases on page 93. Another optional section,
[users], allows you to override the OS-level mapping of users to groups; that is an advanced technique primarily
for testing and debugging, and is beyond the scope of this document.

In the [groups] section, you define various categories of users and select which roles are associated with each
category. The group and usernames correspond to Linux groups and users on the server where the impalad daemon
runs.

The group and usernames in the [groups] section correspond to Linux groups and users on the server where the
impalad daemon runs. When you access Impala through the impalad interpreter, for purposes of authorization,
the user is the logged-in Linux user and the groups are the Linux groups that user is a member of. When you access
Impala through the ODBC or JDBC interfaces, the user and password specified through the connection string are used
as login credentials for the Linux server, and authorization is based on that username and the associated Linux group
membership.

In the [roles] section, you a set of roles. For each role, you specify precisely the set of privileges is available. That
is, which objects users with that role can access, and what operations they can perform on those objects. This is the
lowest-level category of security information; the other sections in the policy file map the privileges to higher-level
divisions of groups and users. In the [groups] section, you specify which roles are associated with which groups.
The group and usernames correspond to Linux groups and users on the server where the impalad daemon runs. The
privileges are specified using patterns like:

server=server_name->db=database_name->table=table_name->action=SELECT
server=server_name->db=database_name->table=table_name->action=CREATE
server=server_name->db=database_name->table=table_name->action=ALL

For the server_name value, substitute the same symbolic name you specify with the impalad -server_name
option. You can use * wildcard characters at each level of the privilege specification to allow access to all such
objects. For example:

server=impala-host.example.com->db=default->table=t1->action=SELECT

 | Impala Security | 90

server=impala-host.example.com->db=*->table=*->action=CREATE
server=impala-host.example.com->db=*->table=audit_log->action=SELECT
server=impala-host.example.com->db=default->table=t1->action=*

When authorization is enabled, Impala uses the policy file as a whitelist, representing every privilege available to any
user on any object. That is, only operations specified for the appropriate combination of object, role, group, and user
are allowed; all other operations are not allowed. If a group or role is defined multiple times in the policy file, the last
definition takes precedence.

To understand the notion of whitelisting, set up a minimal policy file that does not provide any privileges
for any object. When you connect to an Impala node where this policy file is in effect, you get no results for
SHOW DATABASES, and an error when you issue any SHOW TABLES, USE database_name, DESCRIBE
table_name, SELECT, and or other statements that expect to access databases or tables, even if the corresponding
databases and tables exist.

The contents of the policy file are cached, to avoid a performance penalty for each query. The policy file is re-
checked by each impalad node every 5 minutes. When you make a non-time-sensitive change such as adding
new privileges or new users, you can let the change take effect automatically a few minutes later. If you remove
or reduce privileges, and want the change to take effect immediately, restart the impalad daemon on all nodes,
again specifying the -server_name and -authorization_policy_file options so that the rules from the
updated policy file are applied.

Examples of Policy File Rules for Security Scenarios

The following examples show rules that might go in the policy file to deal with various authorization-related
scenarios. For illustration purposes, this section shows several very small policy files with only a few rules each. In
your environment, typically you would define many roles to cover all the scenarios involving your own databases,
tables, and applications, and a smaller number of groups, whose members are given the privileges from one or more
roles.

A User with No Privileges

If a user has no privileges at all, that user cannot access any schema objects in the system. The error
messages do not disclose the names or existence of objects that the user is not authorized to read.

This is the experience you want a user to have if they somehow log into a system where they are
not an authorized Impala user. In a real deployment with a filled-in policy file, a user might have no
privileges because they are not a member of any of the relevant groups mentioned in the policy file.

Examples of Privileges for Administrative Users

When an administrative user has broad access to tables or databases, the associated rules in the
[roles] section typically use wildcards and/or inheritance. For example, in the following sample
policy file, db=* refers to all databases and db=*->table=* refers to all tables in all databases.

Omitting the rightmost portion of a rule means that the privileges apply to all the objects that could
be specified there. For example, in the following sample policy file, the all_databases role has
all privileges for all tables in all databases, while the one_database role has all privileges for all
tables in one specific database. The all_databases role does not grant privileges on URIs, so
a group with that role could not issue a CREATE TABLE statement with a LOCATION clause. The
entire_server role has all privileges on both databases and URIs within the server.

[groups]
supergroup = all_databases

[roles]
read_all_tables = server=server1->db=*->table=*->action=SELECT
all_tables = server=server1->db=*->table=*
all_databases = server=server1->db=*
one_database = server=server1->db=test_db

 | Impala Security | 91

entire_server = server=server1

A User with Privileges for Specific Databases and Tables

If a user has privileges for specific tables in specific databases, the user can access those things but
nothing else. They can see the tables and their parent databases in the output of SHOW TABLES and
SHOW DATABASES, USE the appropriate databases, and perform the relevant actions (SELECT
and/or INSERT) based on the table privileges. To actually create a table requires the ALL privilege
at the database level, so you might define separate roles for the user that sets up a schema and other
users or applications that perform day-to-day operations on the tables.

The following sample policy file shows some of the syntax that is appropriate as the policy file
grows, such as the # comment syntax, \ continuation syntax, and comma separation for roles
assigned to groups or privileges assigned to roles.

[groups]
employee = training_sysadmin, instructor
visitor = student

[roles]
training_sysadmin = server=server1->db=training, \
server=server1->db=instructor_private, \
server=server1->db=lesson_development
instructor = server=server1->db=training->table=*->action=*, \
server=server1->db=instructor_private->table=*->action=*, \
server=server1->db=lesson_development->table=lesson*
This particular course is all about queries, so the students
 can SELECT but not INSERT or CREATE/DROP.
student = server=server1->db=training->table=lesson_*-
>action=SELECT

Privileges for Working with External Data Files

When data is being inserted through the LOAD DATA statement, or is referenced from an HDFS
location outside the normal Impala database directories, the user also needs appropriate permissions
on the URIs corresponding to those HDFS locations.

In this sample policy file:

• The external_table role lets us insert into and query the Impala table,
external_table.sample.

• The staging_dir role lets us specify the HDFS path /user/username/
external_data with the LOAD DATA statement. Remember, when Impala queries or
loads data files, it operates on all the files in that directory, not just a single file, so any Impala
LOCATION parameters refer to a directory rather than an individual file.

• We included the IP address and port of the Hadoop name node in the HDFS URI of the
staging_dir rule. We found those details in /etc/hadoop/conf/core-site.xml,
under the fs.default.name element. That is what we use in any roles that specify URIs
(that is, the locations of directories in HDFS).

• We start this example after the table external_table.sample is already created. In the
policy file for the example, we have already taken away the external_table_admin role
from the username group, and replaced it with the lesser-privileged external_table role.

• We assign privileges to a subdirectory underneath /user/username in HDFS, because such
privileges also apply to any subdirectories underneath. If we had assigned privileges to the
parent directory /user/username, it would be too likely to mess up other files by specifying
a wrong location by mistake.

 | Impala Security | 92

• The username under the [groups] section refers to the username group. (In this example,
there is a username user that is a member of a username group.)

Policy file:

[groups]
username = external_table, staging_dir

[roles]
external_table_admin = server=server1->db=external_table
external_table = server=server1->db=external_table-
>table=sample->action=*
staging_dir = server=server1->uri=hdfs://127.0.0.1:8020/user/
username/external_data->action=*

impala-shell session:

[localhost:21000] > use external_table;
Query: use external_table
[localhost:21000] > show tables;
Query: show tables
Query finished, fetching results ...
+--------+
| name |
+--------+
| sample |
+--------+
Returned 1 row(s) in 0.02s

[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results ...
+-----+
| x |
+-----+
| 1 |
| 5 |
| 150 |
+-----+
Returned 3 row(s) in 1.04s

[localhost:21000] > load data inpath '/user/username/
external_data' into table sample;
Query: load data inpath '/user/username/external_data' into
 table sample
Query finished, fetching results ...
+--+
| summary |
+--+
| Loaded 1 file(s). Total files in destination location: 2 |
+--+
Returned 1 row(s) in 0.26s
[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results ...
+-------+
| x |
+-------+
| 2 |
| 4 |
| 6 |
| 8 |
| 64738 |

 | Impala Security | 93

| 49152 |
| 1 |
| 5 |
| 150 |
+-------+
Returned 9 row(s) in 0.22s

[localhost:21000] > load data inpath '/user/username/
unauthorized_data' into table sample;
Query: load data inpath '/user/username/unauthorized_data' into
 table sample
ERROR: AuthorizationException: User 'username' does not have
 privileges to access: hdfs://127.0.0.1:8020/user/username/
unauthorized_data

Separating Administrator Responsibility from Read and Write Privileges

Remember that to create a database requires full privilege on that database, while day-to-day
operations on tables within that database can be performed with lower levels of privilege on specific
table. Thus, you might set up separate roles for each database or application: an administrative one
that could create or drop the database, and a user-level one that can access only the relevant tables.

For example, this policy file divides responsibilities between users in 3 different groups:

• Members of the supergroup group have the training_sysadmin role and so can set up
a database named training.

• Members of the employee group have the instructor role and so can create, insert into,
and query any tables in the training database, but cannot create or drop the database itself.

• Members of the visitor group have the student role and so can query those tables in the
training database.

[groups]
supergroup = training_sysadmin
employee = instructor
visitor = student

[roles]
training_sysadmin = server=server1->db=training
instructor = server=server1->db=training->table=*->action=*
student = server=server1->db=training->table=*->action=SELECT

Using Multiple Policy Files for Different Databases

For an Impala cluster with many databases being accessed by many users and applications, it might be cumbersome to
update the security policy file for each privilege change or each new database, table, or view. You can allow security
to be managed separately for individual databases, by setting up a separate policy file for each database:

• Add the optional [databases] section to the main policy file.
• Add entries in the [databases] section for each database that has its own policy file.
• For each listed database, specify the HDFS path of the appropriate policy file.

For example:

[databases]
Defines the location of the per-DB policy files for the 'customers' and
 'sales' databases.
customers = hdfs://ha-nn-uri/etc/access/customers.ini
sales = hdfs://ha-nn-uri/etc/access/sales.ini

 | Impala Security | 94

To enable URIs in per-DB policy files, the Java configuration option sentry.allow.uri.db.policyfile
must be set to true. For example:

JAVA_TOOL_OPTIONS="-Dsentry.allow.uri.db.policyfile=true"

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of the db-level
policy file to grant himself/herself load privileges to anything the impala user has read permissions for in HDFS
(including data in other databases controlled by different db-level policy files).

Setting Up Schema Objects for a Secure Impala Deployment

Remember that in your role definitions, you specify privileges at the level of individual databases and tables, or all
databases or all tables within a database. To simplify the structure of these rules, plan ahead of time how to name your
schema objects so that data with different authorization requirements is divided into separate databases.

If you are adding security on top of an existing Impala deployment, remember that you can rename tables or even
move them between databases using the ALTER TABLE statement. In Impala, creating new databases is a relatively
inexpensive operation, basically just creating a new directory in HDFS.

You can also plan the security scheme and set up the policy file before the actual schema objects named in the policy
file exist. Because the authorization capability is based on whitelisting, a user can only create a new database or table
if the required privilege is already in the policy file: either by listing the exact name of the object being created, or a *
wildcard to match all the applicable objects within the appropriate container.

Privilege Model and Object Hierarchy

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with
a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object
automatically inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The kinds of objects in the schema hierarchy are:

Server
URI
Database
 Table

The server name is specified by the -server_name option when impalad starts. Specify the same name for all
impalad nodes in the cluster.

URIs represent the HDFS paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD
DATA. Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdfs:// to
make clear that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege
applies to all the files in that directory and any directories underneath it.

In Impala 2.3 and higher, you can specify privileges for individual columns. Formerly, to specify read privileges at
this level, you created a view that queried specific columns and/or partitions from a base table, and gave SELECT
privilege on the view but not the underlying table. Now, you can use Impala's GRANT Statement (Impala 2.0 or
higher only) on page 300 and REVOKE Statement (Impala 2.0 or higher only) on page 321 statements to assign
and revoke privileges from specific columns in a table.

URIs must start with either hdfs:// or file://. If a URI starts with anything else, it will cause an exception and
the policy file will be invalid. When defining URIs for HDFS, you must also specify the NameNode. For example:

data_read = server=server1->uri=file:///path/to/dir, \
server=server1->uri=hdfs://namenode:port/path/to/dir

Warning:

 | Impala Security | 95

Because the NameNode host and port must be specified, enable High Availability (HA) to ensure that the URI
will remain constant even if the NameNode changes.

data_read = server=server1->uri=file:///path/to/dir,\ server=server1-
>uri=hdfs://ha-nn-uri/path/to/dir

Table 2: Valid privilege types and objects they apply to

Privilege Object

INSERT DB, TABLE

SELECT DB, TABLE, COLUMN

ALL SERVER, TABLE, DB, URI

Note:

Although this document refers to the ALL privilege, currently if you use the policy file mode, you do not use the
actual keyword ALL in the policy file. When you code role entries in the policy file:

• To specify the ALL privilege for a server, use a role like server=server_name.
• To specify the ALL privilege for a database, use a role like server=server_name->db=database_name.
• To specify the ALL privilege for a table, use a role like server=server_name->db=database_name-

>table=table_name->action=*.

Operation Scope Privileges URI

EXPLAIN TABLE; COLUMN SELECT

LOAD DATA TABLE INSERT URI

CREATE DATABASE SERVER ALL

DROP DATABASE DATABASE ALL

CREATE TABLE DATABASE ALL

DROP TABLE TABLE ALL

DESCRIBE TABLE

-Output shows all columns
if the user has table level-
privileges or SELECT
privilege on at least one table
column

TABLE SELECT/INSERT

ALTER TABLE .. ADD
COLUMNS

TABLE ALL on DATABASE

ALTER TABLE .. REPLACE
COLUMNS

TABLE ALL on DATABASE

ALTER TABLE .. CHANGE
column

TABLE ALL on DATABASE

ALTER TABLE .. RENAME TABLE ALL on DATABASE

ALTER TABLE .. SET
TBLPROPERTIES

TABLE ALL on DATABASE

ALTER TABLE .. SET
FILEFORMAT

TABLE ALL on DATABASE

 | Impala Security | 96

Operation Scope Privileges URI

ALTER TABLE .. SET
LOCATION

TABLE ALL on DATABASE URI

ALTER TABLE .. ADD
PARTITION

TABLE ALL on DATABASE

ALTER TABLE .. ADD
PARTITION location

TABLE ALL on DATABASE URI

ALTER TABLE .. DROP
PARTITION

TABLE ALL on DATABASE

ALTER TABLE ..
PARTITION SET
FILEFORMAT

TABLE ALL on DATABASE

ALTER TABLE .. SET
SERDEPROPERTIES

TABLE ALL on DATABASE

CREATE VIEW

-This operation is allowed
if you have column-level
SELECT access to the
columns being used.

DATABASE; SELECT on
TABLE;

ALL

DROP VIEW VIEW/TABLE ALL

ALTER VIEW You need ALL privilege
on the named view and
the parent database, plus
SELECT privilege for any
tables or views referenced
by the view query. Once
the view is created or
altered by a high-privileged
system administrator,
it can be queried by a
lower-privileged user who
does not have full query
privileges for the base
tables.

ALL, SELECT

ALTER TABLE .. SET
LOCATION

TABLE ALL on DATABASE URI

CREATE EXTERNAL
TABLE

Database (ALL), URI
(SELECT)

ALL, SELECT

 | Impala Security | 97

Operation Scope Privileges URI

SELECT

-You can grant the SELECT
privilege on a view to give
users access to specific
columns of a table they do not
otherwise have access to.

-See the documentation for
Apache Sentry for details
on allowed column-level
operations.

VIEW/TABLE; COLUMN SELECT

USE <dbName> Any

CREATE FUNCTION SERVER ALL

DROP FUNCTION SERVER ALL

REFRESH <table name>
or REFRESH <table
name> PARTITION
(<partition_spec>)

TABLE SELECT/INSERT

INVALIDATE METADATA SERVER ALL

INVALIDATE METADATA
<table name>

TABLE SELECT/INSERT

COMPUTE STATS TABLE ALL

SHOW TABLE STATS,
SHOW PARTITIONS

TABLE SELECT/INSERT

SHOW COLUMN STATS TABLE SELECT/INSERT

SHOW FUNCTIONS DATABASE SELECT

SHOW TABLES No special privileges
needed to issue the
statement, but only
shows objects you are
authorized for

SHOW DATABASES,
SHOW SCHEMAS

No special privileges
needed to issue the
statement, but only
shows objects you are
authorized for

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

• Add log4j.logger.org.apache.sentry=DEBUG to the log4j.properties file on each host in the
cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

FilePermission server..., RequestPermission server...., result [true|false]

 | Impala Security | 98

which indicate each evaluation Sentry makes. The FilePermission is from the policy file, while
RequestPermission is the privilege required for the query. A RequestPermission will iterate over all
appropriate FilePermission settings until a match is found. If no matching privilege is found, Sentry returns
false indicating “Access Denied” .

The DEFAULT Database in a Secure Deployment

Because of the extra emphasis on granular access controls in a secure deployment, you should move any important or
sensitive information out of the DEFAULT database into a named database whose privileges are specified in the policy
file. Sometimes you might need to give privileges on the DEFAULT database for administrative reasons; for example,
as a place you can reliably specify with a USE statement when preparing to drop a database.

Impala Authentication
Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies
that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such
as impersonation (setting up a phony client system with the same account and group names as a legitimate user) and
man-in-the-middle attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive
information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically impala). To implement user-level access to different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala
on page 87.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases,
tables, HDFS directories, and so on can be accessed by particular users when they connect through Impala. See
Enabling Sentry Authorization for Impala on page 87 for details.

Enabling Kerberos Authentication for Impala

Impala supports an enterprise-grade authentication system called Kerberos. Kerberos provides strong security benefits
including capabilities that render intercepted authentication packets unusable by an attacker. It virtually eliminates the
threat of impersonation by never sending a user's credentials in cleartext over the network. For more information on
Kerberos, visit the MIT Kerberos website.

The rest of this topic assumes you have a working Kerberos Key Distribution Center (KDC) set up. To enable
Kerberos, you first create a Kerberos principal for each host running impalad or statestored.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically impala). To implement user-level access to different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala
on page 87.

An alternative form of authentication you can use is LDAP, described in Enabling LDAP Authentication for Impala
on page 101.

Requirements for Using Impala with Kerberos

On version 5 of Red Hat Enterprise Linux and comparable distributions, some additional setup is needed for the
impala-shell interpreter to connect to a Kerberos-enabled Impala cluster:

sudo yum install python-devel openssl-devel python-pip
sudo pip-python install ssl

Important:

https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/krb5-latest/doc/admin/install_kdc.html

 | Impala Security | 99

If you plan to use Impala in your cluster, you must configure your KDC to allow tickets to be renewed, and
you must configure krb5.conf to request renewable tickets. Typically, you can do this by adding the
max_renewable_life setting to your realm in kdc.conf, and by adding the renew_lifetime parameter
to the libdefaults section of krb5.conf. For more information about renewable tickets, see the Kerberos
documentation.

Currently, you cannot use the resource management feature on a cluster that has Kerberos authentication enabled.

Start all impalad and statestored daemons with the --principal and --keytab-file flags set to the
principal and full path name of the keytab file containing the credentials for the principal.

To enable Kerberos in the Impala shell, start the impala-shell command using the -k flag.

To enable Impala to work with Kerberos security on your Hadoop cluster, make sure you perform the installation
and configuration steps in Authentication in Hadoop. Note that when Kerberos security is enabled in Impala, a web
browser that supports Kerberos HTTP SPNEGO is required to access the Impala web console (for example, Firefox,
Internet Explorer, or Chrome).

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, ResourceManager, NodeManagers,
HttpFS, Oozie, Impala, or Impala statestore services are configured to use Kerberos HTTP SPNEGO authentication,
and two or more of these services are running on the same host, then all of the running services must use the same
HTTP principal and keytab file used for their HTTP endpoints.

Configuring Impala to Support Kerberos Security

Enabling Kerberos authentication for Impala involves steps that can be summarized as follows:

• Creating service principals for Impala and the HTTP service. Principal names take the form:
serviceName/fully.qualified.domain.name@KERBEROS.REALM.

In Impala 2.0 and later, user() returns the full Kerberos principal string, such as user@example.com, in a
Kerberized environment.

• Creating, merging, and distributing key tab files for these principals.
• Editing /etc/default/impala to accommodate Kerberos authentication.

Enabling Kerberos for Impala

1. Create an Impala service principal, specifying the name of the OS user that the Impala daemons run under, the
fully qualified domain name of each node running impalad, and the realm name. For example:

$ kadmin
kadmin: addprinc -requires_preauth -randkey impala/
impala_host.example.com@TEST.EXAMPLE.COM

2. Create an HTTP service principal. For example:

kadmin: addprinc -randkey HTTP/impala_host.example.com@TEST.EXAMPLE.COM

Note: The HTTP component of the service principal must be uppercase as shown in the preceding example.
3. Create keytab files with both principals. For example:

kadmin: xst -k impala.keytab impala/impala_host.example.com
kadmin: xst -k http.keytab HTTP/impala_host.example.com
kadmin: quit

4. Use ktutil to read the contents of the two keytab files and then write those contents to a new file. For example:

$ ktutil
ktutil: rkt impala.keytab
ktutil: rkt http.keytab
ktutil: wkt impala-http.keytab
ktutil: quit

http://web.mit.edu/Kerberos/krb5-1.8/
http://web.mit.edu/Kerberos/krb5-1.8/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SecureMode.html#Authentication

 | Impala Security | 100

5. (Optional) Test that credentials in the merged keytab file are valid, and that the “renew until” date is in the future.
For example:

$ klist -e -k -t impala-http.keytab

6. Copy the impala-http.keytab file to the Impala configuration directory. Change the permissions to be only
read for the file owner and change the file owner to the impala user. By default, the Impala user and group are
both named impala. For example:

$ cp impala-http.keytab /etc/impala/conf
$ cd /etc/impala/conf
$ chmod 400 impala-http.keytab
$ chown impala:impala impala-http.keytab

7. Add Kerberos options to the Impala defaults file, /etc/default/impala. Add the options
for both the impalad and statestored daemons, using the IMPALA_SERVER_ARGS and
IMPALA_STATE_STORE_ARGS variables. For example, you might add:

-kerberos_reinit_interval=60
-principal=impala_1/impala_host.example.com@TEST.EXAMPLE.COM
-keytab_file=/path/to/impala.keytab

For more information on changing the Impala defaults specified in /etc/default/impala, see Modifying
Impala Startup Options.

Note: Restart impalad and statestored for these configuration changes to take effect.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impala with High Availability is to use a proxy server to submit requests to the actual
impalad daemons on different hosts in the cluster. This configuration avoids connection problems in case of
machine failure, because the proxy server can route new requests through one of the remaining hosts in the cluster.
This configuration also helps with load balancing, because the additional overhead of being the “coordinator node”
for each query is spread across multiple hosts.

Although you can set up a proxy server with or without Kerberos authentication, typically users set up a secure
Kerberized configuration. For information about setting up a proxy server for Impala, including Kerberos-specific
steps, see Using Impala through a Proxy for High Availability on page 78.

Using a Web Browser to Access a URL Protected by Kerberos HTTP SPNEGO

Your web browser must support Kerberos HTTP SPNEGO. For example, Chrome, Firefox, or Internet Explorer.

To configure Firefox to access a URL protected by Kerberos HTTP SPNEGO:

1. Open the advanced settings Firefox configuration page by loading the about:config page.
2. Use the Filter text box to find network.negotiate-auth.trusted-uris.
3. Double-click the network.negotiate-auth.trusted-uris preference and enter the hostname or

the domain of the web server that is protected by Kerberos HTTP SPNEGO. Separate multiple domains and
hostnames with a comma.

4. Click OK.

Enabling Impala Delegation for Kerberos Users

See Configuring Impala Delegation for Hue and BI Tools on page 104 for details about the delegation feature that
lets certain users submit queries using the credentials of other users.

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC
applications to Impala. See Configuring Impala to Work with JDBC on page 27 and Configuring Impala to Work
with ODBC on page 26 for details.

 | Impala Security | 101

Prior to Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication and SSL
encryption. If your cluster is running an older release that has this restriction, use an alternative JDBC driver that
supports both of these security features.

Enabling Access to Internal Impala APIs for Kerberos Users

For applications that need direct access to Impala APIs, without going through the HiveServer2 or Beeswax
interfaces, you can specify a list of Kerberos users who are allowed to call those APIs. By default, the impala and
hdfs users are the only ones authorized for this kind of access. Any users not explicitly authorized through the
internal_principals_whitelist configuration setting are blocked from accessing the APIs. This setting
applies to all the Impala-related daemons, although currently it is primarily used for HDFS to control the behavior of
the catalog server.

Mapping Kerberos Principals to Short Names for Impala

In Impala 2.6 and higher, Impala recognizes the auth_to_local setting, specified through the HDFS
configuration setting hadoop.security.auth_to_local. This feature is disabled by default, to avoid an
unexpected change in security-related behavior. To enable it:

• Specify --load_auth_to_local_rules=true in the impalad and catalogd configuration settings.

Kerberos-Related Memory Overhead for Large Clusters

On a kerberized cluster with high memory utilization, kinit commands executed after every
'kerberos_reinit_interval' may cause out-of-memory errors, because executing the command involves a
fork of the Impala process. The error looks similar to the following:

Failed to obtain Kerberos ticket for principal: <varname>principal_details</
varname>
Failed to execute shell cmd: 'kinit -k -t <varname>keytab_details</
varname>',
error was: Error(12): Cannot allocate memory

The following command changes the vm.overcommit_memory setting immediately on a running host. However,
this setting is reset when the host is restarted.

echo 1 > /proc/sys/vm/overcommit_memory

To change the setting in a persistent way, add the following line to the /etc/sysctl.conf file:

vm.overcommit_memory=1

Then run sysctl -p. No reboot is needed.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala
server). This feature is crucial for any production deployment, to prevent misuse, tampering, or excessive load on the
server. Impala uses LDAP for authentication, verifying the credentials of each user who connects through impala-
shell, Hue, a Business Intelligence tool, JDBC or ODBC application, and so on.

Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and data files
owned by the same user (typically impala). To implement user-level access to different databases, tables, columns,
partitions, and so on, use the Sentry authorization feature, as explained in Enabling Sentry Authorization for Impala
on page 87.

 | Impala Security | 102

An alternative form of authentication you can use is Kerberos, described in Enabling Kerberos Authentication for
Impala on page 98.

Requirements for Using Impala with LDAP

Authentication against LDAP servers is available in Impala 1.2.2 and higher. Impala 1.4.0 adds support for secure
LDAP authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the
scenes.

Client-Server Considerations for LDAP

Only client->Impala connections can be authenticated by LDAP.

You must use the Kerberos authentication mechanism for connections between internal Impala components, such
as between the impalad, statestored, and catalogd daemons. See Enabling Kerberos Authentication for
Impala on page 98 on how to set up Kerberos for Impala.

Server-Side LDAP Setup

These requirements apply on the server side when configuring and starting Impala:

To enable LDAP authentication, set the following startup options for impalad:

• --enable_ldap_auth enables LDAP-based authentication between the client and Impala.
• --ldap_uri sets the URI of the LDAP server to use. Typically, the URI is prefixed with ldap://. In

Impala 1.4.0 and higher, you can specify secure SSL-based LDAP transport by using the prefix ldaps://.
The URI can optionally specify the port, for example: ldap://ldap_server.example.com:389 or
ldaps://ldap_server.example.com:636. (389 and 636 are the default ports for non-SSL and SSL
LDAP connections, respectively.)

• For ldaps:// connections secured by SSL, --ldap_ca_certificate="/path/to/certificate/
pem" specifies the location of the certificate in standard .PEM format. Store this certificate on the local
filesystem, in a location that only the impala user and other trusted users can read.

Support for Custom Bind Strings

When Impala connects to LDAP it issues a bind call to the LDAP server to authenticate as the connected user. Impala
clients, including the Impala shell, provide the short name of the user to Impala. This is necessary so that Impala can
use Sentry for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three
ways of transforming the short name (for example, 'henry') to a more complicated string. If necessary, specify one
of the following configuration options when starting the impalad daemon on each DataNode:

• --ldap_domain: Replaces the username with a string username@ldap_domain.
• --ldap_baseDN: Replaces the username with a “distinguished name” (DN) of the form:

uid=userid,ldap_baseDN. (This is equivalent to a Hive option).
• --ldap_bind_pattern: This is the most general option, and replaces the username with the string

ldap_bind_pattern where all instances of the string #UID are replaced with userid. For example, an
ldap_bind_pattern of "user=#UID,OU=foo,CN=bar" with a username of henry will construct a
bind name of "user=henry,OU=foo,CN=bar".

These options are mutually exclusive; Impala does not start if more than one of these options is specified.

Secure LDAP Connections

To avoid sending credentials over the wire in cleartext, you must configure a secure connection between both the
client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

 | Impala Security | 103

For SSL-enabled LDAP connections, specify a prefix of ldaps:// instead of ldap://. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can be made on the same server port as non-TLS connections. To secure all connections using TLS,
specify the following flags as startup options to the impalad daemon:

• --ldap_tls tells Impala to start a TLS connection to the LDAP server, and to fail authentication if it cannot be
done.

• --ldap_ca_certificate="/path/to/certificate/pem" specifies the location of the certificate in
standard .PEM format. Store this certificate on the local filesystem, in a location that only the impala user and
other trusted users can read.

LDAP Authentication for impala-shell Interpreter

To connect to Impala using LDAP authentication, you specify command-line options to the impala-shell
command interpreter and enter the password when prompted:

• -l enables LDAP authentication.
• -u sets the user. Per Active Directory, the user is the short username, not the full LDAP distinguished name.

If your LDAP settings include a search base, use the --ldap_bind_pattern on the impalad daemon to
translate the short user name from impala-shell automatically to the fully qualified name.

• impala-shell automatically prompts for the password.

For the full list of available impala-shell options, see impala-shell Configuration Options on page 612.

LDAP authentication for JDBC applications: See Configuring Impala to Work with JDBC on page 27 for the
format to use with the JDBC connection string for servers using LDAP authentication.

Enabling LDAP for Impala in Hue

Enabling LDAP for Impala in Hue Using the Command Line

LDAP authentication for the Impala app in Hue can be enabled by setting the following properties under the
[impala] section in hue.ini.

auth_username LDAP username of Hue user to be authenticated.

auth_password LDAP password of Hue user to be authenticated.

These login details are only used by Impala to authenticate to LDAP. The Impala service trusts Hue to have already
validated the user being impersonated, rather than simply passing on the credentials.

Enabling Impala Delegation for LDAP Users

See Configuring Impala Delegation for Hue and BI Tools on page 104 for details about the delegation feature that
lets certain users submit queries using the credentials of other users.

LDAP Restrictions for Impala

The LDAP support is preliminary. It currently has only been tested against Active Directory.

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each impalad daemon can
accept both Kerberos and LDAP requests through the same port. No special actions need to be taken if some users
authenticate through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each impalad to listen on a specific port depending on the kind of
authentication, then configure your network load balancer to forward each kind of request to a DataNode that

http://en.wikipedia.org/wiki/Transport_Layer_Security

 | Impala Security | 104

was set up with the appropriate authentication type. Once the initial request was made using either Kerberos or
LDAP authentication, Impala automatically handled the process of coordinating the work across multiple nodes and
transmitting intermediate results back to the coordinator node.

Configuring Impala Delegation for Hue and BI Tools

When users submit Impala queries through a separate application, such as Hue or a business intelligence tool,
typically all requests are treated as coming from the same user. In Impala 1.2 and higher, authentication is extended
by a new feature that allows applications to pass along credentials for the users that connect to them (known as
“delegation”), and issue Impala queries with the privileges for those users. Currently, the delegation feature is
available only for Impala queries submitted through application interfaces such as Hue and BI tools; for example,
Impala cannot issue queries using the privileges of the HDFS user.

The delegation feature is enabled by a startup option for impalad: --authorized_proxy_user_config.
When you specify this option, users whose names you specify (such as hue) can delegate the execution of a query to
another user. The query runs with the privileges of the delegated user, not the original user such as hue. The name of
the delegated user is passed using the HiveServer2 configuration property impala.doas.user.

You can specify a list of users that the application user can delegate to, or * to allow a superuser to delegate to any
other user. For example:

impalad --authorized_proxy_user_config 'hue=user1,user2;admin=*' ...

Note: Make sure to use single quotes or escape characters to ensure that any * characters do not undergo wildcard
expansion when specified in command-line arguments.

See Modifying Impala Startup Options on page 32 for details about adding or changing impalad startup
options. See this blog post for background information about the delegation capability in HiveServer2.

To set up authentication for the delegated users:

• On the server side, configure either user/password authentication through LDAP, or Kerberos authentication,
for all the delegated users. See Enabling LDAP Authentication for Impala on page 101 or Enabling Kerberos
Authentication for Impala on page 98 for details.

• On the client side, to learn how to enable delegation, consult the documentation for the ODBC driver you are
using.

Auditing Impala Operations
To monitor how Impala data is being used within your organization, ensure that your Impala authorization and
authentication policies are effective. To detect attempts at intrusion or unauthorized access to Impala data, you can
use the auditing feature in Impala 1.2.1 and higher:

• Enable auditing by including the option -audit_event_log_dir=directory_path in your impalad
startup options. The log directory must be a local directory on the server, not an HDFS directory.

• Decide how many queries will be represented in each audit event log file. By default, Impala starts
a new audit event log file every 5000 queries. To specify a different number, include the option --
max_audit_event_log_file_size=number_of_queries in the impalad startup options.

• In Impala 2.9 and higher, you can control how many audit event log files are kept on each host. Specify the option
--max_audit_event_log_files=number_of_log_files in the impalad startup options. Once the
limit is reached, older files are rotated out using the same mechanism as for other Impala log files. The default
value for this setting is 0, representing an unlimited number of audit event log files.

• Use a cluster manager with governance capabilities to filter, visualize, and produce reports based on the audit logs
collected from all the hosts in the cluster.

Durability and Performance Considerations for Impala Auditing

The auditing feature only imposes performance overhead while auditing is enabled.

http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/

 | Impala Security | 105

Because any Impala host can process a query, enable auditing on all hosts where the impalad daemon runs. Each
host stores its own log files, in a directory in the local filesystem. The log data is periodically flushed to disk (through
an fsync() system call) to avoid loss of audit data in case of a crash.

The runtime overhead of auditing applies to whichever host serves as the coordinator for the query, that is, the host
you connect to when you issue the query. This might be the same host for all queries, or different applications or users
might connect to and issue queries through different hosts.

To avoid excessive I/O overhead on busy coordinator hosts, Impala syncs the audit log data (using the fsync()
system call) periodically rather than after every query. Currently, the fsync() calls are issued at a fixed interval,
every 5 seconds.

By default, Impala avoids losing any audit log data in the case of an error during a logging operation (such as a disk
full error), by immediately shutting down impalad on the host where the auditing problem occurred. You can
override this setting by specifying the option -abort_on_failed_audit_event=false in the impalad
startup options.

Format of the Audit Log Files

The audit log files represent the query information in JSON format, one query per line. Typically, rather than looking
at the log files themselves, you should use cluster-management software to consolidate the log data from all Impala
hosts and filter and visualize the results in useful ways. (If you do examine the raw log data, you might run the files
through a JSON pretty-printer first.)

All the information about schema objects accessed by the query is encoded in a single nested record on the same line.
For example, the audit log for an INSERT ... SELECT statement records that a select operation occurs on the
source table and an insert operation occurs on the destination table. The audit log for a query against a view records
the base table accessed by the view, or multiple base tables in the case of a view that includes a join query. Every
Impala operation that corresponds to a SQL statement is recorded in the audit logs, whether the operation succeeds or
fails. Impala records more information for a successful operation than for a failed one, because an unauthorized query
is stopped immediately, before all the query planning is completed.

The information logged for each query includes:

• Client session state:

• Session ID
• User name
• Network address of the client connection

• SQL statement details:

• Query ID
• Statement Type - DML, DDL, and so on
• SQL statement text
• Execution start time, in local time
• Execution Status - Details on any errors that were encountered
• Target Catalog Objects:

• Object Type - Table, View, or Database
• Fully qualified object name
• Privilege - How the object is being used (SELECT, INSERT, CREATE, and so on)

Which Operations Are Audited

The kinds of SQL queries represented in the audit log are:

• Queries that are prevented due to lack of authorization.
• Queries that Impala can analyze and parse to determine that they are authorized. The audit data is recorded

immediately after Impala finishes its analysis, before the query is actually executed.

 | Impala SQL Language Reference | 106

The audit log does not contain entries for queries that could not be parsed and analyzed. For example, a query that
fails due to a syntax error is not recorded in the audit log. The audit log also does not contain queries that fail due to a
reference to a table that does not exist, if you would be authorized to access the table if it did exist.

Certain statements in the impala-shell interpreter, such as CONNECT, SUMMARY, PROFILE, SET, and QUIT,
do not correspond to actual SQL queries, and these statements are not reflected in the audit log.

Viewing Lineage Information for Impala Data
Lineage is a feature that helps you track where data originated, and how data propagates through the system through
SQL statements such as SELECT, INSERT, and CREATE TABLE AS SELECT.

This type of tracking is important in high-security configurations, especially in highly regulated industries such as
healthcare, pharmaceuticals, financial services and intelligence. For such kinds of sensitive data, it is important to
know all the places in the system that contain that data or other data derived from it; to verify who has accessed that
data; and to be able to doublecheck that the data used to make a decision was processed correctly and not tampered
with.

Column Lineage

Column lineage tracks information in fine detail, at the level of particular columns rather than entire tables.

For example, if you have a table with information derived from web logs, you might copy that data into other tables
as part of the ETL process. The ETL operations might involve transformations through expressions and function calls,
and rearranging the columns into more or fewer tables (normalizing or denormalizing the data). Then for reporting,
you might issue queries against multiple tables and views. In this example, column lineage helps you determine that
data that entered the system as RAW_LOGS.FIELD1 was then turned into WEBSITE_REPORTS.IP_ADDRESS
through an INSERT ... SELECT statement. Or, conversely, you could start with a reporting query against a view,
and trace the origin of the data in a field such as TOP_10_VISITORS.USER_ID back to the underlying table and
even further back to the point where the data was first loaded into Impala.

When you have tables where you need to track or control access to sensitive information at the column level, see
Enabling Sentry Authorization for Impala on page 87 for how to implement column-level security. You set
up authorization using the Sentry framework, create views that refer to specific sets of columns, and then assign
authorization privileges to those views rather than the underlying tables.

Lineage Data for Impala

The lineage feature is enabled by default. When lineage logging is enabled, the serialized column lineage graph is
computed for each query and stored in a specialized log file in JSON format.

Impala records queries in the lineage log if they complete successfully, or fail due to authorization errors. For write
operations such as INSERT and CREATE TABLE AS SELECT, the statement is recorded in the lineage log only if
it successfully completes. Therefore, the lineage feature tracks data that was accessed by successful queries, or that
was attempted to be accessed by unsuccessful queries that were blocked due to authorization failure. These kinds of
queries represent data that really was accessed, or where the attempted access could represent malicious activity.

Impala does not record in the lineage log queries that fail due to syntax errors or that fail or are cancelled before they
reach the stage of requesting rows from the result set.

To enable or disable this feature, set or remove the -lineage_event_log_dir configuration option for the
impalad daemon.

Impala SQL Language Reference

Impala uses SQL as its query language. To protect user investment in skills development and query design, Impala
provides a high degree of compatibility with the Hive Query Language (HiveQL):

 | Impala SQL Language Reference | 107

• Because Impala uses the same metadata store as Hive to record information about table structure and properties,
Impala can access tables defined through the native Impala CREATE TABLE command, or tables created using
the Hive data definition language (DDL).

• Impala supports data manipulation (DML) statements similar to the DML component of HiveQL.
• Impala provides many built-in functions with the same names and parameter types as their HiveQL equivalents.

Impala supports most of the same statements and clauses as HiveQL, including, but not limited to JOIN,
AGGREGATE, DISTINCT, UNION ALL, ORDER BY, LIMIT and (uncorrelated) subquery in the FROM clause.
Impala also supports INSERT INTO and INSERT OVERWRITE.

Impala supports data types with the same names and semantics as the equivalent Hive data types: STRING,
TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, BOOLEAN, STRING, TIMESTAMP.

For full details about Impala SQL syntax and semantics, see Impala SQL Statements on page 223.

Most HiveQL SELECT and INSERT statements run unmodified with Impala. For information about Hive syntax not
available in Impala, see SQL Differences Between Impala and Hive on page 604.

For a list of the built-in functions available in Impala queries, see Impala Built-In Functions on page 418.

Comments
Impala supports the familiar styles of SQL comments:

• All text from a -- sequence to the end of the line is considered a comment and ignored. This type of comment can
occur on a single line by itself, or after all or part of a statement.

• All text from a /* sequence to the next */ sequence is considered a comment and ignored. This type of comment
can stretch over multiple lines. This type of comment can occur on one or more lines by itself, in the middle of a
statement, or before or after a statement.

For example:

-- This line is a comment about a table.
create table ...;

/*
This is a multi-line comment about a query.
*/
select ...;

select * from t /* This is an embedded comment about a query. */ where ...;

select * from t -- This is a trailing comment within a multi-line command.
where ...;

Data Types
Impala supports a set of data types that you can use for table columns, expression values, and function arguments and
return values.

Note: Currently, Impala supports only scalar types, not composite or nested types. Accessing a table containing any
columns with unsupported types causes an error.

For the notation to write literals of each of these data types, see Literals on page 183.

See SQL Differences Between Impala and Hive on page 604 for differences between Impala and Hive data types.

 | Impala SQL Language Reference | 108

ARRAY Complex Type (Impala 2.3 or higher only)

A complex data type that can represent an arbitrary number of ordered elements. The elements can be scalars or
another complex type (ARRAY, STRUCT, or MAP).

Syntax:

column_name ARRAY < type >

type ::= primitive_type | complex_type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 152 for
background information and usage examples.

The elements of the array have no names. You refer to the value of the array item using the ITEM pseudocolumn,
or its position in the array with the POS pseudocolumn. See ITEM and POS Pseudocolumns on page 166 for
information about these pseudocolumns.

Each row can have a different number of elements (including none) in the array for that row.

When an array contains items of scalar types, you can use aggregation functions on the array elements without using
join notation. For example, you can find the COUNT(), AVG(), SUM(), and so on of numeric array elements, or
the MAX() and MIN() of any scalar array elements by referring to table_name.array_column in the FROM
clause of the query. When you need to cross-reference values from the array with scalar values from the same row,
such as by including a GROUP BY clause to produce a separate aggregated result for each row, then the join clause is
required.

A common usage pattern with complex types is to have an array as the top-level type for the column: an array of
structs, an array of maps, or an array of arrays. For example, you can model a denormalized table by creating a
column that is an ARRAY of STRUCT elements; each item in the array represents a row from a table that would
normally be used in a join query. This kind of data structure lets you essentially denormalize tables by associating
multiple rows from one table with the matching row in another table.

You typically do not create more than one top-level ARRAY column, because if there is some relationship between
the elements of multiple arrays, it is convenient to model the data as an array of another complex type element (either
STRUCT or MAP).

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.a1. If table T1 contained a STRUCT column S1, and a field F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE t1.s1.f1. An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

Added in: Impala 2.3.0

Restrictions:

• Columns with this data type can only be used in tables or partitions with the Parquet file format.
• Columns with this data type cannot be used as partition key columns in a partitioned table.
• The COMPUTE STATS statement does not produce any statistics for columns of this data type.
• The maximum length of the column definition for any complex type, including declarations for any nested types,

is 4000 characters.
• See Limitations and Restrictions for Complex Types on page 156 for a full list of limitations and associated

guidelines about complex type columns.

Kudu considerations:

Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

 | Impala SQL Language Reference | 109

Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
175 for the table definitions.

The following example shows how to construct a table with various kinds of ARRAY columns, both at the top level
and nested within other complex types. Whenever the ARRAY consists of a scalar value, such as in the PETS column
or the CHILDREN field, you can see that future expansion is limited. For example, you could not easily evolve the
schema to record the kind of pet or the child's birthday alongside the name. Therefore, it is more common to use an
ARRAY whose elements are of STRUCT type, to associate multiple fields with each array element.

Note: Practice the CREATE TABLE and query notation for complex type columns using empty tables, until you can
visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE array_demo
(
 id BIGINT,
 name STRING,
-- An ARRAY of scalar type as a top-level column.
 pets ARRAY <STRING>,

-- An ARRAY with elements of complex type (STRUCT).
 places_lived ARRAY < STRUCT <
 place: STRING,
 start_year: INT
 >>,

-- An ARRAY as a field (CHILDREN) within a STRUCT.
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-level column.)
 marriages ARRAY < STRUCT <
 spouse: STRING,
 children: ARRAY <STRING>
 >>,

-- An ARRAY as the value part of a MAP.
-- The first MAP field (the key) would be a value such as
-- 'Parent' or 'Grandparent', and the corresponding array would
-- represent 2 parents, 4 grandparents, and so on.
 ancestors MAP < STRING, ARRAY <STRING> >
)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more ARRAY columns by
using the DESCRIBE statement. You can visualize each ARRAY as its own two-column table, with columns ITEM
and POS.

DESCRIBE array_demo;
+--------------+---------------------------+
| name | type |
+--------------+---------------------------+
id	bigint
name	string
pets	array<string>
marriages	array<struct<
	spouse:string,
	children:array<string>
	>>
places_lived	array<struct<
	place:string,
	start_year:int

 | Impala SQL Language Reference | 110

| | >> |
| ancestors | map<string,array<string>> |
+--------------+---------------------------+

DESCRIBE array_demo.pets;
+------+--------+
| name | type |
+------+--------+
| item | string |
| pos | bigint |
+------+--------+

DESCRIBE array_demo.marriages;
+------+--------------------------+
| name | type |
+------+--------------------------+
item	struct<
	spouse:string,
	children:array<string>
	>
pos	bigint
+------+--------------------------+

DESCRIBE array_demo.places_lived;
+------+------------------+
| name | type |
+------+------------------+
item	struct<
	place:string,
	start_year:int
	>
pos	bigint
+------+------------------+

DESCRIBE array_demo.ancestors;
+-------+---------------+
| name | type |
+-------+---------------+
| key | string |
| value | array<string> |
+-------+---------------+

The following example shows queries involving ARRAY columns containing elements of scalar or complex types.
You “unpack” each ARRAY column by referring to it in a join query, as if it were a separate table with ITEM and
POS columns. If the array element is a scalar type, you refer to its value using the ITEM pseudocolumn. If the array
element is a STRUCT, you refer to the STRUCT fields using dot notation and the field names. If the array element is
another ARRAY or a MAP, you use another level of join to unpack the nested collection elements.

-- Array of scalar values.
-- Each array element represents a single string, plus we know its position
 in the array.
SELECT id, name, pets.pos, pets.item FROM array_demo, array_demo.pets;

-- Array of structs.
-- Now each array element has named fields, possibly of different types.
-- You can consider an ARRAY of STRUCT to represent a table inside another
 table.
SELECT id, name, places_lived.pos, places_lived.item.place,
 places_lived.item.start_year
FROM array_demo, array_demo.places_lived;

-- The .ITEM name is optional for array elements that are structs.

 | Impala SQL Language Reference | 111

-- The following query is equivalent to the previous one, with .ITEM
-- removed from the column references.
SELECT id, name, places_lived.pos, places_lived.place,
 places_lived.start_year
 FROM array_demo, array_demo.places_lived;

-- To filter specific items from the array, do comparisons against the .POS
 or .ITEM
-- pseudocolumns, or names of struct fields, in the WHERE clause.
SELECT id, name, pets.item FROM array_demo, array_demo.pets
 WHERE pets.pos in (0, 1, 3);

SELECT id, name, pets.item FROM array_demo, array_demo.pets
 WHERE pets.item LIKE 'Mr. %';

SELECT id, name, places_lived.pos, places_lived.place,
 places_lived.start_year
 FROM array_demo, array_demo.places_lived
WHERE places_lived.place like '%California%';

Related information:

Complex Types (Impala 2.3 or higher only) on page 152, STRUCT Complex Type (Impala 2.3 or higher only) on
page 135, MAP Complex Type (Impala 2.3 or higher only) on page 128

BIGINT Data Type

An 8-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name BIGINT

Range: -9223372036854775808 .. 9223372036854775807. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a floating-point type (FLOAT or DOUBLE) automatically.
Use CAST() to convert to TINYINT, SMALLINT, INT, STRING, or TIMESTAMP. Casting an integer or
floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting -
use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Examples:

CREATE TABLE t1 (x BIGINT);
SELECT CAST(1000 AS BIGINT);

Usage notes:

BIGINT is a convenient type to use for column declarations because you can use any kind of integer values in
INSERT statements and they are promoted to BIGINT where necessary. However, BIGINT also requires the most
bytes of any integer type on disk and in memory, meaning your queries are not as efficient and scalable as possible if
you overuse this type. Therefore, prefer to use the smallest integer type with sufficient range to hold all input values,
and CAST() when necessary to the appropriate type.

For a convenient and automated way to check the bounds of the BIGINT type, call the functions MIN_BIGINT()
and MAX_BIGINT().

If an integer value is too large to be represented as a BIGINT, use a DECIMAL instead with sufficient digits of
precision.

 | Impala SQL Language Reference | 112

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as an 8-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Sqoop considerations:

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT64 type, which
is represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was
imported this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 149, SMALLINT Data Type on page 133, INT
Data Type on page 127, BIGINT Data Type on page 111, DECIMAL Data Type (Impala 1.4 or higher only) on
page 117, Impala Mathematical Functions on page 420

BOOLEAN Data Type

A data type used in CREATE TABLE and ALTER TABLE statements, representing a single true/false choice.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name BOOLEAN

Range: TRUE or FALSE. Do not use quotation marks around the TRUE and FALSE literal values. You can write
the literal values in uppercase, lowercase, or mixed case. The values queried from a table are always returned in
lowercase, true or false.

Conversions: Impala does not automatically convert any other type to BOOLEAN. All conversions must use an
explicit call to the CAST() function.

You can use CAST() to convert any integer or floating-point type to BOOLEAN: a value of 0 represents false, and
any non-zero value is converted to true.

SELECT CAST(42 AS BOOLEAN) AS nonzero_int, CAST(99.44 AS BOOLEAN) AS
 nonzero_decimal,
 CAST(000 AS BOOLEAN) AS zero_int, CAST(0.0 AS BOOLEAN) AS zero_decimal;
+-------------+-----------------+----------+--------------+
| nonzero_int | nonzero_decimal | zero_int | zero_decimal |
+-------------+-----------------+----------+--------------+
| true | true | false | false |
+-------------+-----------------+----------+--------------+

When you cast the opposite way, from BOOLEAN to a numeric type, the result becomes either 1 or 0:

SELECT CAST(true AS INT) AS true_int, CAST(true AS DOUBLE) AS true_double,
 CAST(false AS INT) AS false_int, CAST(false AS DOUBLE) AS false_double;
+----------+-------------+-----------+--------------+

 | Impala SQL Language Reference | 113

| true_int | true_double | false_int | false_double |
+----------+-------------+-----------+--------------+
| 1 | 1 | 0 | 0 |
+----------+-------------+-----------+--------------+

You can cast DECIMAL values to BOOLEAN, with the same treatment of zero and non-zero values as the other
numeric types. You cannot cast a BOOLEAN to a DECIMAL.

You cannot cast a STRING value to BOOLEAN, although you can cast a BOOLEAN value to STRING, returning '1'
for true values and '0' for false values.

Although you can cast a TIMESTAMP to a BOOLEAN or a BOOLEAN to a TIMESTAMP, the results are unlikely to
be useful. Any non-zero TIMESTAMP (that is, any value other than 1970-01-01 00:00:00) becomes TRUE
when converted to BOOLEAN, while 1970-01-01 00:00:00 becomes FALSE. A value of FALSE becomes
1970-01-01 00:00:00 when converted to BOOLEAN, and TRUE becomes one second past this epoch date, that
is, 1970-01-01 00:00:01.

NULL considerations: An expression of this type produces a NULL value if any argument of the expression is NULL.

Partitioning:

Do not use a BOOLEAN column as a partition key. Although you can create such a table, subsequent operations
produce errors:

[localhost:21000] > create table truth_table (assertion string) partitioned
 by (truth boolean);
[localhost:21000] > insert into truth_table values ('Pigs can fly',false);
ERROR: AnalysisException: INSERT into table with BOOLEAN partition column
 (truth) is not supported: partitioning.truth_table

Examples:

SELECT 1 < 2;
SELECT 2 = 5;
SELECT 100 < NULL, 100 > NULL;
CREATE TABLE assertions (claim STRING, really BOOLEAN);
INSERT INTO assertions VALUES
 ("1 is less than 2", 1 < 2),
 ("2 is the same as 5", 2 = 5),
 ("Grass is green", true),
 ("The moon is made of green cheese", false);
SELECT claim FROM assertions WHERE really = TRUE;

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Kudu considerations:

Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.

Related information: Boolean Literals on page 186, SQL Operators on page 187, Impala Conditional
Functions on page 504

CHAR Data Type (Impala 2.0 or higher only)

A fixed-length character type, padded with trailing spaces if necessary to achieve the specified length. If values are
longer than the specified length, Impala truncates any trailing characters.

 | Impala SQL Language Reference | 114

Syntax:

In the column definition of a CREATE TABLE statement:

column_name CHAR(length)

The maximum length you can specify is 255.

Semantics of trailing spaces:

• When you store a CHAR value shorter than the specified length in a table, queries return the value padded with
trailing spaces if necessary; the resulting value has the same length as specified in the column definition.

• If you store a CHAR value containing trailing spaces in a table, those trailing spaces are not stored in the data file.
When the value is retrieved by a query, the result could have a different number of trailing spaces. That is, the
value includes however many spaces are needed to pad it to the specified length of the column.

• If you compare two CHAR values that differ only in the number of trailing spaces, those values are considered
identical.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.

Parquet considerations:

• This type can be read from and written to Parquet files.
• There is no requirement for a particular level of Parquet.
• Parquet files generated by Impala and containing this type can be freely interchanged with other components such

as Hive and MapReduce.
• Any trailing spaces, whether implicitly or explicitly specified, are not written to the Parquet data files.
• Parquet data files might contain values that are longer than allowed by the CHAR(n) length limit. Impala ignores

any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files might contain values that are longer than allowed for a particular CHAR(n) column. Any extra trailing
characters are ignored when Impala processes those values during a query. Text data files can also contain values that
are shorter than the defined length limit, and Impala pads them with trailing spaces up to the specified length. Any
text data files produced by Impala INSERT statements do not include any trailing blanks for CHAR columns.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Compatibility:

This type is available using Impala 2.0 or higher.

Some other database systems make the length specification optional. For Impala, the length is required.

Internal details: Represented in memory as a byte array with the same size as the length specification. Values that
are shorter than the specified length are padded on the right with trailing spaces.

Added in: Impala 2.0.0

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

 | Impala SQL Language Reference | 115

Examples:

These examples show how trailing spaces are not considered significant when comparing or processing CHAR values.
CAST() truncates any longer string to fit within the defined length. If a CHAR value is shorter than the specified
length, it is padded on the right with spaces until it matches the specified length. Therefore, LENGTH() represents the
length including any trailing spaces, and CONCAT() also treats the column value as if it has trailing spaces.

select cast('x' as char(4)) = cast('x ' as char(4)) as "unpadded equal to
 padded";
+--------------------------+
| unpadded equal to padded |
+--------------------------+
| true |
+--------------------------+

create table char_length(c char(3));
insert into char_length values (cast('1' as char(3))), (cast('12' as
 char(3))), (cast('123' as char(3))), (cast('123456' as char(3)));
select concat("[",c,"]") as c, length(c) from char_length;
+-------+-----------+
| c | length(c) |
+-------+-----------+
[1]	3
[12]	3
[123]	3
[123]	3
+-------+-----------+

This example shows a case where data values are known to have a specific length, where CHAR is a logical data type
to use.

create table addresses
 (id bigint,
 street_name string,
 state_abbreviation char(2),
 country_abbreviation char(2));

The following example shows how values written by Impala do not physically include the trailing spaces. It creates
a table using text format, with CHAR values much shorter than the declared length, and then prints the resulting data
file to show that the delimited values are not separated by spaces. The same behavior applies to binary-format Parquet
data files.

create table char_in_text (a char(20), b char(30), c char(40))
 row format delimited fields terminated by ',';

insert into char_in_text values (cast('foo' as char(20)), cast('bar'
 as char(30)), cast('baz' as char(40))), (cast('hello' as char(20)),
 cast('goodbye' as char(30)), cast('aloha' as char(40)));

-- Running this Linux command inside impala-shell using the ! shortcut.
!hdfs dfs -cat 'hdfs://127.0.0.1:8020/user/hive/warehouse/
impala_doc_testing.db/char_in_text/*.*';
foo,bar,baz
hello,goodbye,aloha

The following example further illustrates the treatment of spaces. It replaces the contents of the previous table with
some values including leading spaces, trailing spaces, or both. Any leading spaces are preserved within the data file,

 | Impala SQL Language Reference | 116

but trailing spaces are discarded. Then when the values are retrieved by a query, the leading spaces are retrieved
verbatim while any necessary trailing spaces are supplied by Impala.

insert overwrite char_in_text values (cast('trailing ' as char(20)),
 cast(' leading and trailing ' as char(30)), cast(' leading' as
 char(40)));
!hdfs dfs -cat 'hdfs://127.0.0.1:8020/user/hive/warehouse/
impala_doc_testing.db/char_in_text/*.*';
trailing, leading and trailing, leading

select concat('[',a,']') as a, concat('[',b,']') as b, concat('[',c,']') as
 c from char_in_text;
+------------------------+----------------------------------
+--+
| a | b | c
 |
+------------------------+----------------------------------
+--+
| [trailing] | [leading and trailing] | [leading
] |
+------------------------+----------------------------------
+--+

Kudu considerations:

Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

Restrictions:

Because the blank-padding behavior requires allocating the maximum length for each value in memory, for scalability
reasons avoid declaring CHAR columns that are much longer than typical values in that column.

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

When an expression compares a CHAR with a STRING or VARCHAR, the CHAR value is implicitly converted to
STRING first, with trailing spaces preserved.

select cast("foo " as char(5)) = 'foo' as "char equal to string";
+----------------------+
| char equal to string |
+----------------------+
| false |
+----------------------+

This behavior differs from other popular database systems. To get the expected result of TRUE, cast the expressions
on both sides to CHAR values of the appropriate length:

select cast("foo " as char(5)) = cast('foo' as char(3)) as "char equal to
 string";
+----------------------+
| char equal to string |
+----------------------+
| true |
+----------------------+

This behavior is subject to change in future releases.

Related information:

STRING Data Type on page 134, VARCHAR Data Type (Impala 2.0 or higher only) on page 150, String Literals
on page 184, Impala String Functions on page 510

 | Impala SQL Language Reference | 117

DECIMAL Data Type (Impala 1.4 or higher only)

A numeric data type with fixed scale and precision, used in CREATE TABLE and ALTER TABLE statements.
Suitable for financial and other arithmetic calculations where the imprecise representation and rounding behavior of
FLOAT and DOUBLE make those types impractical.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name DECIMAL[(precision[,scale])]

DECIMAL with no precision or scale values is equivalent to DECIMAL(9,0).

Precision and Scale:

precision represents the total number of digits that can be represented by the column, regardless of the location of
the decimal point. This value must be between 1 and 38. For example, representing integer values up to 9999, and
floating-point values up to 99.99, both require a precision of 4. You can also represent corresponding negative values,
without any change in the precision. For example, the range -9999 to 9999 still only requires a precision of 4.

scale represents the number of fractional digits. This value must be less than or equal to precision. A scale of 0
produces integral values, with no fractional part. If precision and scale are equal, all the digits come after the decimal
point, making all the values between 0 and 0.999... or 0 and -0.999...

When precision and scale are omitted, a DECIMAL value is treated as DECIMAL(9,0), that is, an integer value
ranging from -999,999,999 to 999,999,999. This is the largest DECIMAL value that can still be represented in
4 bytes. If precision is specified but scale is omitted, Impala uses a value of zero for the scale.

Both precision and scale must be specified as integer literals, not any other kind of constant expressions.

To check the precision or scale for arbitrary values, you can call the precision() and scale() built-in
functions. For example, you might use these values to figure out how many characters are required for various fields
in a report, or to understand the rounding characteristics of a formula as applied to a particular DECIMAL column.

Range:

The maximum precision value is 38. Thus, the largest integral value is represented by DECIMAL(38,0) (999...
with 9 repeated 38 times). The most precise fractional value (between 0 and 1, or 0 and -1) is represented by
DECIMAL(38,38), with 38 digits to the right of the decimal point. The value closest to 0 would be .0000...1 (37
zeros and the final 1). The value closest to 1 would be .999... (9 repeated 38 times).

For a given precision and scale, the range of DECIMAL values is the same in the positive and negative directions. For
example, DECIMAL(4,2) can represent from -99.99 to 99.99. This is different from other integral numeric types
where the positive and negative bounds differ slightly.

When you use DECIMAL values in arithmetic expressions, the precision and scale of the result value are determined
as follows:

• For addition and subtraction, the precision and scale are based on the maximum possible result, that is, if all the
digits of the input values were 9s and the absolute values were added together.

• For multiplication, the precision is the sum of the precisions of the input values. The scale is the sum of the scales
of the input values.

• For division, Impala sets the precision and scale to values large enough to represent the whole and fractional parts
of the result.

• For UNION, the scale is the larger of the scales of the input values, and the precision is increased if necessary
to accommodate any additional fractional digits. If the same input value has the largest precision and the largest
scale, the result value has the same precision and scale. If one value has a larger precision but smaller scale, the
scale of the result value is increased. For example, DECIMAL(20,2) UNION DECIMAL(8,6) produces a
result of type DECIMAL(24,6). The extra 4 fractional digits of scale (6-2) are accommodated by extending the
precision by the same amount (20+4).

 | Impala SQL Language Reference | 118

• To doublecheck, you can always call the PRECISION() and SCALE() functions on the results of an arithmetic
expression to see the relevant values, or use a CREATE TABLE AS SELECT statement to define a column based
on the return type of the expression.

Compatibility:

• Using the DECIMAL type is only supported under Impala 1.4 and higher.
• Use the DECIMAL data type in Impala for applications where you used the NUMBER data type in Oracle. The

Impala DECIMAL type does not support the Oracle idioms of * for scale or negative values for precision.

Conversions and casting:

Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of
the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone.
If the setting -use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting
TIMESTAMP represents a date and time in the local time zone.

Impala automatically converts between DECIMAL and other numeric types where possible. A DECIMAL with zero
scale is converted to or from the smallest appropriate integral type. A DECIMAL with a fractional part is automatically
converted to or from the smallest appropriate floating-point type. If the destination type does not have sufficient
precision or scale to hold all possible values of the source type, Impala raises an error and does not convert the value.

For example, these statements show how expressions of DECIMAL and other types are reconciled to the same type in
the context of UNION queries and INSERT statements:

[localhost:21000] > select cast(1 as int) as x union select cast(1.5 as
 decimal(9,4)) as x;
+----------------+
| x |
+----------------+
| 1.5000 |
| 1.0000 |
+----------------+
[localhost:21000] > create table int_vs_decimal as select cast(1 as int) as
 x union select cast(1.5 as decimal(9,4)) as x;
+-------------------+
| summary |
+-------------------+
| Inserted 2 row(s) |
+-------------------+
[localhost:21000] > desc int_vs_decimal;
+------+---------------+---------+
| name | type | comment |
+------+---------------+---------+
| x | decimal(14,4) | |
+------+---------------+---------+

To avoid potential conversion errors, you can use CAST() to convert DECIMAL values to FLOAT, TINYINT,
SMALLINT, INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN. You can use exponential notation in DECIMAL
literals or when casting from STRING, for example 1.0e6 to represent one million.

If you cast a value with more fractional digits than the scale of the destination type, any extra fractional digits are
truncated (not rounded). Casting a value to a target type with not enough precision produces a result of NULL and
displays a runtime warning.

[localhost:21000] > select cast(1.239 as decimal(3,2));
+-----------------------------+
| cast(1.239 as decimal(3,2)) |
+-----------------------------+
| 1.23 |
+-----------------------------+
[localhost:21000] > select cast(1234 as decimal(3));

 | Impala SQL Language Reference | 119

+----------------------------+
| cast(1234 as decimal(3,0)) |
+----------------------------+
| NULL |
+----------------------------+
WARNINGS: Expression overflowed, returning NULL

When you specify integer literals, for example in INSERT ... VALUES statements or arithmetic expressions,
those numbers are interpreted as the smallest applicable integer type. You must use CAST() calls for some
combinations of integer literals and DECIMAL precision. For example, INT has a maximum value that is 10 digits
long, TINYINT has a maximum value that is 3 digits long, and so on. If you specify a value such as 123456 to go
into a DECIMAL column, Impala checks if the column has enough precision to represent the largest value of that
integer type, and raises an error if not. Therefore, use an expression like CAST(123456 TO DECIMAL(9,0))
for DECIMAL columns with precision 9 or less, CAST(50 TO DECIMAL(2,0)) for DECIMAL columns with
precision 2 or less, and so on. For DECIMAL columns with precision 10 or greater, Impala automatically interprets
the value as the correct DECIMAL type; however, because DECIMAL(10) requires 8 bytes of storage while
DECIMAL(9) requires only 4 bytes, only use precision of 10 or higher when actually needed.

[localhost:21000] > create table decimals_9_0 (x decimal);
[localhost:21000] > insert into decimals_9_0 values (1), (2), (4), (8),
 (16), (1024), (32768), (65536), (1000000);
ERROR: AnalysisException: Possible loss of precision for target table
 'decimal_testing.decimals_9_0'.
Expression '1' (type: INT) would need to be cast to DECIMAL(9,0) for column
 'x'
[localhost:21000] > insert into decimals_9_0 values (cast(1 as decimal)),
 (cast(2 as decimal)), (cast(4 as decimal)), (cast(8 as decimal)),
 (cast(16 as decimal)), (cast(1024 as decimal)), (cast(32768 as decimal)),
 (cast(65536 as decimal)), (cast(1000000 as decimal));

[localhost:21000] > create table decimals_10_0 (x decimal(10,0));
[localhost:21000] > insert into decimals_10_0 values (1), (2), (4), (8),
 (16), (1024), (32768), (65536), (1000000);

Be aware that in memory and for binary file formats such as Parquet or Avro, DECIMAL(10) or higher consumes
8 bytes while DECIMAL(9) (the default for DECIMAL) or lower consumes 4 bytes. Therefore, to conserve space in
large tables, use the smallest-precision DECIMAL type that is appropriate and CAST() literal values where necessary,
rather than declaring DECIMAL columns with high precision for convenience.

To represent a very large or precise DECIMAL value as a literal, for example one that contains more digits than can
be represented by a BIGINT literal, use a quoted string or a floating-point value for the number, and CAST() to the
desired DECIMAL type:

insert into decimals_38_5 values (1), (2), (4), (8), (16), (1024), (32768),
 (65536), (1000000),
 (cast("999999999999999999999999999999" as decimal(38,5))),
 (cast(999999999999999999999999999999. as decimal(38,5)));

• The result of the SUM() aggregate function on DECIMAL values is promoted to a precision of 38, with the same
precision as the underlying column. Thus, the result can represent the largest possible value at that particular
precision.

• STRING columns, literals, or expressions can be converted to DECIMAL as long as the overall number of digits
and digits to the right of the decimal point fit within the specified precision and scale for the declared DECIMAL
type. By default, a DECIMAL value with no specified scale or precision can hold a maximum of 9 digits of an
integer value. If there are more digits in the string value than are allowed by the DECIMAL scale and precision, the
result is NULL.

 | Impala SQL Language Reference | 120

The following examples demonstrate how STRING values with integer and fractional parts are represented when
converted to DECIMAL. If the scale is 0, the number is treated as an integer value with a maximum of precision
digits. If the precision is greater than 0, the scale must be increased to account for the digits both to the left and
right of the decimal point. As the precision increases, output values are printed with additional trailing zeros after
the decimal point if needed. Any trailing zeros after the decimal point in the STRING value must fit within the
number of digits specified by the precision.

[localhost:21000] > select cast('100' as decimal); -- Small integer value
 fits within 9 digits of scale.
+-----------------------------+
| cast('100' as decimal(9,0)) |
+-----------------------------+
| 100 |
+-----------------------------+
[localhost:21000] > select cast('100' as decimal(3,0)); -- Small integer
 value fits within 3 digits of scale.
+-----------------------------+
| cast('100' as decimal(3,0)) |
+-----------------------------+
| 100 |
+-----------------------------+
[localhost:21000] > select cast('100' as decimal(2,0)); -- 2 digits of
 scale is not enough!
+-----------------------------+
| cast('100' as decimal(2,0)) |
+-----------------------------+
| NULL |
+-----------------------------+
[localhost:21000] > select cast('100' as decimal(3,1)); -- (3,1) = 2
 digits left of the decimal point, 1 to the right. Not enough.
+-----------------------------+
| cast('100' as decimal(3,1)) |
+-----------------------------+
| NULL |
+-----------------------------+
[localhost:21000] > select cast('100' as decimal(4,1)); -- 4 digits total,
 1 to the right of the decimal point.
+-----------------------------+
| cast('100' as decimal(4,1)) |
+-----------------------------+
| 100.0 |
+-----------------------------+
[localhost:21000] > select cast('98.6' as decimal(3,1)); -- (3,1) can hold
 a 3 digit number with 1 fractional digit.
+------------------------------+
| cast('98.6' as decimal(3,1)) |
+------------------------------+
| 98.6 |
+------------------------------+
[localhost:21000] > select cast('98.6' as decimal(15,1)); -- Larger scale
 allows bigger numbers but still only 1 fractional digit.
+-------------------------------+
| cast('98.6' as decimal(15,1)) |
+-------------------------------+
| 98.6 |
+-------------------------------+
[localhost:21000] > select cast('98.6' as decimal(15,5)); -- Larger
 precision allows more fractional digits, outputs trailing zeros.
+-------------------------------+
| cast('98.6' as decimal(15,5)) |
+-------------------------------+
| 98.60000 |

 | Impala SQL Language Reference | 121

+-------------------------------+
[localhost:21000] > select cast('98.60000' as decimal(15,1)); -- Trailing
 zeros in the string must fit within 'scale' digits (1 in this case).
+-----------------------------------+
| cast('98.60000' as decimal(15,1)) |
+-----------------------------------+
| NULL |
+-----------------------------------+

• Most built-in arithmetic functions such as SIN() and COS() continue to accept only DOUBLE values because
they are so commonly used in scientific context for calculations of IEEE 954-compliant values. The built-in
functions that accept and return DECIMAL are:

• ABS()
• CEIL()
• COALESCE()
• FLOOR()
• FNV_HASH()
• GREATEST()
• IF()
• ISNULL()
• LEAST()
• NEGATIVE()
• NULLIF()
• POSITIVE()
• PRECISION()
• ROUND()
• SCALE()
• TRUNCATE()
• ZEROIFNULL()

See Impala Built-In Functions on page 418 for details.
• BIGINT, INT, SMALLINT, and TINYINT values can all be cast to DECIMAL. The number of digits to the left

of the decimal point in the DECIMAL type must be sufficient to hold the largest value of the corresponding integer
type. Note that integer literals are treated as the smallest appropriate integer type, meaning there is sometimes
a range of values that require one more digit of DECIMAL scale than you might expect. For integer values, the
precision of the DECIMAL type can be zero; if the precision is greater than zero, remember to increase the scale
value by an equivalent amount to hold the required number of digits to the left of the decimal point.

The following examples show how different integer types are converted to DECIMAL.

[localhost:21000] > select cast(1 as decimal(1,0));
+-------------------------+
| cast(1 as decimal(1,0)) |
+-------------------------+
| 1 |
+-------------------------+
[localhost:21000] > select cast(9 as decimal(1,0));
+-------------------------+
| cast(9 as decimal(1,0)) |
+-------------------------+
| 9 |
+-------------------------+
[localhost:21000] > select cast(10 as decimal(1,0));
+--------------------------+
| cast(10 as decimal(1,0)) |
+--------------------------+
| 10 |

 | Impala SQL Language Reference | 122

+--------------------------+
[localhost:21000] > select cast(10 as decimal(1,1));
+--------------------------+
| cast(10 as decimal(1,1)) |
+--------------------------+
| 10.0 |
+--------------------------+
[localhost:21000] > select cast(100 as decimal(1,1));
+---------------------------+
| cast(100 as decimal(1,1)) |
+---------------------------+
| 100.0 |
+---------------------------+
[localhost:21000] > select cast(1000 as decimal(1,1));
+----------------------------+
| cast(1000 as decimal(1,1)) |
+----------------------------+
| 1000.0 |
+----------------------------+

• When a DECIMAL value is converted to any of the integer types, any fractional part is truncated (that is, rounded
towards zero):

[localhost:21000] > create table num_dec_days (x decimal(4,1));
[localhost:21000] > insert into num_dec_days values (1), (2), (cast(4.5 as
 decimal(4,1)));
[localhost:21000] > insert into num_dec_days values (cast(0.1 as
 decimal(4,1))), (cast(.9 as decimal(4,1))), (cast(9.1 as decimal(4,1))),
 (cast(9.9 as decimal(4,1)));
[localhost:21000] > select cast(x as int) from num_dec_days;
+----------------+
| cast(x as int) |
+----------------+
| 1 |
| 2 |
| 4 |
| 0 |
| 0 |
| 9 |
| 9 |
+----------------+

• You cannot directly cast TIMESTAMP or BOOLEAN values to or from DECIMAL values. You can turn a
DECIMAL value into a time-related representation using a two-step process, by converting it to an integer value
and then using that result in a call to a date and time function such as from_unixtime().

[localhost:21000] > select from_unixtime(cast(cast(1000.0 as decimal) as
 bigint));
+---+
| from_unixtime(cast(cast(1000.0 as decimal(9,0)) as bigint)) |
+---+
| 1970-01-01 00:16:40 |
+---+
[localhost:21000] > select now() + interval cast(x as int) days from
 num_dec_days; -- x is a DECIMAL column.

[localhost:21000] > create table num_dec_days (x decimal(4,1));
[localhost:21000] > insert into num_dec_days values (1), (2), (cast(4.5 as
 decimal(4,1)));
[localhost:21000] > select now() + interval cast(x as int) days from
 num_dec_days; -- The 4.5 value is truncated to 4 and becomes '4 days'.

 | Impala SQL Language Reference | 123

+--------------------------------------+
| now() + interval cast(x as int) days |
+--------------------------------------+
| 2014-05-13 23:11:55.163284000 |
| 2014-05-14 23:11:55.163284000 |
| 2014-05-16 23:11:55.163284000 |
+--------------------------------------+

• Because values in INSERT statements are checked rigorously for type compatibility, be prepared to use CAST()
function calls around literals, column references, or other expressions that you are inserting into a DECIMAL
column.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

DECIMAL differences from integer and floating-point types:

With the DECIMAL type, you are concerned with the number of overall digits of a number rather than powers of 2 (as
in TINYINT, SMALLINT, and so on). Therefore, the limits with integral values of DECIMAL types fall around 99,
999, 9999, and so on rather than 32767, 65535, 2 32 -1, and so on. For fractional values, you do not need to account
for imprecise representation of the fractional part according to the IEEE-954 standard (as in FLOAT and DOUBLE).
Therefore, when you insert a fractional value into a DECIMAL column, you can compare, sum, query, GROUP BY,
and so on that column and get back the original values rather than some “close but not identical” value.

FLOAT and DOUBLE can cause problems or unexpected behavior due to inability to precisely represent certain
fractional values, for example dollar and cents values for currency. You might find output values slightly different
than you inserted, equality tests that do not match precisely, or unexpected values for GROUP BY columns.
DECIMAL can help reduce unexpected behavior and rounding errors, at the expense of some performance overhead
for assignments and comparisons.

Literals and expressions:

• When you use an integer literal such as 1 or 999 in a SQL statement, depending on the context, Impala will treat
it as either the smallest appropriate DECIMAL type, or the smallest integer type (TINYINT, SMALLINT, INT, or
BIGINT). To minimize memory usage, Impala prefers to treat the literal as the smallest appropriate integer type.

• When you use a floating-point literal such as 1.1 or 999.44 in a SQL statement, depending on the context,
Impala will treat it as either the smallest appropriate DECIMAL type, or the smallest floating-point type (FLOAT or
DOUBLE). To avoid loss of accuracy, Impala prefers to treat the literal as a DECIMAL.

Storage considerations:

• Only the precision determines the storage size for DECIMAL values; the scale setting has no effect on the storage
size.

• Text, RCFile, and SequenceFile tables all use ASCII-based formats. In these text-based file formats, leading zeros
are not stored, but trailing zeros are stored. In these tables, each DECIMAL value takes up as many bytes as there
are digits in the value, plus an extra byte if the decimal point is present and an extra byte for negative values.
Once the values are loaded into memory, they are represented in 4, 8, or 16 bytes as described in the following list
items. The on-disk representation varies depending on the file format of the table.

• Parquet and Avro tables use binary formats, In these tables, Impala stores each value in as few bytes as possible
depending on the precision specified for the DECIMAL column.

• In memory, DECIMAL values with precision of 9 or less are stored in 4 bytes.
• In memory, DECIMAL values with precision of 10 through 18 are stored in 8 bytes.
• In memory, DECIMAL values with precision greater than 18 are stored in 16 bytes.

File format considerations:

• The DECIMAL data type can be stored in any of the file formats supported by Impala, as described in How Impala
Works with Hadoop File Formats on page 690. Impala only writes to tables that use the Parquet and text
formats, so those formats are the focus for file format compatibility.

• Impala can query Avro, RCFile, or SequenceFile tables containing DECIMAL columns, created by other Hadoop
components.

 | Impala SQL Language Reference | 124

• You can use DECIMAL columns in Impala tables that are mapped to HBase tables. Impala can query and insert
into such tables.

• Text, RCFile, and SequenceFile tables all use ASCII-based formats. In these tables, each DECIMAL value takes up
as many bytes as there are digits in the value, plus an extra byte if the decimal point is present. The binary format
of Parquet or Avro files offers more compact storage for DECIMAL columns.

• Parquet and Avro tables use binary formats, In these tables, Impala stores each value in 4, 8, or 16 bytes
depending on the precision specified for the DECIMAL column.

UDF considerations: When writing a C++ UDF, use the DecimalVal data type defined in /usr/include/
impala_udf/udf.h.

Partitioning:

You can use a DECIMAL column as a partition key. Doing so provides a better match between the partition key values
and the HDFS directory names than using a DOUBLE or FLOAT partitioning column:

Schema evolution considerations:

• For text-based formats (text, RCFile, and SequenceFile tables), you can issue an ALTER TABLE ...
REPLACE COLUMNS statement to change the precision and scale of an existing DECIMAL column. As long as
the values in the column fit within the new precision and scale, they are returned correctly by a query. Any values
that do not fit within the new precision and scale are returned as NULL, and Impala reports the conversion error.
Leading zeros do not count against the precision value, but trailing zeros after the decimal point do.

[localhost:21000] > create table text_decimals (x string);
[localhost:21000] > insert into text_decimals values ("1"), ("2"),
 ("99.99"), ("1.234"), ("000001"), ("1.000000000");
[localhost:21000] > select * from text_decimals;
+-------------+
| x |
+-------------+
| 1 |
| 2 |
| 99.99 |
| 1.234 |
| 000001 |
| 1.000000000 |
+-------------+
[localhost:21000] > alter table text_decimals replace columns (x
 decimal(4,2));
[localhost:21000] > select * from text_decimals;
+-------+
| x |
+-------+
| 1.00 |
| 2.00 |
| 99.99 |
| NULL |
| 1.00 |
| NULL |
+-------+
ERRORS:
Backend 0:Error converting column: 0 TO DECIMAL(4, 2) (Data is: 1.234)
file: hdfs://127.0.0.1:8020/user/hive/warehouse/decimal_testing.db/
text_decimals/634d4bd3aa0
e8420-b4b13bab7f1be787_56794587_data.0
record: 1.234
Error converting column: 0 TO DECIMAL(4, 2) (Data is: 1.000000000)
file: hdfs://127.0.0.1:8020/user/hive/warehouse/decimal_testing.db/
text_decimals/cd40dc68e20
c565a-cc4bd86c724c96ba_311873428_data.0
record: 1.000000000

 | Impala SQL Language Reference | 125

• For binary formats (Parquet and Avro tables), although an ALTER TABLE ... REPLACE COLUMNS
statement that changes the precision or scale of a DECIMAL column succeeds, any subsequent attempt to query
the changed column results in a fatal error. (The other columns can still be queried successfully.) This is because
the metadata about the columns is stored in the data files themselves, and ALTER TABLE does not actually make
any updates to the data files. If the metadata in the data files disagrees with the metadata in the metastore database,
Impala cancels the query.

Examples:

CREATE TABLE t1 (x DECIMAL, y DECIMAL(5,2), z DECIMAL(25,0));
INSERT INTO t1 VALUES (5, 99.44, 123456), (300, 6.7, 999999999);
SELECT x+y, ROUND(y,1), z/98.6 FROM t1;
SELECT CAST(1000.5 AS DECIMAL);

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Kudu considerations:

Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 149, SMALLINT Data Type on page 133, INT
Data Type on page 127, BIGINT Data Type on page 111, DECIMAL Data Type (Impala 1.4 or higher only) on
page 117, Impala Mathematical Functions on page 420 (especially PRECISION() and SCALE())

DOUBLE Data Type

A double precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name DOUBLE

Range: 4.94065645841246544e-324d .. 1.79769313486231570e+308, positive or negative

Precision: 15 to 17 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 8 bytes, using IEEE 754 Double Precision Binary Floating Point format.

Conversions: Impala does not automatically convert DOUBLE to any other type. You can use CAST() to convert
DOUBLE values to FLOAT, TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN. You
can use exponential notation in DOUBLE literals or when casting from STRING, for example 1.0e6 to represent
one million. Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past
the start of the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time
zone. If the setting -use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting
TIMESTAMP represents a date and time in the local time zone.

Usage notes:

The data type REAL is an alias for DOUBLE.

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

 | Impala SQL Language Reference | 126

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns false:

SELECT CAST('nan' AS DOUBLE)=CAST('nan' AS DOUBLE);

Examples:

CREATE TABLE t1 (x DOUBLE);
SELECT CAST(1000.5 AS DOUBLE);

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECIMAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as an 8-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and
distributed queries can perform these operations in different order for each query, results can vary slightly for
aggregate function calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECIMAL data type for such operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECIMAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that
use different representations or file formats.

Kudu considerations:

Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.

Related information:

Numeric Literals on page 183, Impala Mathematical Functions on page 420, FLOAT Data Type on page 126

FLOAT Data Type

A single precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name FLOAT

Range: 1.40129846432481707e-45 .. 3.40282346638528860e+38, positive or negative

Precision: 6 to 9 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 4 bytes, using IEEE 754 Single Precision Binary Floating Point format.

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

 | Impala SQL Language Reference | 127

Conversions: Impala automatically converts FLOAT to more precise DOUBLE values, but not the other way around.
You can use CAST() to convert FLOAT values to TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP,
or BOOLEAN. You can use exponential notation in FLOAT literals or when casting from STRING, for example
1.0e6 to represent one million. Casting an integer or floating-point value N to TIMESTAMP produces a value that
is N seconds past the start of the epoch date (January 1, 1970). By default, the result value represents a date and time
in the UTC time zone. If the setting -use_local_tz_for_unix_timestamp_conversions=true is in
effect, the resulting TIMESTAMP represents a date and time in the local time zone.

Usage notes:

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns false:

SELECT CAST('nan' AS FLOAT)=CAST('nan' AS FLOAT);

Examples:

CREATE TABLE t1 (x FLOAT);
SELECT CAST(1000.5 AS FLOAT);

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECIMAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 4-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and
distributed queries can perform these operations in different order for each query, results can vary slightly for
aggregate function calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECIMAL data type for such operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECIMAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that
use different representations or file formats.

Kudu considerations:

Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.

Related information:

Numeric Literals on page 183, Impala Mathematical Functions on page 420, DOUBLE Data Type on page
125

INT Data Type

A 4-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

 | Impala SQL Language Reference | 128

In the column definition of a CREATE TABLE statement:

column_name INT

Range: -2147483648 .. 2147483647. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (BIGINT) or a floating-point type (FLOAT or
DOUBLE) automatically. Use CAST() to convert to TINYINT, SMALLINT, STRING, or TIMESTAMP. Casting
an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch
date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
-use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Usage notes:

The data type INTEGER is an alias for INT.

For a convenient and automated way to check the bounds of the INT type, call the functions MIN_INT() and
MAX_INT().

If an integer value is too large to be represented as a INT, use a BIGINT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x INT);
SELECT CAST(1000 AS INT);

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations:

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 4-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 149, SMALLINT Data Type on page 133, INT
Data Type on page 127, BIGINT Data Type on page 111, DECIMAL Data Type (Impala 1.4 or higher only) on
page 117, Impala Mathematical Functions on page 420

MAP Complex Type (Impala 2.3 or higher only)

A complex data type representing an arbitrary set of key-value pairs. The key part is a scalar type, while the value part
can be a scalar or another complex type (ARRAY, STRUCT, or MAP).

Syntax:

column_name MAP < primitive_type, type >

type ::= primitive_type | complex_type

Usage notes:

 | Impala SQL Language Reference | 129

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 152 for
background information and usage examples.

The MAP complex data type represents a set of key-value pairs. Each element of the map is indexed by a primitive
type such as BIGINT or STRING, letting you define sequences that are not continuous or categories with arbitrary
names. You might find it convenient for modelling data produced in other languages, such as a Python dictionary or
Java HashMap, where a single scalar value serves as the lookup key.

In a big data context, the keys in a map column might represent a numeric sequence of events during a manufacturing
process, or TIMESTAMP values corresponding to sensor observations. The map itself is inherently unordered, so you
choose whether to make the key values significant (such as a recorded TIMESTAMP) or synthetic (such as a random
global universal ID).

Note: Behind the scenes, the MAP type is implemented in a similar way as the ARRAY type. Impala does not enforce
any uniqueness constraint on the KEY values, and the KEY values are processed by looping through the elements
of the MAP rather than by a constant-time lookup. Therefore, this type is primarily for ease of understanding when
importing data and algorithms from non-SQL contexts, rather than optimizing the performance of key lookups.

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.a1. If table T1 contained a STRUCT column S1, and a field F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE t1.s1.f1. An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

Added in: Impala 2.3.0

Restrictions:

• Columns with this data type can only be used in tables or partitions with the Parquet file format.
• Columns with this data type cannot be used as partition key columns in a partitioned table.
• The COMPUTE STATS statement does not produce any statistics for columns of this data type.
• The maximum length of the column definition for any complex type, including declarations for any nested types,

is 4000 characters.
• See Limitations and Restrictions for Complex Types on page 156 for a full list of limitations and associated

guidelines about complex type columns.

Kudu considerations:

Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
175 for the table definitions.

The following example shows a table with various kinds of MAP columns, both at the top level and nested within
other complex types. Each row represents information about a specific country, with complex type fields of various
levels of nesting to represent different information associated with the country: factual measurements such as area
and population, notable people in different categories, geographic features such as cities, points of interest within
each city, and mountains with associated facts. Practice the CREATE TABLE and query notation for complex type
columns using empty tables, until you can visualize a complex data structure and construct corresponding SQL
statements reliably.

create TABLE map_demo
(
 country_id BIGINT,

-- Numeric facts about each country, looked up by name.
-- For example, 'Area':1000, 'Population':999999.

 | Impala SQL Language Reference | 130

-- Using a MAP instead of a STRUCT because there could be
-- a different set of facts for each country.
 metrics MAP <STRING, BIGINT>,

-- MAP whose value part is an ARRAY.
-- For example, the key 'Famous Politicians' could represent an array of 10
 elements,
-- while the key 'Famous Actors' could represent an array of 20 elements.
 notables MAP <STRING, ARRAY <STRING>>,

-- MAP that is a field within a STRUCT.
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-level column.)
-- For example, city #1 might have points of interest with key 'Zoo',
-- representing an array of 3 different zoos.
-- City #2 might have completely different kinds of points of interest.
-- Because the set of field names is potentially large, and most entries
 could be blank,
-- a MAP makes more sense than a STRUCT to represent such a sparse data
 structure.
 cities ARRAY < STRUCT <
 name: STRING,
 points_of_interest: MAP <STRING, ARRAY <STRING>>
 >>,

-- MAP that is an element within an ARRAY. The MAP is inside a STRUCT field
 to associate
-- the mountain name with all the facts about the mountain.
-- The "key" of the map (the first STRING field) represents the name of some
 fact whose value
-- can be expressed as an integer, such as 'Height', 'Year First Climbed',
 and so on.
 mountains ARRAY < STRUCT < name: STRING, facts: MAP <STRING, INT > > >
)
STORED AS PARQUET;

DESCRIBE map_demo;
+------------+--+
| name | type |
+------------+--+
country_id	bigint
metrics	map<string,bigint>
notables	map<string,array<string>>
cities	array<struct<
	name:string,
	points_of_interest:map<string,array<string>>
	>>
mountains	array<struct<
	name:string,
	facts:map<string,int>
	>>
+------------+--+

DESCRIBE map_demo.metrics;
+-------+--------+
| name | type |
+-------+--------+
| key | string |
| value | bigint |
+-------+--------+

DESCRIBE map_demo.notables;

 | Impala SQL Language Reference | 131

+-------+---------------+
| name | type |
+-------+---------------+
| key | string |
| value | array<string> |
+-------+---------------+

DESCRIBE map_demo.notables.value;
+------+--------+
| name | type |
+------+--------+
| item | string |
| pos | bigint |
+------+--------+

DESCRIBE map_demo.cities;
+------+--+
| name | type |
+------+--+
item	struct<
	name:string,
	points_of_interest:map<string,array<string>>
	>
pos	bigint
+------+--+

DESCRIBE map_demo.cities.item.points_of_interest;
+-------+---------------+
| name | type |
+-------+---------------+
| key | string |
| value | array<string> |
+-------+---------------+

DESCRIBE map_demo.cities.item.points_of_interest.value;
+------+--------+
| name | type |
+------+--------+
| item | string |
| pos | bigint |
+------+--------+

DESCRIBE map_demo.mountains;
+------+-------------------------+
| name | type |
+------+-------------------------+
item	struct<
	name:string,
	facts:map<string,int>
	>
pos	bigint
+------+-------------------------+

DESCRIBE map_demo.mountains.item.facts;
+-------+--------+
| name | type |
+-------+--------+
| key | string |
| value | int |
+-------+--------+

 | Impala SQL Language Reference | 132

The following example shows a table that uses a variety of data types for the MAP “key” field. Typically, you use
BIGINT or STRING to use numeric or character-based keys without worrying about exceeding any size or length
constraints.

CREATE TABLE map_demo_obscure
(
 id BIGINT,
 m1 MAP <INT, INT>,
 m2 MAP <SMALLINT, INT>,
 m3 MAP <TINYINT, INT>,
 m4 MAP <TIMESTAMP, INT>,
 m5 MAP <BOOLEAN, INT>,
 m6 MAP <CHAR(5), INT>,
 m7 MAP <VARCHAR(25), INT>,
 m8 MAP <FLOAT, INT>,
 m9 MAP <DOUBLE, INT>,
 m10 MAP <DECIMAL(12,2), INT>
)
STORED AS PARQUET;

CREATE TABLE celebrities (name STRING, birth_year MAP < STRING, SMALLINT >)
 STORED AS PARQUET;
-- A typical row might represent values with 2 different birth years, such
 as:
-- ("Joe Movie Star", { "real": 1972, "claimed": 1977 })

CREATE TABLE countries (name STRING, famous_leaders MAP < INT, STRING >)
 STORED AS PARQUET;
-- A typical row might represent values with different leaders, with key
 values corresponding to their numeric sequence, such as:
-- ("United States", { 1: "George Washington", 3: "Thomas Jefferson", 16:
 "Abraham Lincoln" })

CREATE TABLE airlines (name STRING, special_meals MAP < STRING, MAP <
 STRING, STRING > >) STORED AS PARQUET;
-- A typical row might represent values with multiple kinds of meals, each
 with several components:
-- ("Elegant Airlines",
-- {
-- "vegetarian": { "breakfast": "pancakes", "snack": "cookies",
 "dinner": "rice pilaf" },
-- "gluten free": { "breakfast": "oatmeal", "snack": "fruit", "dinner":
 "chicken" }
-- })

Related information:

Complex Types (Impala 2.3 or higher only) on page 152, ARRAY Complex Type (Impala 2.3 or higher only) on
page 108, STRUCT Complex Type (Impala 2.3 or higher only) on page 135

REAL Data Type

An alias for the DOUBLE data type. See DOUBLE Data Type on page 125 for details.

Examples:

These examples show how you can use the type names REAL and DOUBLE interchangeably, and behind the scenes
Impala treats them always as DOUBLE.

[localhost:21000] > create table r1 (x real);
[localhost:21000] > describe r1;

 | Impala SQL Language Reference | 133

+------+--------+---------+
| name | type | comment |
+------+--------+---------+
| x | double | |
+------+--------+---------+
[localhost:21000] > insert into r1 values (1.5), (cast (2.2 as double));
[localhost:21000] > select cast (1e6 as real);
+---------------------------+
| cast(1000000.0 as double) |
+---------------------------+
| 1000000 |
+---------------------------+

SMALLINT Data Type

A 2-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name SMALLINT

Range: -32768 .. 32767. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (INT or BIGINT) or a floating-point type
(FLOAT or DOUBLE) automatically. Use CAST() to convert to TINYINT, STRING, or TIMESTAMP. Casting
an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch
date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
-use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Usage notes:

For a convenient and automated way to check the bounds of the SMALLINT type, call the functions
MIN_SMALLINT() and MAX_SMALLINT().

If an integer value is too large to be represented as a SMALLINT, use an INT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x SMALLINT);
SELECT CAST(1000 AS SMALLINT);

Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impala rejects
attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE ...
LIKE PARQUET syntax, any TINYINT or SMALLINT columns in the original table turn into INT columns in the
new table.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 2-byte value.

Added in: Available in all versions of Impala.

 | Impala SQL Language Reference | 134

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 149, SMALLINT Data Type on page 133, INT
Data Type on page 127, BIGINT Data Type on page 111, DECIMAL Data Type (Impala 1.4 or higher only) on
page 117, Impala Mathematical Functions on page 420

STRING Data Type

A data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name STRING

Length: Maximum of 32,767 bytes. Do not use any length constraint when declaring STRING columns, as you might
be familiar with from VARCHAR, CHAR, or similar column types from relational database systems. If you do need
to manipulate string values with precise or maximum lengths, in Impala 2.0 and higher you can declare columns as
VARCHAR(max_length) or CHAR(length), but for best performance use STRING where practical.

Character sets: For full support in all Impala subsystems, restrict string values to the ASCII character set. Although
some UTF-8 character data can be stored in Impala and retrieved through queries, UTF-8 strings containing non-
ASCII characters are not guaranteed to work properly in combination with many SQL aspects, including but not
limited to:

• String manipulation functions.
• Comparison operators.
• The ORDER BY clause.
• Values in partition key columns.

For any national language aspects such as collation order or interpreting extended ASCII variants such as ISO-8859-1
or ISO-8859-2 encodings, Impala does not include such metadata with the table definition. If you need to sort,
manipulate, or display data depending on those national language characteristics of string data, use logic on the
application side.

Conversions:

• Impala does not automatically convert STRING to any numeric type. Impala does automatically convert STRING
to TIMESTAMP if the value matches one of the accepted TIMESTAMP formats; see TIMESTAMP Data Type on
page 141 for details.

• You can use CAST() to convert STRING values to TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, or
TIMESTAMP.

• You cannot directly cast a STRING value to BOOLEAN. You can use a CASE expression to evaluate string values
such as 'T', 'true', and so on and return Boolean true and false values as appropriate.

• You can cast a BOOLEAN value to STRING, returning '1' for true values and '0' for false values.

Partitioning:

Although it might be convenient to use STRING columns for partition keys, even when those columns contain
numbers, for performance and scalability it is much better to use numeric columns as partition keys whenever
practical. Although the underlying HDFS directory name might be the same in either case, the in-memory storage
for the partition key columns is more compact, and computations are faster, if partition key columns such as YEAR,
MONTH, DAY and so on are declared as INT, SMALLINT, and so on.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length
strings (""), NULL, and space to all be different values.

 | Impala SQL Language Reference | 135

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Column statistics considerations: Because the values of this type have variable size, none of the column statistics
fields are filled in until you run the COMPUTE STATS statement.

Examples:

The following examples demonstrate double-quoted and single-quoted string literals, and required escaping for
quotation marks within string literals:

SELECT 'I am a single-quoted string';
SELECT "I am a double-quoted string";
SELECT 'I\'m a single-quoted string with an apostrophe';
SELECT "I\'m a double-quoted string with an apostrophe";
SELECT 'I am a "short" single-quoted string containing quotes';
SELECT "I am a \"short\" double-quoted string containing quotes";

The following examples demonstrate calls to string manipulation functions to concatenate strings, convert numbers to
strings, or pull out substrings:

SELECT CONCAT("Once upon a time, there were ", CAST(3 AS STRING), ' little
 pigs.');
SELECT SUBSTR("hello world",7,5);

The following examples show how to perform operations on STRING columns within a table:

CREATE TABLE t1 (s1 STRING, s2 STRING);
INSERT INTO t1 VALUES ("hello", 'world'), (CAST(7 AS STRING), "wonders");
SELECT s1, s2, length(s1) FROM t1 WHERE s2 LIKE 'w%';

Related information:

String Literals on page 184, CHAR Data Type (Impala 2.0 or higher only) on page 113, VARCHAR Data
Type (Impala 2.0 or higher only) on page 150, Impala String Functions on page 510, Impala Date and Time
Functions on page 453

STRUCT Complex Type (Impala 2.3 or higher only)

A complex data type, representing multiple fields of a single item. Frequently used as the element type of an ARRAY
or the VALUE part of a MAP.

Syntax:

column_name STRUCT < name : type [COMMENT 'comment_string'], ... >

type ::= primitive_type | complex_type

The names and number of fields within the STRUCT are fixed. Each field can be a different type. A field within a
STRUCT can also be another STRUCT, or an ARRAY or a MAP, allowing you to create nested data structures with a
maximum nesting depth of 100.

A STRUCT can be the top-level type for a column, or can itself be an item within an ARRAY or the value part of the
key-value pair in a MAP.

 | Impala SQL Language Reference | 136

When a STRUCT is used as an ARRAY element or a MAP value, you use a join clause to bring the ARRAY or MAP
elements into the result set, and then refer to array_name.ITEM.field or map_name.VALUE.field. In the
case of a STRUCT directly inside an ARRAY or MAP, you can omit the .ITEM and .VALUE pseudocolumns and refer
directly to array_name.field or map_name.field.

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex Types (Impala 2.3 or higher only) on page 152 for
background information and usage examples.

A STRUCT is similar conceptually to a table row: it contains a fixed number of named fields, each with a predefined
type. To combine two related tables, while using complex types to minimize repetition, the typical way to represent
that data is as an ARRAY of STRUCT elements.

Because a STRUCT has a fixed number of named fields, it typically does not make sense to have a STRUCT as the
type of a table column. In such a case, you could just make each field of the STRUCT into a separate column of the
table. The STRUCT type is most useful as an item of an ARRAY or the value part of the key-value pair in a MAP. A
nested type column with a STRUCT at the lowest level lets you associate a variable number of row-like objects with
each row of the table.

The STRUCT type is straightforward to reference within a query. You do not need to include the STRUCT column
in a join clause or give it a table alias, as is required for the ARRAY and MAP types. You refer to the individual fields
using dot notation, such as struct_column_name.field_name, without any pseudocolumn such as ITEM or
VALUE.

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.a1. If table T1 contained a STRUCT column S1, and a field F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE t1.s1.f1. An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

Internal details:

Within the Parquet data file, the values for each STRUCT field are stored adjacent to each other, so that they can be
encoded and compressed using all the Parquet techniques for storing sets of similar or repeated values. The adjacency
applies even when the STRUCT values are part of an ARRAY or MAP. During a query, Impala avoids unnecessary I/O
by reading only the portions of the Parquet data file containing the requested STRUCT fields.

Added in: Impala 2.3.0

Restrictions:

• Columns with this data type can only be used in tables or partitions with the Parquet file format.
• Columns with this data type cannot be used as partition key columns in a partitioned table.
• The COMPUTE STATS statement does not produce any statistics for columns of this data type.
• The maximum length of the column definition for any complex type, including declarations for any nested types,

is 4000 characters.
• See Limitations and Restrictions for Complex Types on page 156 for a full list of limitations and associated

guidelines about complex type columns.

Kudu considerations:

Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
175 for the table definitions.

 | Impala SQL Language Reference | 137

The following example shows a table with various kinds of STRUCT columns, both at the top level and nested within
other complex types. Practice the CREATE TABLE and query notation for complex type columns using empty tables,
until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE struct_demo
(
 id BIGINT,
 name STRING,

-- A STRUCT as a top-level column. Demonstrates how the table ID column
-- and the ID field within the STRUCT can coexist without a name conflict.
 employee_info STRUCT < employer: STRING, id: BIGINT, address: STRING >,

-- A STRUCT as the element type of an ARRAY.
 places_lived ARRAY < STRUCT <street: STRING, city: STRING, country: STRING
 >>,

-- A STRUCT as the value portion of the key-value pairs in a MAP.
 memorable_moments MAP < STRING, STRUCT < year: INT, place: STRING,
 details: STRING >>,

-- A STRUCT where one of the fields is another STRUCT.
 current_address STRUCT < street_address: STRUCT <street_number: INT,
 street_name: STRING, street_type: STRING>, country: STRING, postal_code:
 STRING >
)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more STRUCT columns by
using the DESCRIBE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRIBE until the output shows just the STRUCT fields.

DESCRIBE struct_demo;
+-------------------+--------------------------+
| name | type |
+-------------------+--------------------------+
id	bigint
name	string
employee_info	struct<
	employer:string,
	id:bigint,
	address:string
	>
places_lived	array<struct<
	street:string,
	city:string,
	country:string
	>>
memorable_moments	map<string,struct<
	year:int,
	place:string,
	details:string
	>>
current_address	struct<
	street_address:struct<
	street_number:int,
	street_name:string,
	street_type:string
	>,
	country:string,

 | Impala SQL Language Reference | 138

| | postal_code:string |
| | > |
+-------------------+--------------------------+

The top-level column EMPLOYEE_INFO is a STRUCT. Describing table_name.struct_name displays the
fields of the STRUCT as if they were columns of a table:

DESCRIBE struct_demo.employee_info;
+----------+--------+
| name | type |
+----------+--------+
employer	string
id	bigint
address	string
+----------+--------+

Because PLACES_LIVED is a STRUCT inside an ARRAY, the initial DESCRIBE shows the structure of the ARRAY:

DESCRIBE struct_demo.places_lived;
+------+------------------+
| name | type |
+------+------------------+
item	struct<
	street:string,
	city:string,
	country:string
	>
pos	bigint
+------+------------------+

Ask for the details of the ITEM field of the ARRAY to see just the layout of the STRUCT:

DESCRIBE struct_demo.places_lived.item;
+---------+--------+
| name | type |
+---------+--------+
street	string
city	string
country	string
+---------+--------+

Likewise, MEMORABLE_MOMENTS has a STRUCT inside a MAP, which requires an extra level of qualified name to
see just the STRUCT part:

DESCRIBE struct_demo.memorable_moments;
+-------+------------------+
| name | type |
+-------+------------------+
key	string
value	struct<
	year:int,
	place:string,
	details:string
	>
+-------+------------------+

 | Impala SQL Language Reference | 139

For a MAP, ask to see the VALUE field to see the corresponding STRUCT fields in a table-like structure:

DESCRIBE struct_demo.memorable_moments.value;
+---------+--------+
| name | type |
+---------+--------+
year	int
place	string
details	string
+---------+--------+

For a STRUCT inside a STRUCT, we can see the fields of the outer STRUCT:

DESCRIBE struct_demo.current_address;
+----------------+-----------------------+
| name | type |
+----------------+-----------------------+
street_address	struct<
	street_number:int,
	street_name:string,
	street_type:string
	>
country	string
postal_code	string
+----------------+-----------------------+

Then we can use a further qualified name to see just the fields of the inner STRUCT:

DESCRIBE struct_demo.current_address.street_address;
+---------------+--------+
| name | type |
+---------------+--------+
street_number	int
street_name	string
street_type	string
+---------------+--------+

The following example shows how to examine the structure of a table containing one or more STRUCT columns by
using the DESCRIBE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRIBE until the output shows just the STRUCT fields.

DESCRIBE struct_demo;
+-------------------+--------------------------+---------+
| name | type | comment |
+-------------------+--------------------------+---------+
id	bigint	
name	string	
employee_info	struct<	
	employer:string,	
	id:bigint,	
	address:string	
	>	
places_lived	array<struct<	
	street:string,	
	city:string,	
	country:string	
	>>	
memorable_moments	map<string,struct<	

 | Impala SQL Language Reference | 140

	year:int,	
	place:string,	
	details:string	
	>>	
current_address	struct<	
	street_address:struct<	
	street_number:int,	
	street_name:string,	
	street_type:string	
	>,	
	country:string,	
	postal_code:string	
	>	
+-------------------+--------------------------+---------+

SELECT id, employee_info.id FROM struct_demo;

SELECT id, employee_info.id AS employee_id FROM struct_demo;

SELECT id, employee_info.id AS employee_id, employee_info.employer
 FROM struct_demo;

SELECT id, name, street, city, country
 FROM struct_demo, struct_demo.places_lived;

SELECT id, name, places_lived.pos, places_lived.street, places_lived.city,
 places_lived.country
 FROM struct_demo, struct_demo.places_lived;

SELECT id, name, pl.pos, pl.street, pl.city, pl.country
 FROM struct_demo, struct_demo.places_lived AS pl;

SELECT id, name, places_lived.pos, places_lived.street, places_lived.city,
 places_lived.country
 FROM struct_demo, struct_demo.places_lived;

SELECT id, name, pos, street, city, country
 FROM struct_demo, struct_demo.places_lived;

SELECT id, name, memorable_moments.key,
 memorable_moments.value.year,
 memorable_moments.value.place,
 memorable_moments.value.details
FROM struct_demo, struct_demo.memorable_moments
WHERE memorable_moments.key IN ('Birthday','Anniversary','Graduation');

SELECT id, name, mm.key, mm.value.year, mm.value.place, mm.value.details
 FROM struct_demo, struct_demo.memorable_moments AS mm
WHERE mm.key IN ('Birthday','Anniversary','Graduation');

SELECT id, name, memorable_moments.key, memorable_moments.value.year,
 memorable_moments.value.place, memorable_moments.value.details
FROM struct_demo, struct_demo.memorable_moments
WHERE key IN ('Birthday','Anniversary','Graduation');

SELECT id, name, key, value.year, value.place, value.details
 FROM struct_demo, struct_demo.memorable_moments
WHERE key IN ('Birthday','Anniversary','Graduation');

SELECT id, name, key, year, place, details
 FROM struct_demo, struct_demo.memorable_moments
WHERE key IN ('Birthday','Anniversary','Graduation');

SELECT id, name,

 | Impala SQL Language Reference | 141

 current_address.street_address.street_number,
 current_address.street_address.street_name,
 current_address.street_address.street_type,
 current_address.country,
 current_address.postal_code
FROM struct_demo;

For example, this table uses a struct that encodes several data values for each phone number associated with a person.
Each person can have a variable-length array of associated phone numbers, and queries can refer to the category field
to locate specific home, work, mobile, and so on kinds of phone numbers.

CREATE TABLE contact_info_many_structs
(
 id BIGINT, name STRING,
 phone_numbers ARRAY < STRUCT <category:STRING, country_code:STRING,
 area_code:SMALLINT, full_number:STRING, mobile:BOOLEAN, carrier:STRING > >
) STORED AS PARQUET;

Because structs are naturally suited to composite values where the fields have different data types, you might use
them to decompose things such as addresses:

CREATE TABLE contact_info_detailed_address
(
 id BIGINT, name STRING,
 address STRUCT < house_number:INT, street:STRING, street_type:STRING,
 apartment:STRING, city:STRING, region:STRING, country:STRING >
);

In a big data context, splitting out data fields such as the number part of the address and the street name could let
you do analysis on each field independently. For example, which streets have the largest number range of addresses,
what are the statistical properties of the street names, which areas have a higher proportion of “Roads”, “Courts” or
“Boulevards”, and so on.

Related information:

Complex Types (Impala 2.3 or higher only) on page 152, ARRAY Complex Type (Impala 2.3 or higher only) on
page 108, MAP Complex Type (Impala 2.3 or higher only) on page 128

TIMESTAMP Data Type

A data type used in CREATE TABLE and ALTER TABLE statements, representing a point in time.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name TIMESTAMP

Range: Allowed date values range from 1400-01-01 to 9999-12-31; this range is different from the Hive
TIMESTAMP type. Internally, the resolution of the time portion of a TIMESTAMP value is in nanoseconds.

INTERVAL expressions:

You can perform date arithmetic by adding or subtracting a specified number of time units, using the INTERVAL
keyword and the + and - operators or date_add() and date_sub() functions. You can specify units as
YEAR[S], MONTH[S], WEEK[S], DAY[S], HOUR[S], MINUTE[S], SECOND[S], MILLISECOND[S],
MICROSECOND[S], and NANOSECOND[S]. You can only specify one time unit in each interval expression, for
example INTERVAL 3 DAYS or INTERVAL 25 HOURS, but you can produce any granularity by adding together

 | Impala SQL Language Reference | 142

successive INTERVAL values, such as timestamp_value + INTERVAL 3 WEEKS - INTERVAL 1 DAY
+ INTERVAL 10 MICROSECONDS.

For example:

select now() + interval 1 day;
select date_sub(now(), interval 5 minutes);
insert into auction_details
 select auction_id, auction_start_time, auction_start_time + interval 2
 days + interval 12 hours
 from new_auctions;

Time zones:

By default, Impala does not store timestamps using the local timezone, to avoid undesired results from unexpected
time zone issues. Timestamps are stored and interpreted relative to UTC, both when written to or read from
data files, or when converted to or from Unix time values through functions such as from_unixtime() or
unix_timestamp(). To convert such a TIMESTAMP value to one that represents the date and time in a specific
time zone, convert the original value with the from_utc_timestamp() function.

Because Impala does not assume that TIMESTAMP values are in any particular time zone, you must be conscious of
the time zone aspects of data that you query, insert, or convert.

For consistency with Unix system calls, the TIMESTAMP returned by the now() function represents the local time in
the system time zone, rather than in UTC. To store values relative to the current time in a portable way, convert any
now() return values using the to_utc_timestamp() function first. For example, the following example shows
that the current time in California (where this Impala cluster is located) is shortly after 2 PM. If that value was written
to a data file, and shipped off to a distant server to be analyzed alongside other data from far-flung locations, the dates
and times would not match up precisely because of time zone differences. Therefore, the to_utc_timestamp()
function converts it using a common reference point, the UTC time zone (descended from the old Greenwich Mean
Time standard). The 'PDT' argument indicates that the original value is from the Pacific time zone with Daylight
Saving Time in effect. When servers in all geographic locations run the same transformation on any local date and
time values (with the appropriate time zone argument), the stored data uses a consistent representation. Impala queries
can use functions such as EXTRACT(), MIN(), AVG(), and so on to do time-series analysis on those timestamps.

[localhost:21000] > select now();
+-------------------------------+
| now() |
+-------------------------------+
| 2015-04-09 14:07:46.580465000 |
+-------------------------------+
[localhost:21000] > select to_utc_timestamp(now(), 'PDT');
+--------------------------------+
| to_utc_timestamp(now(), 'pdt') |
+--------------------------------+
| 2015-04-09 21:08:07.664547000 |
+--------------------------------+

The converse function, from_utc_timestamp(), lets you take stored TIMESTAMP data or calculated results
and convert back to local date and time for processing on the application side. The following example shows how
you might represent some future date (such as the ending date and time of an auction) in UTC, and then convert back
to local time when convenient for reporting or other processing. The final query in the example tests whether this
arbitrary UTC date and time has passed yet, by converting it back to the local time zone and comparing it against the
current date and time.

[localhost:21000] > select to_utc_timestamp(now() + interval 2 weeks,
 'PDT');
+---+
| to_utc_timestamp(now() + interval 2 weeks, 'pdt') |
+---+
| 2015-04-23 21:08:34.152923000 |

 | Impala SQL Language Reference | 143

+---+
[localhost:21000] > select from_utc_timestamp('2015-04-23
 21:08:34.152923000','PDT');
+--+
| from_utc_timestamp('2015-04-23 21:08:34.152923000', 'pdt') |
+--+
| 2015-04-23 14:08:34.152923000 |
+--+
[localhost:21000] > select from_utc_timestamp('2015-04-23
 21:08:34.152923000','PDT') < now();
+--+
| from_utc_timestamp('2015-04-23 21:08:34.152923000', 'pdt') < now() |
+--+
| false |
+--+

If you have data files written by Hive, those TIMESTAMP values represent the local timezone of the
host where the data was written, potentially leading to inconsistent results when processed by Impala.
To avoid compatibility problems or having to code workarounds, you can specify one or both of these
impalad startup flags: -use_local_tz_for_unix_timestamp_conversions=true
-convert_legacy_hive_parquet_utc_timestamps=true. Although -
convert_legacy_hive_parquet_utc_timestamps is turned off by default to avoid performance
overhead, where practical turn it on when processing TIMESTAMP columns in Parquet files written by Hive, to avoid
unexpected behavior.

The -use_local_tz_for_unix_timestamp_conversions setting affects conversions from
TIMESTAMP to BIGINT, or from BIGINT to TIMESTAMP. By default, Impala treats all TIMESTAMP values
as UTC, to simplify analysis of time-series data from different geographic regions. When you enable the -
use_local_tz_for_unix_timestamp_conversions setting, these operations treat the input values as if
they are in the local tie zone of the host doing the processing. See Impala Date and Time Functions on page 453
for the list of functions affected by the -use_local_tz_for_unix_timestamp_conversions setting.

The following sequence of examples shows how the interpretation of TIMESTAMP values in Parquet tables is affected
by the setting of the -convert_legacy_hive_parquet_utc_timestamps setting.

Regardless of the -convert_legacy_hive_parquet_utc_timestamps setting, TIMESTAMP columns in
text tables can be written and read interchangeably by Impala and Hive:

Impala DDL and queries for text table:

[localhost:21000] > create table t1 (x timestamp);
[localhost:21000] > insert into t1 values (now()), (now() + interval 1 day);
[localhost:21000] > select x from t1;
+-------------------------------+
| x |
+-------------------------------+
| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
+-------------------------------+
[localhost:21000] > select to_utc_timestamp(x, 'PDT') from t1;
+-------------------------------+
| to_utc_timestamp(x, 'pdt') |
+-------------------------------+
| 2015-04-07 22:43:02.892403000 |
| 2015-04-08 22:43:02.892403000 |
+-------------------------------+

Hive query for text table:

hive> select * from t1;
OK
2015-04-07 15:43:02.892403

 | Impala SQL Language Reference | 144

2015-04-08 15:43:02.892403
Time taken: 1.245 seconds, Fetched: 2 row(s)

When the table uses Parquet format, Impala expects any time zone adjustment to be applied prior to writing, while
TIMESTAMP values written by Hive are adjusted to be in the UTC time zone. When Hive queries Parquet data files
that it wrote, it adjusts the TIMESTAMP values back to the local time zone, while Impala does no conversion. Hive
does no time zone conversion when it queries Impala-written Parquet files.

Impala DDL and queries for Parquet table:

[localhost:21000] > create table p1 stored as parquet as select x from t1;
+-------------------+
| summary |
+-------------------+
| Inserted 2 row(s) |
+-------------------+
[localhost:21000] > select x from p1;
+-------------------------------+
| x |
+-------------------------------+
| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
+-------------------------------+

Hive DDL and queries for Parquet table:

hive> create table h1 (x timestamp) stored as parquet;
OK
hive> insert into h1 select * from p1;
...
OK
Time taken: 35.573 seconds
hive> select x from p1;
OK
2015-04-07 15:43:02.892403
2015-04-08 15:43:02.892403
Time taken: 0.324 seconds, Fetched: 2 row(s)
hive> select x from h1;
OK
2015-04-07 15:43:02.892403
2015-04-08 15:43:02.892403
Time taken: 0.197 seconds, Fetched: 2 row(s)

The discrepancy arises when Impala queries the Hive-created Parquet table. The underlying values in the
TIMESTAMP column are different from the ones written by Impala, even though they were copied from one table to
another by an INSERT ... SELECT statement in Hive. Hive did an implicit conversion from the local time zone
to UTC as it wrote the values to Parquet.

Impala query for TIMESTAMP values from Impala-written and Hive-written data:

[localhost:21000] > select * from p1;
+-------------------------------+
| x |
+-------------------------------+
| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
+-------------------------------+
Fetched 2 row(s) in 0.29s
[localhost:21000] > select * from h1;
+-------------------------------+
| x |
+-------------------------------+

 | Impala SQL Language Reference | 145

| 2015-04-07 22:43:02.892403000 |
| 2015-04-08 22:43:02.892403000 |
+-------------------------------+
Fetched 2 row(s) in 0.41s

Underlying integer values for Impala-written and Hive-written data:

[localhost:21000] > select cast(x as bigint) from p1;
+-------------------+
| cast(x as bigint) |
+-------------------+
| 1428421382 |
| 1428507782 |
+-------------------+
Fetched 2 row(s) in 0.38s
[localhost:21000] > select cast(x as bigint) from h1;
+-------------------+
| cast(x as bigint) |
+-------------------+
| 1428446582 |
| 1428532982 |
+-------------------+
Fetched 2 row(s) in 0.20s

When the -convert_legacy_hive_parquet_utc_timestamps setting is enabled, Impala recognizes the
Parquet data files written by Hive, and applies the same UTC-to-local-timezone conversion logic during the query as
Hive uses, making the contents of the Impala-written P1 table and the Hive-written H1 table appear identical, whether
represented as TIMESTAMP values or the underlying BIGINT integers:

[localhost:21000] > select x from p1;
+-------------------------------+
| x |
+-------------------------------+
| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
+-------------------------------+
Fetched 2 row(s) in 0.37s
[localhost:21000] > select x from h1;
+-------------------------------+
| x |
+-------------------------------+
| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
+-------------------------------+
Fetched 2 row(s) in 0.19s
[localhost:21000] > select cast(x as bigint) from p1;
+-------------------+
| cast(x as bigint) |
+-------------------+
| 1428446582 |
| 1428532982 |
+-------------------+
Fetched 2 row(s) in 0.29s
[localhost:21000] > select cast(x as bigint) from h1;
+-------------------+
| cast(x as bigint) |
+-------------------+
| 1428446582 |
| 1428532982 |
+-------------------+
Fetched 2 row(s) in 0.22s

 | Impala SQL Language Reference | 146

Conversions:

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp
values are accepted in the format "yyyy-MM-dd HH:mm:ss.SSSSSS", and can consist of just the date,
or just the time, with or without the fractional second portion. For example, you can specify TIMESTAMP
values such as '1966-07-30', '08:30:00', or '1985-09-25 17:45:30.005'. Casting an integer
or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting -
use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

In Impala 1.3 and higher, the FROM_UNIXTIME() and UNIX_TIMESTAMP() functions allow a wider range of
format strings, with more flexibility in element order, repetition of letter placeholders, and separator characters. In
Impala 2.3 and higher, the UNIX_TIMESTAMP() function also allows a numeric timezone offset to be specified as
part of the input string. See Impala Date and Time Functions on page 453 for details.

In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TIMESTAMP values use the
BIGINT type for parameters and return values, rather than INT. This change lets the date and time functions avoid
an overflow error that would otherwise occur on January 19th, 2038 (known as the “Year 2038 problem” or “Y2K38
problem”). This change affects the from_unixtime() and unix_timestamp() functions. You might need to
change application code that interacts with these functions, change the types of columns that store the return values,
or add CAST() calls to SQL statements that call these functions.

Partitioning:

Although you cannot use a TIMESTAMP column as a partition key, you can extract the individual years, months,
days, hours, and so on and partition based on those columns. Because the partition key column values are
represented in HDFS directory names, rather than as fields in the data files themselves, you can also keep the original
TIMESTAMP values if desired, without duplicating data or wasting storage space. See Partition Key Columns on page
686 for more details on partitioning with date and time values.

[localhost:21000] > create table timeline (event string) partitioned by
 (happened timestamp);
ERROR: AnalysisException: Type 'TIMESTAMP' is not supported as partition-
column type in column: happened

NULL considerations: Casting any unrecognized STRING value to this type produces a NULL value.

Partitioning: Because this type potentially has so many distinct values, it is often not a sensible choice for a partition
key column. For example, events 1 millisecond apart would be stored in different partitions. Consider using the
TRUNC() function to condense the number of distinct values, and partition on a new column with the truncated
values.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 16-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Sqoop considerations:

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT64 type, which
is represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was
imported this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

 | Impala SQL Language Reference | 147

Restrictions:

If you cast a STRING with an unrecognized format to a TIMESTAMP, the result is NULL rather than an error. Make
sure to test your data pipeline to be sure any textual date and time values are in a format that Impala TIMESTAMP can
recognize.

Currently, Avro tables cannot contain TIMESTAMP columns. If you need to store date and time values in Avro
tables, as a workaround you can use a STRING representation of the values, convert the values to BIGINT with the
UNIX_TIMESTAMP() function, or create separate numeric columns for individual date and time fields using the
EXTRACT() function.

Kudu considerations:

In Impala 2.9 and higher, you can include TIMESTAMP columns in Kudu tables, instead of representing the date and
time as a BIGINT value. The behavior of TIMESTAMP for Kudu tables has some special considerations:

• Any nanoseconds in the original 96-bit value produced by Impala are not stored, because Kudu represents date/
time columns using 64-bit values. The nanosecond portion of the value is rounded, not truncated. Therefore, a
TIMESTAMP value that you store in a Kudu table might not be bit-for-bit identical to the value returned by a
query.

• The conversion between the Impala 96-bit representation and the Kudu 64-bit representation introduces some
performance overhead when reading or writing TIMESTAMP columns. You can minimize the overhead during
writes by performing inserts through the Kudu API. Because the overhead during reads applies to each query, you
might continue to use a BIGINT column to represent date/time values in performance-critical applications.

• The Impala TIMESTAMP type has a narrower range for years than the underlying Kudu data type. Impala
can represent years 1400-9999. If year values outside this range are written to a Kudu table by a non-Impala
client, Impala returns NULL by default when reading those TIMESTAMP values during a query. Or, if the
ABORT_ON_ERROR query option is enabled, the query fails when it encounters a value with an out-of-range year.

Examples:

The following examples demonstrate using TIMESTAMP values with built-in functions:

select cast('1966-07-30' as timestamp);
select cast('1985-09-25 17:45:30.005' as timestamp);
select cast('08:30:00' as timestamp);
select hour('1970-01-01 15:30:00'); -- Succeeds, returns 15.
select hour('1970-01-01 15:30'); -- Returns NULL because seconds
 field required.
select hour('1970-01-01 27:30:00'); -- Returns NULL because hour
 value out of range.
select dayofweek('2004-06-13'); -- Returns 1, representing
 Sunday.
select dayname('2004-06-13'); -- Returns 'Sunday'.
select date_add('2004-06-13', 365); -- Returns 2005-06-13 with zeros
 for hh:mm:ss fields.
select day('2004-06-13'); -- Returns 13.
select datediff('1989-12-31','1984-09-01'); -- How many days between these 2
 dates?
select now(); -- Returns current date and time
 in local timezone.

The following examples demonstrate using TIMESTAMP values with HDFS-backed tables:

create table dates_and_times (t timestamp);
insert into dates_and_times values
 ('1966-07-30'), ('1985-09-25 17:45:30.005'), ('08:30:00'), (now());

The following examples demonstrate using TIMESTAMP values with Kudu tables:

create table timestamp_t (x int primary key, s string, t timestamp, b
 bigint)

 | Impala SQL Language Reference | 148

 partition by hash (x) partitions 16
 stored as kudu;

-- The default value of now() has microsecond precision, so the final 3
 digits
-- representing nanoseconds are all zero.
insert into timestamp_t values (1, cast(now() as string), now(),
 unix_timestamp(now()));

-- Values with 1-499 nanoseconds are rounded down in the Kudu TIMESTAMP
 column.
insert into timestamp_t values (2, cast(now() + interval 100 nanoseconds as
 string), now() + interval 100 nanoseconds, unix_timestamp(now() + interval
 100 nanoseconds));
insert into timestamp_t values (3, cast(now() + interval 499 nanoseconds as
 string), now() + interval 499 nanoseconds, unix_timestamp(now() + interval
 499 nanoseconds));

-- Values with 500-999 nanoseconds are rounded up in the Kudu TIMESTAMP
 column.
insert into timestamp_t values (4, cast(now() + interval 500 nanoseconds as
 string), now() + interval 500 nanoseconds, unix_timestamp(now() + interval
 500 nanoseconds));
insert into timestamp_t values (5, cast(now() + interval 501 nanoseconds as
 string), now() + interval 501 nanoseconds, unix_timestamp(now() + interval
 501 nanoseconds));

-- The string representation shows how underlying Impala TIMESTAMP can have
 nanosecond precision.
-- The TIMESTAMP column shows how timestamps in a Kudu table are rounded to
 microsecond precision.
-- The BIGINT column represents seconds past the epoch and so if not
 affected much by nanoseconds.
select s, t, b from timestamp_t order by t;
+-------------------------------+-------------------------------
+------------+
| s | t | b
 |
+-------------------------------+-------------------------------
+------------+
| 2017-05-31 15:30:05.107157000 | 2017-05-31 15:30:05.107157000 | 1496244605
 |
| 2017-05-31 15:30:28.868151100 | 2017-05-31 15:30:28.868151000 | 1496244628
 |
| 2017-05-31 15:34:33.674692499 | 2017-05-31 15:34:33.674692000 | 1496244873
 |
| 2017-05-31 15:35:04.769166500 | 2017-05-31 15:35:04.769167000 | 1496244904
 |
| 2017-05-31 15:35:33.033082501 | 2017-05-31 15:35:33.033083000 | 1496244933
 |
+-------------------------------+-------------------------------
+------------+

Related information:

• Timestamp Literals on page 186.
• To convert to or from different date formats, or perform date arithmetic, use the date and time functions described

in Impala Date and Time Functions on page 453. In particular, the from_unixtime() function requires
a case-sensitive format string such as "yyyy-MM-dd HH:mm:ss.SSSS", matching one of the allowed
variations of a TIMESTAMP value (date plus time, only date, only time, optional fractional seconds).

• See SQL Differences Between Impala and Hive on page 604 for details about differences in TIMESTAMP
handling between Impala and Hive.

 | Impala SQL Language Reference | 149

TINYINT Data Type

A 1-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name TINYINT

Range: -128 .. 127. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (SMALLINT, INT, or BIGINT) or a floating-
point type (FLOAT or DOUBLE) automatically. Use CAST() to convert to STRING or TIMESTAMP. Casting an
integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting -
use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and
overflow conditions similar to how they do so with traditional database systems. Impala returns the largest or smallest
value in the range for the type. For example, valid values for a tinyint range from -128 to 127. In Impala, a
tinyint with a value of -200 returns -128 rather than NULL. A tinyint with a value of 200 returns 127.

Usage notes:

For a convenient and automated way to check the bounds of the TINYINT type, call the functions MIN_TINYINT()
and MAX_TINYINT().

If an integer value is too large to be represented as a TINYINT, use a SMALLINT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x TINYINT);
SELECT CAST(100 AS TINYINT);

Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impala rejects
attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE ...
LIKE PARQUET syntax, any TINYINT or SMALLINT columns in the original table turn into INT columns in the
new table.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or
other binary formats.

Internal details: Represented in memory as a 1-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are
always filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 183, TINYINT Data Type on page 149, SMALLINT Data Type on page 133, INT
Data Type on page 127, BIGINT Data Type on page 111, DECIMAL Data Type (Impala 1.4 or higher only) on
page 117, Impala Mathematical Functions on page 420

 | Impala SQL Language Reference | 150

VARCHAR Data Type (Impala 2.0 or higher only)

A variable-length character type, truncated during processing if necessary to fit within the specified length.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name VARCHAR(max_length)

The maximum length you can specify is 65,535.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.

Parquet considerations:

• This type can be read from and written to Parquet files.
• There is no requirement for a particular level of Parquet.
• Parquet files generated by Impala and containing this type can be freely interchanged with other components such

as Hive and MapReduce.
• Parquet data files can contain values that are longer than allowed by the VARCHAR(n) length limit. Impala

ignores any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files can contain values that are longer than allowed by the VARCHAR(n) length limit. Any extra trailing
characters are ignored when Impala processes those values during a query.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Schema evolution considerations:

You can use ALTER TABLE ... CHANGE to switch column data types to and from VARCHAR. You can convert
from STRING to VARCHAR(n), or from VARCHAR(n) to STRING, or from CHAR(n) to VARCHAR(n), or from
VARCHAR(n) to CHAR(n). When switching back and forth between VARCHAR and CHAR, you can also change
the length value. This schema evolution works the same for tables using any file format. If a table contains values
longer than the maximum length defined for a VARCHAR column, Impala does not return an error. Any extra trailing
characters are ignored when Impala processes those values during a query.

Compatibility:

This type is available in Impala 2.0 or higher.

Internal details: Represented in memory as a byte array with the minimum size needed to represent each value.

Added in: Impala 2.0.0

Column statistics considerations: Because the values of this type have variable size, none of the column statistics
fields are filled in until you run the COMPUTE STATS statement.

Kudu considerations:

Currently, the data types DECIMAL, CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

Restrictions:

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

 | Impala SQL Language Reference | 151

Examples:

The following examples show how long and short VARCHAR values are treated. Values longer than the maximum
specified length are truncated by CAST(), or when queried from existing data files. Values shorter than the
maximum specified length are represented as the actual length of the value, with no extra padding as seen with CHAR
values.

create table varchar_1 (s varchar(1));
create table varchar_4 (s varchar(4));
create table varchar_20 (s varchar(20));

insert into varchar_1 values (cast('a' as varchar(1))), (cast('b' as
 varchar(1))), (cast('hello' as varchar(1))), (cast('world' as varchar(1)));
insert into varchar_4 values (cast('a' as varchar(4))), (cast('b' as
 varchar(4))), (cast('hello' as varchar(4))), (cast('world' as varchar(4)));
insert into varchar_20 values (cast('a' as varchar(20))), (cast('b'
 as varchar(20))), (cast('hello' as varchar(20))), (cast('world' as
 varchar(20)));

select * from varchar_1;
+---+
| s |
+---+
| a |
| b |
| h |
| w |
+---+
select * from varchar_4;
+------+
| s |
+------+
| a |
| b |
| hell |
| worl |
+------+
[localhost:21000] > select * from varchar_20;
+-------+
| s |
+-------+
| a |
| b |
| hello |
| world |
+-------+
select concat('[',s,']') as s from varchar_20;
+---------+
| s |
+---------+
| [a] |
| [b] |
| [hello] |
| [world] |
+---------+

The following example shows how identical VARCHAR values compare as equal, even if the columns are defined with
different maximum lengths. Both tables contain 'a' and 'b' values. The longer 'hello' and 'world' values
from the VARCHAR_20 table were truncated when inserted into the VARCHAR_1 table.

select s from varchar_1 join varchar_20 using (s);
+-------+
| s |

 | Impala SQL Language Reference | 152

+-------+
| a |
| b |
+-------+

The following examples show how VARCHAR values are freely interchangeable with STRING values in contexts such
as comparison operators and built-in functions:

select length(cast('foo' as varchar(100))) as length;
+--------+
| length |
+--------+
| 3 |
+--------+
select cast('xyz' as varchar(5)) > cast('abc' as varchar(10)) as greater;
+---------+
| greater |
+---------+
| true |
+---------+

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Related information:

STRING Data Type on page 134, CHAR Data Type (Impala 2.0 or higher only) on page 113, String Literals on
page 184, Impala String Functions on page 510

Complex Types (Impala 2.3 or higher only)

Complex types (also referred to as nested types) let you represent multiple data values within a single row/column
position. They differ from the familiar column types such as BIGINT and STRING, known as scalar types or
primitive types, which represent a single data value within a given row/column position. Impala supports the complex
types ARRAY, MAP, and STRUCT in Impala 2.3 and higher. The Hive UNION type is not currently supported.

Once you understand the basics of complex types, refer to the individual type topics when you need to refresh your
memory about syntax and examples:

• ARRAY Complex Type (Impala 2.3 or higher only) on page 108
• STRUCT Complex Type (Impala 2.3 or higher only) on page 135
• MAP Complex Type (Impala 2.3 or higher only) on page 128

Benefits of Impala Complex Types

The reasons for using Impala complex types include the following:

• You already have data produced by Hive or other non-Impala component that uses the complex type column
names. You might need to convert the underlying data to Parquet to use it with Impala.

• Your data model originates with a non-SQL programming language or a NoSQL data management system.
For example, if you are representing Python data expressed as nested lists, dictionaries, and tuples, those data
structures correspond closely to Impala ARRAY, MAP, and STRUCT types.

• Your analytic queries involving multiple tables could benefit from greater locality during join processing. By
packing more related data items within each HDFS data block, complex types let join queries avoid the network
overhead of the traditional Hadoop shuffle or broadcast join techniques.

The Impala complex type support produces result sets with all scalar values, and the scalar components of complex
types can be used with all SQL clauses, such as GROUP BY, ORDER BY, all kinds of joins, subqueries, and inline
views. The ability to process complex type data entirely in SQL reduces the need to write application-specific code in
Java or other programming languages to deconstruct the underlying data structures.

 | Impala SQL Language Reference | 153

Overview of Impala Complex Types

The ARRAY and MAP types are closely related: they represent collections with arbitrary numbers of elements, where
each element is the same type. In contrast, STRUCT groups together a fixed number of items into a single element.
The parts of a STRUCT element (the fields) can be of different types, and each field has a name.

The elements of an ARRAY or MAP, or the fields of a STRUCT, can also be other complex types. You can construct
elaborate data structures with up to 100 levels of nesting. For example, you can make an ARRAY whose elements are
STRUCTs. Within each STRUCT, you can have some fields that are ARRAY, MAP, or another kind of STRUCT. The
Impala documentation uses the terms complex and nested types interchangeably; for simplicity, it primarily uses the
term complex types, to encompass all the properties of these types.

When visualizing your data model in familiar SQL terms, you can think of each ARRAY or MAP as a miniature table,
and each STRUCT as a row within such a table. By default, the table represented by an ARRAY has two columns, POS
to represent ordering of elements, and ITEM representing the value of each element. Likewise, by default, the table
represented by a MAP encodes key-value pairs, and therefore has two columns, KEY and VALUE.

The ITEM and VALUE names are only required for the very simplest kinds of ARRAY and MAP columns, ones that
hold only scalar values. When the elements within the ARRAY or MAP are of type STRUCT rather than a scalar type,
then the result set contains columns with names corresponding to the STRUCT fields rather than ITEM or VALUE.

You write most queries that process complex type columns using familiar join syntax, even though the data for both
sides of the join resides in a single table. The join notation brings together the scalar values from a row with the
values from the complex type columns for that same row. The final result set contains all scalar values, allowing you
to do all the familiar filtering, aggregation, ordering, and so on for the complex data entirely in SQL or using business
intelligence tools that issue SQL queries.

Behind the scenes, Impala ensures that the processing for each row is done efficiently on a single host, without the
network traffic involved in broadcast or shuffle joins. The most common type of join query for tables with complex
type columns is INNER JOIN, which returns results only in those cases where the complex type contains some
elements. Therefore, most query examples in this section use either the INNER JOIN clause or the equivalent
comma notation.

Note:

Although Impala can query complex types that are present in Parquet files, Impala currently cannot create new
Parquet files containing complex types. Therefore, the discussion and examples presume that you are working with
existing Parquet data produced through Hive, Spark, or some other source. See Constructing Parquet Files with
Complex Columns Using Hive on page 177 for examples of constructing Parquet data files with complex type
columns.

For learning purposes, you can create empty tables with complex type columns and practice query syntax, even if you
do not have sample data with the required structure.

Design Considerations for Complex Types

When planning to use Impala complex types, and designing the Impala schema, first learn how this kind of schema
differs from traditional table layouts from the relational database and data warehousing fields. Because you might
have already encountered complex types in a Hadoop context while using Hive for ETL, also learn how to write high-
performance analytic queries for complex type data using Impala SQL syntax.

How Complex Types Differ from Traditional Data Warehouse Schemas

Complex types let you associate arbitrary data structures with a particular row. If you are familiar with schema design
for relational database management systems or data warehouses, a schema with complex types has the following
differences:

• Logically, related values can now be grouped tightly together in the same table.

In traditional data warehousing, related values were typically arranged in one of two ways:

• Split across multiple normalized tables. Foreign key columns specified which rows from each table were
associated with each other. This arrangement avoided duplicate data and therefore the data was compact, but

 | Impala SQL Language Reference | 154

join queries could be expensive because the related data had to be retrieved from separate locations. (In the
case of distributed Hadoop queries, the joined tables might even be transmitted between different hosts in a
cluster.)

• Flattened into a single denormalized table. Although this layout eliminated some potential performance issues
by removing the need for join queries, the table typically became larger because values were repeated. The
extra data volume could cause performance issues in other parts of the workflow, such as longer ETL cycles or
more expensive full-table scans during queries.

Complex types represent a middle ground that addresses these performance and volume concerns. By physically
locating related data within the same data files, complex types increase locality and reduce the expense of join
queries. By associating an arbitrary amount of data with a single row, complex types avoid the need to repeat
lengthy values such as strings. Because Impala knows which complex type values are associated with each row,
you can save storage by avoiding artificial foreign key values that are only used for joins. The flexibility of the
STRUCT, ARRAY, and MAP types lets you model familiar constructs such as fact and dimension tables from a data
warehouse, and wide tables representing sparse matrixes.

Physical Storage for Complex Types

Physically, the scalar and complex columns in each row are located adjacent to each other in the same Parquet data
file, ensuring that they are processed on the same host rather than being broadcast across the network when cross-
referenced within a query. This co-location simplifies the process of copying, converting, and backing all the columns
up at once. Because of the column-oriented layout of Parquet files, you can still query only the scalar columns of a
table without imposing the I/O penalty of reading the (possibly large) values of the composite columns.

Within each Parquet data file, the constituent parts of complex type columns are stored in column-oriented format:

• Each field of a STRUCT type is stored like a column, with all the scalar values adjacent to each other and encoded,
compressed, and so on using the Parquet space-saving techniques.

• For an ARRAY containing scalar values, all those values (represented by the ITEM pseudocolumn) are stored
adjacent to each other.

• For a MAP, the values of the KEY pseudocolumn are stored adjacent to each other. If the VALUE pseudocolumn is
a scalar type, its values are also stored adjacent to each other.

• If an ARRAY element, STRUCT field, or MAP VALUE part is another complex type, the column-oriented storage
applies to the next level down (or the next level after that, and so on for deeply nested types) where the final
elements, fields, or values are of scalar types.

The numbers represented by the POS pseudocolumn of an ARRAY are not physically stored in the data files. They are
synthesized at query time based on the order of the ARRAY elements associated with each row.

File Format Support for Impala Complex Types

Currently, Impala queries support complex type data only in the Parquet file format. See Using the Parquet File
Format with Impala Tables on page 699 for details about the performance benefits and physical layout of this file
format.

Each table, or each partition within a table, can have a separate file format, and you can change file format at the table
or partition level through an ALTER TABLE statement. Because this flexibility makes it difficult to guarantee ahead
of time that all the data files for a table or partition are in a compatible format, Impala does not throw any errors when
you change the file format for a table or partition using ALTER TABLE. Any errors come at runtime when Impala
actually processes a table or partition that contains nested types and is not in one of the supported formats. If a query
on a partitioned table only processes some partitions, and all those partitions are in one of the supported formats, the
query succeeds.

Because Impala does not parse the data structures containing nested types for unsupported formats such as text, Avro,
SequenceFile, or RCFile, you cannot use data files in these formats with Impala, even if the query does not refer to
the nested type columns. Also, if a table using an unsupported format originally contained nested type columns, and
then those columns were dropped from the table using ALTER TABLE ... DROP COLUMN, any existing data
files in the table still contain the nested type data and Impala queries on that table will generate errors.

Note:

 | Impala SQL Language Reference | 155

The one exception to the preceding rule is COUNT(*) queries on RCFile tables that include complex types. Such
queries are allowed in Impala 2.6 and higher.

You can perform DDL operations (even CREATE TABLE) for tables involving complex types in file formats other
than Parquet. The DDL support lets you set up intermediate tables in your ETL pipeline, to be populated by Hive,
before the final stage where the data resides in a Parquet table and is queryable by Impala. Also, you can have a
partitioned table with complex type columns that uses a non-Parquet format, and use ALTER TABLE to change
the file format to Parquet for individual partitions. When you put Parquet data files into those partitions, Impala can
execute queries against that data as long as the query does not involve any of the non-Parquet partitions.

If you use the parquet-tools command to examine the structure of a Parquet data file that includes complex
types, you see that both ARRAY and MAP are represented as a Bag in Parquet terminology, with all fields marked
Optional because Impala allows any column to be nullable.

Impala supports either 2-level and 3-level encoding within each Parquet data file. When constructing Parquet data
files outside Impala, use either encoding style but do not mix 2-level and 3-level encoding within the same data file.

Choosing Between Complex Types and Normalized Tables

Choosing between multiple normalized fact and dimension tables, or a single table containing complex types, is an
important design decision.

• If you are coming from a traditional database or data warehousing background, you might be familiar with how to
split up data between tables. Your business intelligence tools might already be optimized for dealing with this kind
of multi-table scenario through join queries.

• If you are pulling data from Impala into an application written in a programming language that has data structures
analogous to the complex types, such as Python or Java, complex types in Impala could simplify data interchange
and improve understandability and reliability of your program logic.

• You might already be faced with existing infrastructure or receive high volumes of data that assume one layout
or the other. For example, complex types are popular with web-oriented applications, for example to keep
information about an online user all in one place for convenient lookup and analysis, or to deal with sparse or
constantly evolving data fields.

• If some parts of the data change over time while related data remains constant, using multiple normalized tables
lets you replace certain parts of the data without reloading the entire data set. Conversely, if you receive related
data all bundled together, such as in JSON files, using complex types can save the overhead of splitting the related
items across multiple tables.

• From a performance perspective:

• In Parquet tables, Impala can skip columns that are not referenced in a query, avoiding the I/O penalty of
reading the embedded data. When complex types are nested within a column, the data is physically divided
at a very granular level; for example, a query referring to data nested multiple levels deep in a complex type
column does not have to read all the data from that column, only the data for the relevant parts of the column
type hierarchy.

• Complex types avoid the possibility of expensive join queries when data from fact and dimension tables is
processed in parallel across multiple hosts. All the information for a row containing complex types is typically
to be in the same data block, and therefore does not need to be transmitted across the network when joining
fields that are all part of the same row.

• The tradeoff with complex types is that fewer rows fit in each data block. Whether it is better to have more
data blocks with fewer rows, or fewer data blocks with many rows, depends on the distribution of your data
and the characteristics of your query workload. If the complex columns are rarely referenced, using them
might lower efficiency. If you are seeing low parallelism due to a small volume of data (relatively few data
blocks) in each table partition, increasing the row size by including complex columns might produce more data
blocks and thus spread the work more evenly across the cluster. See Scalability Considerations for Impala on
page 672 for more on this advanced topic.

Differences Between Impala and Hive Complex Types

Impala can query Parquet tables containing ARRAY, STRUCT, and MAP columns produced by Hive. There are some
differences to be aware of between the Impala SQL and HiveQL syntax for complex types, primarily for queries.

 | Impala SQL Language Reference | 156

The syntax for specifying ARRAY, STRUCT, and MAP types in a CREATE TABLE statement is compatible between
Impala and Hive.

Because Impala STRUCT columns include user-specified field names, you use the NAMED_STRUCT() constructor
in Hive rather than the STRUCT() constructor when you populate an Impala STRUCT column using a Hive INSERT
statement.

The Hive UNION type is not currently supported in Impala.

While Impala usually aims for a high degree of compatibility with HiveQL query syntax, Impala syntax differs
from Hive for queries involving complex types. The differences are intended to provide extra flexibility for queries
involving these kinds of tables.

• Impala uses dot notation for referring to element names or elements within complex types, and join notation
for cross-referencing scalar columns with the elements of complex types within the same row, rather than the
LATERAL VIEW clause and EXPLODE() function of HiveQL.

• Using join notation lets you use all the kinds of join queries with complex type columns. For example, you can
use a LEFT OUTER JOIN, LEFT ANTI JOIN, or LEFT SEMI JOIN query to evaluate different scenarios
where the complex columns do or do not contain any elements.

• You can include references to collection types inside subqueries and inline views. For example, you can construct
a FROM clause where one of the “tables” is a subquery against a complex type column, or use a subquery against a
complex type column as the argument to an IN or EXISTS clause.

• The Impala pseudocolumn POS lets you retrieve the position of elements in an array along with the elements
themselves, equivalent to the POSEXPLODE() function of HiveQL. You do not use index notation to retrieve a
single array element in a query; the join query loops through the array elements and you use WHERE clauses to
specify which elements to return.

• Join clauses involving complex type columns do not require an ON or USING clause. Impala implicitly applies the
join key so that the correct array entries or map elements are associated with the correct row from the table.

• Impala does not currently support the UNION complex type.

Limitations and Restrictions for Complex Types

Complex type columns can only be used in tables or partitions with the Parquet file format.

Complex type columns cannot be used as partition key columns in a partitioned table.

When you use complex types with the ORDER BY, GROUP BY, HAVING, or WHERE clauses, you cannot refer to
the column name by itself. Instead, you refer to the names of the scalar values within the complex type, such as the
ITEM, POS, KEY, or VALUE pseudocolumns, or the field names from a STRUCT.

The maximum depth of nesting for complex types is 100 levels.

The maximum length of the column definition for any complex type, including declarations for any nested types, is
4000 characters.

For ideal performance and scalability, use small or medium-sized collections, where all the complex columns contain
at most a few hundred megabytes per row. Remember, all the columns of a row are stored in the same HDFS data
block, whose size in Parquet files typically ranges from 256 MB to 1 GB.

Including complex type columns in a table introduces some overhead that might make queries that do not reference
those columns somewhat slower than Impala queries against tables without any complex type columns. Expect at
most a 2x slowdown compared to tables that do not have any complex type columns.

Currently, the COMPUTE STATS statement does not collect any statistics for columns containing complex types.
Impala uses heuristics to construct execution plans involving complex type columns.

Currently, Impala built-in functions and user-defined functions cannot accept complex types as parameters or produce
them as function return values. (When the complex type values are materialized in an Impala result set, the result set
contains the scalar components of the values, such as the POS or ITEM for an ARRAY, the KEY or VALUE for a MAP,
or the fields of a STRUCT; these scalar data items can be used with built-in functions and UDFs as usual.)

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to

 | Impala SQL Language Reference | 157

complex type columns, such as CREATE TABLE AS SELECT or INSERT ... SELECT. To create data files
containing complex type data, use the Hive INSERT statement, or another ETL mechanism such as MapReduce jobs,
Spark jobs, Pig, and so on.

Currently, Impala can query complex type columns only from Parquet tables or Parquet partitions within partitioned
tables. Although you can use complex types in tables with Avro, text, and other file formats as part of your ETL
pipeline, for example as intermediate tables populated through Hive, doing analytics through Impala requires that the
data eventually ends up in a Parquet table. The requirement for Parquet data files means that you can use complex
types with Impala tables hosted on other kinds of file storage systems such as Isilon and Amazon S3, but you cannot
use Impala to query complex types from HBase tables. See File Format Support for Impala Complex Types on page
154 for more details.

Using Complex Types from SQL

When using complex types through SQL in Impala, you learn the notation for < > delimiters for the complex type
columns in CREATE TABLE statements, and how to construct join queries to “unpack” the scalar values nested
inside the complex data structures. You might need to condense a traditional RDBMS or data warehouse schema
into a smaller number of Parquet tables, and use Hive, Spark, Pig, or other mechanism outside Impala to populate the
tables with data.

Complex Type Syntax for DDL Statements

The definition of data_type, as seen in the CREATE TABLE and ALTER TABLE statements, now includes complex
types in addition to primitive types:

 primitive_type
| array_type
| map_type
| struct_type

Unions are not currently supported.

Array, struct, and map column type declarations are specified in the CREATE TABLE statement. You can also add or
change the type of complex columns through the ALTER TABLE statement.

Note:

Currently, Impala queries allow complex types only in tables that use the Parquet format. If an Impala query
encounters complex types in a table or partition using another file format, the query returns a runtime error.

The Impala DDL support for complex types works for all file formats, so that you can create tables using text or other
non-Parquet formats for Hive to use as staging tables in an ETL cycle that ends with the data in a Parquet table. You
can also use ALTER TABLE ... SET FILEFORMAT PARQUET to change the file format of an existing table
containing complex types to Parquet, after which Impala can query it. Make sure to load Parquet files into the table
after changing the file format, because the ALTER TABLE ... SET FILEFORMAT statement does not convert
existing data to the new file format.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

Because use cases for Impala complex types require that you already have Parquet data files produced outside of
Impala, you can use the Impala CREATE TABLE LIKE PARQUET syntax to produce a table with columns that
match the structure of an existing Parquet file, including complex type columns for nested data structures. Remember
to include the STORED AS PARQUET clause in this case, because even with CREATE TABLE LIKE PARQUET,
the default file format of the resulting table is still text.

Because the complex columns are omitted from the result set of an Impala SELECT * or SELECT col_name
query, and because Impala currently does not support writing Parquet files with complex type columns, you cannot
use the CREATE TABLE AS SELECT syntax to create a table with nested type columns.

Note:

Once you have a table set up with complex type columns, use the DESCRIBE and SHOW CREATE TABLE
statements to see the correct notation with < and > delimiters and comma and colon separators within the complex

 | Impala SQL Language Reference | 158

type definitions. If you do not have existing data with the same layout as the table, you can query the empty table to
practice with the notation for the SELECT statement. In the SELECT list, you use dot notation and pseudocolumns
such as ITEM, KEY, and VALUE for referring to items within the complex type columns. In the FROM clause, you use
join notation to construct table aliases for any referenced ARRAY and MAP columns.

For example, when defining a table that holds contact information, you might represent phone numbers differently
depending on the expected layout and relationships of the data, and how well you can predict those properties in
advance.

Here are different ways that you might represent phone numbers in a traditional relational schema, with equivalent
representations using complex types.

The traditional, simplest way to represent phone numbers in a relational table is to store all contact info in a single
table, with all columns having scalar types, and each potential phone number represented as a separate column. In this
example, each person can only have these 3 types of phone numbers. If the person does not have a particular kind of
phone number, the corresponding column is NULL for that row.

CREATE TABLE contacts_fixed_phones
(
 id BIGINT
 , name STRING
 , address STRING
 , home_phone STRING
 , work_phone STRING
 , mobile_phone STRING
) STORED AS PARQUET;

Figure 1: Traditional Relational Representation of Phone Numbers: Single Table

Using a complex type column to represent the phone numbers adds some extra flexibility. Now there could be an
unlimited number of phone numbers. Because the array elements have an order but not symbolic names, you could
decide in advance that phone_number[0] is the home number, [1] is the work number, [2] is the mobile number, and
so on. (In subsequent examples, you will see how to create a more flexible naming scheme using other complex type
variations, such as a MAP or an ARRAY where each element is a STRUCT.)

CREATE TABLE contacts_array_of_phones
(
 id BIGINT
 , name STRING
 , address STRING
 , phone_number ARRAY < STRING >
) STORED AS PARQUET;

Figure 2: An Array of Phone Numbers

Another way to represent an arbitrary set of phone numbers is with a MAP column. With a MAP, each element is
associated with a key value that you specify, which could be a numeric, string, or other scalar type. This example uses
a STRING key to give each phone number a name, such as 'home' or 'mobile'. A query could filter the data
based on the key values, or display the key values in reports.

CREATE TABLE contacts_unlimited_phones
(
 id BIGINT, name STRING, address STRING, phone_number MAP < STRING,STRING >
) STORED AS PARQUET;

Figure 3: A Map of Phone Numbers

 | Impala SQL Language Reference | 159

If you are an experienced database designer, you already know how to work around the limitations of the single-
table schema from Figure 1: Traditional Relational Representation of Phone Numbers: Single Table on page 158.
By normalizing the schema, with the phone numbers in their own table, you can associate an arbitrary set of phone
numbers with each person, and associate additional details with each phone number, such as whether it is a home,
work, or mobile phone.

The flexibility of this approach comes with some drawbacks. Reconstructing all the data for a particular person
requires a join query, which might require performance tuning on Hadoop because the data from each table might be
transmitted from a different host. Data management tasks such as backups and refreshing the data require dealing with
multiple tables instead of a single table.

This example illustrates a traditional database schema to store contact info normalized across 2 tables. The fact table
establishes the identity and basic information about person. A dimension table stores information only about phone
numbers, using an ID value to associate each phone number with a person ID from the fact table. Each person can
have 0, 1, or many phones; the categories are not restricted to a few predefined ones; and the phone table can contain
as many columns as desired, to represent all sorts of details about each phone number.

CREATE TABLE fact_contacts (id BIGINT, name STRING, address STRING) STORED
 AS PARQUET;
CREATE TABLE dim_phones
(
 contact_id BIGINT
 , category STRING
 , international_code STRING
 , area_code STRING
 , exchange STRING
 , extension STRING
 , mobile BOOLEAN
 , carrier STRING
 , current BOOLEAN
 , service_start_date TIMESTAMP
 , service_end_date TIMESTAMP
)
STORED AS PARQUET;

Figure 4: Traditional Relational Representation of Phone Numbers: Normalized Tables

To represent a schema equivalent to the one from Figure 4: Traditional Relational Representation of Phone Numbers:
Normalized Tables on page 159 using complex types, this example uses an ARRAY where each array element is
a STRUCT. As with the earlier complex type examples, each person can have an arbitrary set of associated phone
numbers. Making each array element into a STRUCT lets us associate multiple data items with each phone number,
and give a separate name and type to each data item. The STRUCT fields of the ARRAY elements reproduce the
columns of the dimension table from the previous example.

You can do all the same kinds of queries with the complex type schema as with the normalized schema from the
previous example. The advantages of the complex type design are in the areas of convenience and performance.
Now your backup and ETL processes only deal with a single table. When a query uses a join to cross-reference the
information about a person with their associated phone numbers, all the relevant data for each row resides in the same
HDFS data block, meaning each row can be processed on a single host without requiring network transmission.

CREATE TABLE contacts_detailed_phones
(
 id BIGINT, name STRING, address STRING
 , phone ARRAY < STRUCT <
 category: STRING
 , international_code: STRING
 , area_code: STRING
 , exchange: STRING
 , extension: STRING

 | Impala SQL Language Reference | 160

 , mobile: BOOLEAN
 , carrier: STRING
 , current: BOOLEAN
 , service_start_date: TIMESTAMP
 , service_end_date: TIMESTAMP
 >>
) STORED AS PARQUET;

Figure 5: Phone Numbers Represented as an Array of Structs

SQL Statements that Support Complex Types

The Impala SQL statements that support complex types are currently CREATE TABLE, ALTER TABLE,
DESCRIBE, LOAD DATA, and SELECT. That is, currently Impala can create or alter tables containing complex type
columns, examine the structure of a table containing complex type columns, import existing data files containing
complex type columns into a table, and query Parquet tables containing complex types.

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or INSERT ... SELECT. To create data files
containing complex type data, use the Hive INSERT statement, or another ETL mechanism such as MapReduce jobs,
Spark jobs, Pig, and so on.

DDL Statements and Complex Types

Column specifications for complex or nested types use < and > delimiters:

-- What goes inside the < > for an ARRAY is a single type, either a scalar
 or another
-- complex type (ARRAY, STRUCT, or MAP).
CREATE TABLE array_t
(
 id BIGINT,
 a1 ARRAY <STRING>,
 a2 ARRAY <BIGINT>,
 a3 ARRAY <TIMESTAMP>,
 a4 ARRAY <STRUCT <f1: STRING, f2: INT, f3: BOOLEAN>>
)
STORED AS PARQUET;

-- What goes inside the < > for a MAP is two comma-separated types
 specifying the types of the key-value pair:
-- a scalar type representing the key, and a scalar or complex type
 representing the value.
CREATE TABLE map_t
(
 id BIGINT,
 m1 MAP <STRING, STRING>,
 m2 MAP <STRING, BIGINT>,
 m3 MAP <BIGINT, STRING>,
 m4 MAP <BIGINT, BIGINT>,
 m5 MAP <STRING, ARRAY <STRING>>
)
STORED AS PARQUET;

-- What goes inside the < > for a STRUCT is a comma-separated list of
 fields, each field defined as
-- name:type. The type can be a scalar or a complex type. The field names
 for each STRUCT do not clash
-- with the names of table columns or fields in other STRUCTs. A STRUCT is
 most often used inside
-- an ARRAY or a MAP rather than as a top-level column.

 | Impala SQL Language Reference | 161

CREATE TABLE struct_t
(
 id BIGINT,
 s1 STRUCT <f1: STRING, f2: BIGINT>,
 s2 ARRAY <STRUCT <f1: INT, f2: TIMESTAMP>>,
 s3 MAP <BIGINT, STRUCT <name: STRING, birthday: TIMESTAMP>>
)
STORED AS PARQUET;

Queries and Complex Types

The result set of an Impala query always contains all scalar types; the elements and fields within any complex type
queries must be “unpacked” using join queries. A query cannot directly retrieve the entire value for a complex type
column. Impala returns an error in this case. Queries using SELECT * are allowed for tables with complex types, but
the columns with complex types are skipped.

The following example shows how referring directly to a complex type column returns an error, while SELECT * on
the same table succeeds, but only retrieves the scalar columns.

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
175 for the table definitions.

SELECT c_orders FROM customer LIMIT 1;
ERROR: AnalysisException: Expr 'c_orders' in select list returns a
 complex type 'ARRAY<STRUCT<o_orderkey:BIGINT,o_orderstatus:STRING, ...
 l_receiptdate:STRING,l_shipinstruct:STRING,l_shipmode:STRING,l_comment:STRING>>>>'.
Only scalar types are allowed in the select list.

-- Original column has several scalar and one complex column.
DESCRIBE customer;
+--------------+------------------------------------+
| name | type |
+--------------+------------------------------------+
| c_custkey | bigint |
| c_name | string |
...
c_orders	array<struct<
	o_orderkey:bigint,
	o_orderstatus:string,
	o_totalprice:decimal(12,2),
...	
	>>
+--------------+------------------------------------+

-- When we SELECT * from that table, only the scalar columns come back in
 the result set.
CREATE TABLE select_star_customer STORED AS PARQUET AS SELECT * FROM
 customer;
+------------------------+
| summary |
+------------------------+
| Inserted 150000 row(s) |
+------------------------+

-- The c_orders column, being of complex type, was not included in the
 SELECT * result set.
DESC select_star_customer;
+--------------+---------------+
| name | type |
+--------------+---------------+
| c_custkey | bigint |

 | Impala SQL Language Reference | 162

c_name	string
c_address	string
c_nationkey	smallint
c_phone	string
c_acctbal	decimal(12,2)
c_mktsegment	string
c_comment	string
+--------------+---------------+

References to fields within STRUCT columns use dot notation. If the field name is unambiguous, you can omit
qualifiers such as table name, column name, or even the ITEM or VALUE pseudocolumn names for STRUCT elements
inside an ARRAY or a MAP.

SELECT id, address.city FROM customers WHERE address.zip = 94305;

References to elements within ARRAY columns use the ITEM pseudocolumn:

select r_name, r_nations.item.n_name from region, region.r_nations limit 7;
+--------+----------------+
| r_name | item.n_name |
+--------+----------------+
EUROPE	UNITED KINGDOM
EUROPE	RUSSIA
EUROPE	ROMANIA
EUROPE	GERMANY
EUROPE	FRANCE
ASIA	VIETNAM
ASIA	CHINA
+--------+----------------+

References to fields within MAP columns use the KEY and VALUE pseudocolumns. In this example, once the query
establishes the alias MAP_FIELD for a MAP column with a STRING key and an INT value, the query can refer
to MAP_FIELD.KEY and MAP_FIELD.VALUE, which have zero, one, or many instances for each row from the
containing table.

DESCRIBE table_0;
+---------+-----------------------+
| name | type |
+---------+-----------------------+
| field_0 | string |
| field_1 | map<string,int> |
...

SELECT field_0, map_field.key, map_field.value
 FROM table_0, table_0.field_1 AS map_field
WHERE length(field_0) = 1
LIMIT 10;
+---------+-----------+-------+
| field_0 | key | value |
+---------+-----------+-------+
b	gshsgkvd	NULL
b	twrtcxj6	18
b	2vp5	39
b	fh0s	13
v	2	41
v	8b58mz	20
v	hw	16
v	65l388pyt	29
v	03k68g91z	30
v	r2hlg5b	NULL
+---------+-----------+-------+

 | Impala SQL Language Reference | 163

When complex types are nested inside each other, you use a combination of joins, pseudocolumn names, and dot
notation to refer to specific fields at the appropriate level. This is the most frequent form of query syntax for complex
columns, because the typical use case involves two levels of complex types, such as an ARRAY of STRUCT elements.

SELECT id, phone_numbers.area_code FROM contact_info_many_structs INNER JOIN
 contact_info_many_structs.phone_numbers phone_numbers LIMIT 3;

You can express relationships between ARRAY and MAP columns at different levels as joins. You include comparison
operators between fields at the top level and within the nested type columns so that Impala can do the appropriate join
operation.

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from the tables
used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala Complex Types on page
175 for the table definitions.

For example, the following queries work equivalently. They each return customer and order data for customers that
have at least one order.

SELECT c.c_name, o.o_orderkey FROM customer c, c.c_orders o LIMIT 5;
+--------------------+------------+
| c_name | o_orderkey |
+--------------------+------------+
Customer#000072578	558821
Customer#000072578	2079810
Customer#000072578	5768068
Customer#000072578	1805604
Customer#000072578	3436389
+--------------------+------------+

SELECT c.c_name, o.o_orderkey FROM customer c INNER JOIN c.c_orders o LIMIT
 5;
+--------------------+------------+
| c_name | o_orderkey |
+--------------------+------------+
Customer#000072578	558821
Customer#000072578	2079810
Customer#000072578	5768068
Customer#000072578	1805604
Customer#000072578	3436389
+--------------------+------------+

The following query using an outer join returns customers that have orders, plus customers with no orders (no entries
in the C_ORDERS array):

SELECT c.c_custkey, o.o_orderkey
 FROM customer c LEFT OUTER JOIN c.c_orders o
LIMIT 5;
+-----------+------------+
| c_custkey | o_orderkey |
+-----------+------------+
60210	NULL
147873	NULL
72578	558821
72578	2079810
72578	5768068
+-----------+------------+

 | Impala SQL Language Reference | 164

The following query returns only customers that have no orders. (With LEFT ANTI JOIN or LEFT SEMI JOIN,
the query can only refer to columns from the left-hand table, because by definition there is no matching information in
the right-hand table.)

SELECT c.c_custkey, c.c_name
 FROM customer c LEFT ANTI JOIN c.c_orders o
LIMIT 5;
+-----------+--------------------+
| c_custkey | c_name |
+-----------+--------------------+
60210	Customer#000060210
147873	Customer#000147873
141576	Customer#000141576
85365	Customer#000085365
70998	Customer#000070998
+-----------+--------------------+

You can also perform correlated subqueries to examine the properties of complex type columns for each row in the
result set.

Count the number of orders per customer. Note the correlated reference to the table alias C. The COUNT(*) operation
applies to all the elements of the C_ORDERS array for the corresponding row, avoiding the need for a GROUP BY
clause.

select c_name, howmany FROM customer c, (SELECT COUNT(*) howmany FROM
 c.c_orders) v limit 5;
+--------------------+---------+
| c_name | howmany |
+--------------------+---------+
Customer#000030065	15
Customer#000065455	18
Customer#000113644	21
Customer#000111078	0
Customer#000024621	0
+--------------------+---------+

Count the number of orders per customer, ignoring any customers that have not placed any orders:

SELECT c_name, howmany_orders
FROM
 customer c,
 (SELECT COUNT(*) howmany_orders FROM c.c_orders) subq1
WHERE howmany_orders > 0
LIMIT 5;
+--------------------+----------------+
| c_name | howmany_orders |
+--------------------+----------------+
Customer#000072578	7
Customer#000046378	26
Customer#000069815	11
Customer#000079058	12
Customer#000092239	26
+--------------------+----------------+

Count the number of line items in each order. The reference to C.C_ORDERS in the FROM clause is needed because
the O_ORDERKEY field is a member of the elements in the C_ORDERS array. The subquery labelled SUBQ1 is
correlated: it is re-evaluated for the C_ORDERS.O_LINEITEMS array from each row of the CUSTOMERS table.

SELECT c_name, o_orderkey, howmany_line_items
FROM

 | Impala SQL Language Reference | 165

 customer c,
 c.c_orders t2,
 (SELECT COUNT(*) howmany_line_items FROM c.c_orders.o_lineitems) subq1
WHERE howmany_line_items > 0
LIMIT 5;
+--------------------+------------+--------------------+
| c_name | o_orderkey | howmany_line_items |
+--------------------+------------+--------------------+
Customer#000020890	1884930	95
Customer#000020890	4570754	95
Customer#000020890	3771072	95
Customer#000020890	2555489	95
Customer#000020890	919171	95
+--------------------+------------+--------------------+

Get the number of orders, the average order price, and the maximum items in any order per customer. For this
example, the subqueries labelled SUBQ1 and SUBQ2 are correlated: they are re-evaluated for each row from the
original CUSTOMER table, and only apply to the complex columns associated with that row.

SELECT c_name, howmany, average_price, most_items
FROM
 customer c,
 (SELECT COUNT(*) howmany, AVG(o_totalprice) average_price FROM c.c_orders)
 subq1,
 (SELECT MAX(l_quantity) most_items FROM c.c_orders.o_lineitems) subq2
LIMIT 5;
+--------------------+---------+---------------+------------+
| c_name | howmany | average_price | most_items |
+--------------------+---------+---------------+------------+
Customer#000030065	15	128908.34	50.00
Customer#000088191	0	NULL	NULL
Customer#000101555	10	164250.31	50.00
Customer#000022092	0	NULL	NULL
Customer#000036277	27	166040.06	50.00
+--------------------+---------+---------------+------------+

For example, these queries show how to access information about the ARRAY elements within the CUSTOMER table
from the “nested TPC-H” schema, starting with the initial ARRAY elements and progressing to examine the STRUCT
fields of the ARRAY, and then the elements nested within another ARRAY of STRUCT:

-- How many orders does each customer have?
-- The type of the ARRAY column doesn't matter, this is just counting the
 elements.
SELECT c_custkey, count(*)
 FROM customer, customer.c_orders
GROUP BY c_custkey
LIMIT 5;
+-----------+----------+
| c_custkey | count(*) |
+-----------+----------+
61081	21
115987	15
69685	19
109124	15
50491	12
+-----------+----------+

-- How many line items are part of each customer order?
-- Now we examine a field from a STRUCT nested inside the ARRAY.
SELECT c_custkey, c_orders.o_orderkey, count(*)
 FROM customer, customer.c_orders c_orders, c_orders.o_lineitems
GROUP BY c_custkey, c_orders.o_orderkey

 | Impala SQL Language Reference | 166

LIMIT 5;
+-----------+------------+----------+
| c_custkey | o_orderkey | count(*) |
+-----------+------------+----------+
63367	4985959	7
53989	1972230	2
143513	5750498	5
17849	4857989	1
89881	1046437	1
+-----------+------------+----------+

-- What are the line items in each customer order?
-- One of the STRUCT fields inside the ARRAY is another
-- ARRAY containing STRUCT elements. The join finds
-- all the related items from both levels of ARRAY.
SELECT c_custkey, o_orderkey, l_partkey
 FROM customer, customer.c_orders, c_orders.o_lineitems
LIMIT 5;
+-----------+------------+-----------+
| c_custkey | o_orderkey | l_partkey |
+-----------+------------+-----------+
113644	2738497	175846
113644	2738497	27309
113644	2738497	175873
113644	2738497	88559
113644	2738497	8032
+-----------+------------+-----------+

Pseudocolumns for ARRAY and MAP Types

Each element in an ARRAY type has a position, indexed starting from zero, and a value. Each element in a MAP type
represents a key-value pair. Impala provides pseudocolumns that let you retrieve this metadata as part of a query, or
filter query results by including such things in a WHERE clause. You refer to the pseudocolumns as part of qualified
column names in queries:

• ITEM: The value of an array element. If the ARRAY contains STRUCT elements, you can refer to either
array_name.ITEM.field_name or use the shorthand array_name.field_name.

• POS: The position of an element within an array.
• KEY: The value forming the first part of a key-value pair in a map. It is not necessarily unique.
• VALUE: The data item forming the second part of a key-value pair in a map. If the VALUE part of the MAP

element is a STRUCT, you can refer to either map_name.VALUE.field_name or use the shorthand
map_name.field_name.

ITEM and POS Pseudocolumns

When an ARRAY column contains STRUCT elements, you can refer to a field within the STRUCT using a qualified
name of the form array_column.field_name. If the ARRAY contains scalar values, Impala recognizes the
special name array_column.ITEM to represent the value of each scalar array element. For example, if a column
contained an ARRAY where each element was a STRING, you would use array_name.ITEM to refer to each scalar
value in the SELECT list, or the WHERE or other clauses.

This example shows a table with two ARRAY columns whose elements are of the scalar type STRING. When referring
to the values of the array elements in the SELECT list, WHERE clause, or ORDER BY clause, you use the ITEM
pseudocolumn because within the array, the individual elements have no defined names.

create TABLE persons_of_interest
(
person_id BIGINT,
aliases ARRAY <STRING>,
associates ARRAY <STRING>,
real_name STRING

 | Impala SQL Language Reference | 167

)
STORED AS PARQUET;

-- Get all the aliases of each person.
SELECT real_name, aliases.ITEM
 FROM persons_of_interest, persons_of_interest.aliases
ORDER BY real_name, aliases.item;

-- Search for particular associates of each person.
SELECT real_name, associates.ITEM
 FROM persons_of_interest, persons_of_interest.associates
WHERE associates.item LIKE '% MacGuffin';

Because an array is inherently an ordered data structure, Impala recognizes the special name array_column.POS
to represent the numeric position of each element within the array. The POS pseudocolumn lets you filter or reorder
the result set based on the sequence of array elements.

The following example uses a table from a flattened version of the TPC-H schema. The REGION table only has a few
rows, such as one row for Europe and one for Asia. The row for each region represents all the countries in that region
as an ARRAY of STRUCT elements:

[localhost:21000] > desc region;
+-------------
+--+
| name | type
 |
+-------------
+--+
| r_regionkey | smallint
 |
| r_name | string
 |
| r_comment | string
 |
| r_nations |
 array<struct<n_nationkey:smallint,n_name:string,n_comment:string>> |
+-------------
+--+

To find the countries within a specific region, you use a join query. To find out the order of elements in the array, you
also refer to the POS pseudocolumn in the select list:

[localhost:21000] > SELECT r1.r_name, r2.n_name, r2.POS
 > FROM region r1 INNER JOIN r1.r_nations r2
 > WHERE r1.r_name = 'ASIA';
+--------+-----------+-----+
| r_name | n_name | pos |
+--------+-----------+-----+
ASIA	VIETNAM	0
ASIA	CHINA	1
ASIA	JAPAN	2
ASIA	INDONESIA	3
ASIA	INDIA	4
+--------+-----------+-----+

Once you know the positions of the elements, you can use that information in subsequent queries, for example to
change the ordering of results from the complex type column or to filter certain elements from the array:

[localhost:21000] > SELECT r1.r_name, r2.n_name, r2.POS
 > FROM region r1 INNER JOIN r1.r_nations r2

 | Impala SQL Language Reference | 168

 > WHERE r1.r_name = 'ASIA'
 > ORDER BY r2.POS DESC;
+--------+-----------+-----+
| r_name | n_name | pos |
+--------+-----------+-----+
ASIA	INDIA	4
ASIA	INDONESIA	3
ASIA	JAPAN	2
ASIA	CHINA	1
ASIA	VIETNAM	0
+--------+-----------+-----+
[localhost:21000] > SELECT r1.r_name, r2.n_name, r2.POS
 > FROM region r1 INNER JOIN r1.r_nations r2
 > WHERE r1.r_name = 'ASIA' AND r2.POS BETWEEN 1 and 3;
+--------+-----------+-----+
| r_name | n_name | pos |
+--------+-----------+-----+
ASIA	CHINA	1
ASIA	JAPAN	2
ASIA	INDONESIA	3
+--------+-----------+-----+

KEY and VALUE Pseudocolumns

The MAP data type is suitable for representing sparse or wide data structures, where each row might only have
entries for a small subset of named fields. Because the element names (the map keys) vary depending on the row,
a query must be able to refer to both the key and the value parts of each key-value pair. The KEY and VALUE
pseudocolumns let you refer to the parts of the key-value pair independently within the query, as map_column.KEY
and map_column.VALUE.

The KEY must always be a scalar type, such as STRING, BIGINT, or TIMESTAMP. It can be NULL. Values of the
KEY field are not necessarily unique within the same MAP. You apply any required DISTINCT, GROUP BY, and
other clauses in the query, and loop through the result set to process all the values matching any specified keys.

The VALUE can be either a scalar type or another complex type. If the VALUE is a STRUCT, you can construct
a qualified name map_column.VALUE.struct_field to refer to the individual fields inside the value
part. If the VALUE is an ARRAY or another MAP, you must include another join condition that establishes a
table alias for map_column.VALUE, and then construct another qualified name using that alias, for example
table_alias.ITEM or table_alias.KEY and table_alias.VALUE

The following example shows different ways to access a MAP column using the KEY and VALUE pseudocolumns. The
DETAILS column has a STRING first part with short, standardized values such as 'Recurring', 'Lucid', or
'Anxiety'. This is the “key” that is used to look up particular kinds of elements from the MAP. The second part,
also a STRING, is a longer free-form explanation. Impala gives you the standard pseudocolumn names KEY and
VALUE for the two parts, and you apply your own conventions and interpretations to the underlying values.

Note: If you find that the single-item nature of the VALUE makes it difficult to model your data accurately, the
solution is typically to add some nesting to the complex type. For example, to have several sets of key-value pairs,
make the column an ARRAY whose elements are MAP. To make a set of key-value pairs that holds more elaborate
information, make a MAP column whose VALUE part contains an ARRAY or a STRUCT.

CREATE TABLE dream_journal
(
 dream_id BIGINT,
 details MAP <STRING,STRING>
)
STORED AS PARQUET;

-- What are all the types of dreams that are recorded?
SELECT DISTINCT details.KEY FROM dream_journal, dream_journal.details;

 | Impala SQL Language Reference | 169

-- How many lucid dreams were recorded?
-- Because there is no GROUP BY, we count the 'Lucid' keys across all rows.
SELECT COUNT(details.KEY)
 FROM dream_journal, dream_journal.details
WHERE details.KEY = 'Lucid';

-- Print a report of a subset of dreams, filtering based on both the lookup
 key
-- and the detailed value.
SELECT dream_id, details.KEY AS "Dream Type", details.VALUE AS "Dream
 Summary"
 FROM dream_journal, dream_journal.details
WHERE
 details.KEY IN ('Happy', 'Pleasant', 'Joyous')
 AND details.VALUE LIKE '%childhood%';

The following example shows a more elaborate version of the previous table, where the VALUE part of the MAP entry
is a STRUCT rather than a scalar type. Now instead of referring to the VALUE pseudocolumn directly, you use dot
notation to refer to the STRUCT fields inside it.

CREATE TABLE better_dream_journal
(
 dream_id BIGINT,
 details MAP <STRING,STRUCT <summary: STRING, when_happened: TIMESTAMP,
 duration: DECIMAL(5,2), woke_up: BOOLEAN> >
)
STORED AS PARQUET;

-- Do more elaborate reporting and filtering by examining multiple
 attributes within the same dream.
SELECT dream_id, details.KEY AS "Dream Type", details.VALUE.summary AS
 "Dream Summary", details.VALUE.duration AS "Duration"
 FROM better_dream_journal, better_dream_journal.details
WHERE
 details.KEY IN ('Anxiety', 'Nightmare')
 AND details.VALUE.duration > 60
 AND details.VALUE.woke_up = TRUE;

-- Remember that if the ITEM or VALUE contains a STRUCT, you can reference
-- the STRUCT fields directly without the .ITEM or .VALUE qualifier.
SELECT dream_id, details.KEY AS "Dream Type", details.summary AS "Dream
 Summary", details.duration AS "Duration"
 FROM better_dream_journal, better_dream_journal.details
WHERE
 details.KEY IN ('Anxiety', 'Nightmare')
 AND details.duration > 60
 AND details.woke_up = TRUE;

Loading Data Containing Complex Types

Because the Impala INSERT statement does not currently support creating new data with complex type columns, or
copying existing complex type values from one table to another, you primarily use Impala to query Parquet tables
with complex types where the data was inserted through Hive, or create tables with complex types where you already
have existing Parquet data files.

If you have created a Hive table with the Parquet file format and containing complex types, use the same table for
Impala queries with no changes. If you have such a Hive table in some other format, use a Hive CREATE TABLE
AS SELECT ... STORED AS PARQUET or INSERT ... SELECT statement to produce an equivalent
Parquet table that Impala can query.

 | Impala SQL Language Reference | 170

If you have existing Parquet data files containing complex types, located outside of any Impala or Hive table, such as
data files created by Spark jobs, you can use an Impala CREATE TABLE ... STORED AS PARQUET statement,
followed by an Impala LOAD DATA statement to move the data files into the table. As an alternative, you can use
an Impala CREATE EXTERNAL TABLE statement to create a table pointing to the HDFS directory that already
contains the data files.

Perhaps the simplest way to get started with complex type data is to take a denormalized table containing duplicated
values, and use an INSERT ... SELECT statement to copy the data into a Parquet table and condense the
repeated values into complex types. With the Hive INSERT statement, you use the COLLECT_LIST(),
NAMED_STRUCT(), and MAP() constructor functions within a GROUP BY query to produce the complex type
values. COLLECT_LIST() turns a sequence of values into an ARRAY. NAMED_STRUCT() uses the first, third, and
so on arguments as the field names for a STRUCT, to match the field names from the CREATE TABLE statement.

Note: Because Hive currently cannot construct individual rows using complex types through the INSERT ...
VALUES syntax, you prepare the data in flat form in a separate table, then copy it to the table with complex columns
using INSERT ... SELECT and the complex type constructors. See Constructing Parquet Files with Complex
Columns Using Hive on page 177 for examples.

Using Complex Types as Nested Types

The ARRAY, STRUCT, and MAP types can be the top-level types for “nested type” columns. That is, each of these
types can contain other complex or scalar types, with multiple levels of nesting to a maximum depth of 100. For
example, you can have an array of structures, a map containing other maps, a structure containing an array of other
structures, and so on. At the lowest level, there are always scalar types making up the fields of a STRUCT, elements of
an ARRAY, and keys and values of a MAP.

Schemas involving complex types typically use some level of nesting for the complex type columns.

For example, to model a relationship like a dimension table and a fact table, you typically use an ARRAY where each
array element is a STRUCT. The STRUCT fields represent what would traditionally be columns in a separate joined
table. It makes little sense to use a STRUCT as the top-level type for a column, because you could just make the fields
of the STRUCT into regular table columns.

Perhaps the only use case for a top-level STRUCT would be to to allow STRUCT fields with the same name as
columns to coexist in the same table. The following example shows how a table could have a column named ID,
and two separate STRUCT fields also named ID. Because the STRUCT fields are always referenced using qualified
names, the identical ID names do not cause a conflict.

CREATE TABLE struct_namespaces
(
 id BIGINT
 , s1 STRUCT < id: BIGINT, field1: STRING >
 , s2 STRUCT < id: BIGINT, when_happened: TIMESTAMP >
)
STORED AS PARQUET;

select id, s1.id, s2.id from struct_namespaces;

It is common to make the value portion of each key-value pair in a MAP a STRUCT, ARRAY of STRUCT, or other
complex type variation. That way, each key in the MAP can be associated with a flexible and extensible data structure.
The key values are not predefined ahead of time (other than by specifying their data type). Therefore, the MAP can
accomodate a rapidly evolving schema, or sparse data structures where each row contains only a few data values
drawn from a large set of possible choices.

Although you can use an ARRAY of scalar values as the top-level column in a table, such a simple array is typically of
limited use for analytic queries. The only property of the array elements, aside from the element value, is the ordering
sequence available through the POS pseudocolumn. To record any additional item about each array element, such as a
TIMESTAMP or a symbolic name, you use an ARRAY of STRUCT rather than of scalar values.

If you are considering having multiple ARRAY or MAP columns, with related items under the same position in each
ARRAY or the same key in each MAP, prefer to use a STRUCT to group all the related items into a single ARRAY or

 | Impala SQL Language Reference | 171

MAP. Doing so avoids the additional storage overhead and potential duplication of key values from having an extra
complex type column. Also, because each ARRAY or MAP that you reference in the query SELECT list requires an
additional join clause, minimizing the number of complex type columns also makes the query easier to read and
maintain, relying more on dot notation to refer to the relevant fields rather than a sequence of join clauses.

For example, here is a table with several complex type columns all at the top level and containing only scalar types.
To retrieve every data item for the row requires a separate join for each ARRAY or MAP column. The fields of the
STRUCT can be referenced using dot notation, but there is no real advantage to using the STRUCT at the top level
rather than just making separate columns FIELD1 and FIELD2.

CREATE TABLE complex_types_top_level
(
 id BIGINT,
 a1 ARRAY<INT>,
 a2 ARRAY<STRING>,
 s STRUCT<field1: INT, field2: STRING>,
-- Numeric lookup key for a string value.
 m1 MAP<INT,STRING>,
-- String lookup key for a numeric value.
 m2 MAP<STRING,INT>
)
STORED AS PARQUET;

describe complex_types_top_level;
+------+-----------------+
| name | type |
+------+-----------------+
id	bigint
a1	array<int>
a2	array<string>
s	struct<
	field1:int,
	field2:string
	>
m1	map<int,string>
m2	map<string,int>
+------+-----------------+

select
 id,
 a1.item,
 a2.item,
 s.field1,
 s.field2,
 m1.key,
 m1.value,
 m2.key,
 m2.value
from
 complex_types_top_level,
 complex_types_top_level.a1,
 complex_types_top_level.a2,
 complex_types_top_level.m1,
 complex_types_top_level.m2;

For example, here is a table with columns containing an ARRAY of STRUCT, a MAP where each key value is a
STRUCT, and a MAP where each key value is an ARRAY of STRUCT.

CREATE TABLE nesting_demo
(
 user_id BIGINT,

 | Impala SQL Language Reference | 172

 family_members ARRAY < STRUCT < name: STRING, email: STRING, date_joined:
 TIMESTAMP >>,
 foo map < STRING, STRUCT < f1: INT, f2: INT, f3: TIMESTAMP, f4: BOOLEAN
 >>,
 gameplay MAP < STRING , ARRAY < STRUCT <
 name: STRING, highest: BIGINT, lives_used: INT, total_spent:
 DECIMAL(16,2)
 >>>
)
STORED AS PARQUET;

The DESCRIBE statement rearranges the < and > separators and the field names within each STRUCT for easy
readability:

DESCRIBE nesting_demo;
+----------------+-----------------------------+
| name | type |
+----------------+-----------------------------+
user_id	bigint
family_members	array<struct<
	name:string,
	email:string,
	date_joined:timestamp
	>>
foo	map<string,struct<
	f1:int,
	f2:int,
	f3:timestamp,
	f4:boolean
	>>
gameplay	map<string,array<struct<
	name:string,
	highest:bigint,
	lives_used:int,
	total_spent:decimal(16,2)
	>>>
+----------------+-----------------------------+

To query the complex type columns, you use join notation to refer to the lowest-level scalar values. If the value is an
ARRAY element, the fully qualified name includes the ITEM pseudocolumn. If the value is inside a MAP, the fully
qualified name includes the KEY or VALUE pseudocolumn. Each reference to a different ARRAY or MAP (even if
nested inside another complex type) requires an additional join clause.

SELECT
-- The lone scalar field doesn't require any dot notation or join clauses.
 user_id
-- Retrieve the fields of a STRUCT inside an ARRAY.
-- The FAMILY_MEMBERS name refers to the FAMILY_MEMBERS table alias defined
 later in the FROM clause.
 , family_members.item.name
 , family_members.item.email
 , family_members.item.date_joined
-- Retrieve the KEY and VALUE fields of a MAP, with the value being a STRUCT
 consisting of more fields.
-- The FOO name refers to the FOO table alias defined later in the FROM
 clause.
 , foo.key
 , foo.value.f1
 , foo.value.f2
 , foo.value.f3

 | Impala SQL Language Reference | 173

 , foo.value.f4
-- Retrieve the KEY fields of a MAP, and expand the VALUE part into ARRAY
 items consisting of STRUCT fields.
-- The GAMEPLAY name refers to the GAMEPLAY table alias defined later in the
 FROM clause (referring to the MAP item).
-- The GAME_N name refers to the GAME_N table alias defined later in the
 FROM clause (referring to the ARRAY
-- inside the MAP item's VALUE part.)
 , gameplay.key
 , game_n.name
 , game_n.highest
 , game_n.lives_used
 , game_n.total_spent
FROM
 nesting_demo
 , nesting_demo.family_members AS family_members
 , nesting_demo.foo AS foo
 , nesting_demo.gameplay AS gameplay
 , nesting_demo.gameplay.value AS game_n;

Once you understand the notation to refer to a particular data item in the SELECT list, you can use the same qualified
name to refer to that data item in other parts of the query, such as the WHERE clause, ORDER BY or GROUP BY
clauses, or calls to built-in functions. For example, you might frequently retrieve the VALUE part of each MAP item in
the SELECT list, while choosing the specific MAP items by running comparisons against the KEY part in the WHERE
clause.

Accessing Complex Type Data in Flattened Form Using Views

The layout of complex and nested types is largely a physical consideration. The complex type columns reside in
the same data files rather than in separate normalized tables, for your convenience in managing related data sets
and performance in querying related data sets. You can use views to treat tables with complex types as if they were
flattened. By putting the join logic and references to the complex type columns in the view definition, you can query
the same tables using existing queries intended for tables containing only scalar columns. This technique also lets
you use tables with complex types with BI tools that are not aware of the data types and query notation for accessing
complex type columns.

For example, the variation of the TPC-H schema containing complex types has a table REGION. This table has 5
rows, corresponding to 5 regions such as NORTH AMERICA and AFRICA. Each row has an ARRAY column, where
each array item is a STRUCT containing details about a country in that region.

DESCRIBE region;
+-------------+-------------------------+
| name | type |
+-------------+-------------------------+
r_regionkey	smallint
r_name	string
r_comment	string
r_nations	array<struct<
	n_nationkey:smallint,
	n_name:string,
	n_comment:string
	>>
+-------------+-------------------------+

The same data could be represented in traditional denormalized form, as a single table where the information about
each region is repeated over and over, alongside the information about each country. The nested complex types let us
avoid the repetition, while still keeping the data in a single table rather than normalizing across multiple tables.

To use this table with a JDBC or ODBC application that expected scalar columns, we could create a view that
represented the result set as a set of scalar columns (three columns from the original table, plus three more from the

 | Impala SQL Language Reference | 174

STRUCT fields of the array elements). In the following examples, any column with an R_* prefix is taken unchanged
from the original table, while any column with an N_* prefix is extracted from the STRUCT inside the ARRAY.

CREATE VIEW region_view AS
 SELECT
 r_regionkey,
 r_name,
 r_comment,
 array_field.item.n_nationkey AS n_nationkey,
 array_field.item.n_name AS n_name,
 array_field.n_comment AS n_comment
FROM
 region, region.r_nations AS array_field;

Then we point the application queries at the view rather than the original table. From the perspective of the view,
there are 25 rows in the result set, one for each nation in each region, and queries can refer freely to fields related to
the region or the nation.

-- Retrieve info such as the nation name from the original R_NATIONS array
 elements.
select n_name from region_view where r_name in ('EUROPE', 'ASIA');
+----------------+
| n_name |
+----------------+
| UNITED KINGDOM |
| RUSSIA |
| ROMANIA |
| GERMANY |
| FRANCE |
| VIETNAM |
| CHINA |
| JAPAN |
| INDONESIA |
| INDIA |
+----------------+

-- UNITED STATES in AMERICA and UNITED KINGDOM in EUROPE.
SELECT DISTINCT r_name FROM region_view WHERE n_name LIKE 'UNITED%';
+---------+
| r_name |
+---------+
| AMERICA |
| EUROPE |
+---------+

-- For conciseness, we only list some view columns in the SELECT list.
-- SELECT * would bring back all the data, unlike SELECT *
-- queries on the original table with complex type columns.
SELECT r_regionkey, r_name, n_nationkey, n_name FROM region_view LIMIT 7;
+-------------+--------+-------------+----------------+
| r_regionkey | r_name | n_nationkey | n_name |
+-------------+--------+-------------+----------------+
3	EUROPE	23	UNITED KINGDOM
3	EUROPE	22	RUSSIA
3	EUROPE	19	ROMANIA
3	EUROPE	7	GERMANY
3	EUROPE	6	FRANCE
2	ASIA	21	VIETNAM
2	ASIA	18	CHINA
+-------------+--------+-------------+----------------+

 | Impala SQL Language Reference | 175

Tutorials and Examples for Complex Types

The following examples illustrate the query syntax for some common use cases involving complex type columns.

Sample Schema and Data for Experimenting with Impala Complex Types

The tables used for earlier examples of complex type syntax are trivial ones with no actual data. The more substantial
examples of the complex type feature use these tables, adapted from the schema used for TPC-H testing:

SHOW TABLES;
+----------+
| name |
+----------+
| customer |
| part |
| region |
| supplier |
+----------+

DESCRIBE customer;
+--------------+------------------------------------+
| name | type |
+--------------+------------------------------------+
c_custkey	bigint
c_name	string
c_address	string
c_nationkey	smallint
c_phone	string
c_acctbal	decimal(12,2)
c_mktsegment	string
c_comment	string
c_orders	array<struct<
	o_orderkey:bigint,
	o_orderstatus:string,
	o_totalprice:decimal(12,2),
	o_orderdate:string,
	o_orderpriority:string,
	o_clerk:string,
	o_shippriority:int,
	o_comment:string,
	o_lineitems:array<struct<
	l_partkey:bigint,
	l_suppkey:bigint,
	l_linenumber:int,
	l_quantity:decimal(12,2),
	l_extendedprice:decimal(12,2),
	l_discount:decimal(12,2),
	l_tax:decimal(12,2),
	l_returnflag:string,
	l_linestatus:string,
	l_shipdate:string,
	l_commitdate:string,
	l_receiptdate:string,
	l_shipinstruct:string,
	l_shipmode:string,
	l_comment:string
	>>
	>>
+--------------+------------------------------------+

DESCRIBE part;
+---------------+---------------+
| name | type |

 | Impala SQL Language Reference | 176

+---------------+---------------+
p_partkey	bigint
p_name	string
p_mfgr	string
p_brand	string
p_type	string
p_size	int
p_container	string
p_retailprice	decimal(12,2)
p_comment	string
+---------------+---------------+

DESCRIBE region;
+-------------
+--+
| name | type
 |
+-------------
+--+
| r_regionkey | smallint
 |
| r_name | string
 |
| r_comment | string
 |
| r_nations |
 array<struct<n_nationkey:smallint,n_name:string,n_comment:string>> |
+-------------
+--+

DESCRIBE supplier;
+-------------+--+
| name | type |
+-------------+--+
s_suppkey	bigint
s_name	string
s_address	string
s_nationkey	smallint
s_phone	string
s_acctbal	decimal(12,2)
s_comment	string
s_partsupps	array<struct<ps_partkey:bigint,
	ps_availqty:int,ps_supplycost:decimal(12,2),
	ps_comment:string>>
+-------------+--+

The volume of data used in the following examples is:

SELECT count(*) FROM customer;
+----------+
| count(*) |
+----------+
| 150000 |
+----------+

SELECT count(*) FROM part;
+----------+
| count(*) |
+----------+
| 200000 |
+----------+

 | Impala SQL Language Reference | 177

SELECT count(*) FROM region;
+----------+
| count(*) |
+----------+
| 5 |
+----------+

SELECT count(*) FROM supplier;
+----------+
| count(*) |
+----------+
| 10000 |
+----------+

Constructing Parquet Files with Complex Columns Using Hive

The following examples demonstrate the Hive syntax to transform flat data (tables with all scalar columns) into
Parquet tables where Impala can query the complex type columns. Each example shows the full sequence of steps,
including switching back and forth between Impala and Hive. Although the source table can use any file format, the
destination table must use the Parquet file format.

Create table with ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hive shell or beeline) for the data loading step. The data starts in flattened, denormalized form in a text table.
Hive writes the corresponding Parquet data, including an ARRAY column. Then Impala can run analytic queries on the
Parquet table, using join notation to unpack the ARRAY column.

/* Initial DDL and loading of flat, denormalized data happens in impala-
shell */CREATE TABLE flat_array (country STRING, city STRING);INSERT INTO
 flat_array VALUES
 ('Canada', 'Toronto') , ('Canada', 'Vancouver') , ('Canada', "St. John
\'s")
 , ('Canada', 'Saint John') , ('Canada', 'Montreal') , ('Canada',
 'Halifax')
 , ('Canada', 'Winnipeg') , ('Canada', 'Calgary') , ('Canada', 'Saskatoon')
 , ('Canada', 'Ottawa') , ('Canada', 'Yellowknife') , ('France', 'Paris')
 , ('France', 'Nice') , ('France', 'Marseilles') , ('France', 'Cannes')
 , ('Greece', 'Athens') , ('Greece', 'Piraeus') , ('Greece', 'Hania')
 , ('Greece', 'Heraklion') , ('Greece', 'Rethymnon') , ('Greece', 'Fira');

CREATE TABLE complex_array (country STRING, city ARRAY <STRING>) STORED AS
 PARQUET;

/* Conversion to Parquet and complex and/or nested columns happens in Hive
 */

INSERT INTO complex_array SELECT country, collect_list(city) FROM flat_array
 GROUP BY country;
Query ID = dev_20151108160808_84477ff2-82bd-4ba4-9a77-554fa7b8c0cb
Total jobs = 1
Launching Job 1 out of 1
...

/* Back to impala-shell again for analytic queries */

REFRESH complex_array;
SELECT country, city.item FROM complex_array, complex_array.city
+---------+-------------+

 | Impala SQL Language Reference | 178

| country | item |
+---------+-------------+
Canada	Toronto
Canada	Vancouver
Canada	St. John's
Canada	Saint John
Canada	Montreal
Canada	Halifax
Canada	Winnipeg
Canada	Calgary
Canada	Saskatoon
Canada	Ottawa
Canada	Yellowknife
France	Paris
France	Nice
France	Marseilles
France	Cannes
Greece	Athens
Greece	Piraeus
Greece	Hania
Greece	Heraklion
Greece	Rethymnon
Greece	Fira
+---------+-------------+

Create table with STRUCT and ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hive shell or beeline) for the data loading step. The data starts in flattened, denormalized form in a text table.
Hive writes the corresponding Parquet data, including a STRUCT column with an ARRAY field. Then Impala can run
analytic queries on the Parquet table, using join notation to unpack the ARRAY field from the STRUCT column.

/* Initial DDL and loading of flat, denormalized data happens in impala-
shell */

CREATE TABLE flat_struct_array (continent STRING, country STRING, city
 STRING);
INSERT INTO flat_struct_array VALUES
 ('North America', 'Canada', 'Toronto') , ('North America', 'Canada',
 'Vancouver')
 , ('North America', 'Canada', "St. John\'s") , ('North America', 'Canada',
 'Saint John')
 , ('North America', 'Canada', 'Montreal') , ('North America', 'Canada',
 'Halifax')
 , ('North America', 'Canada', 'Winnipeg') , ('North America', 'Canada',
 'Calgary')
 , ('North America', 'Canada', 'Saskatoon') , ('North America', 'Canada',
 'Ottawa')
 , ('North America', 'Canada', 'Yellowknife') , ('Europe', 'France',
 'Paris')
 , ('Europe', 'France', 'Nice') , ('Europe', 'France', 'Marseilles')
 , ('Europe', 'France', 'Cannes') , ('Europe', 'Greece', 'Athens')
 , ('Europe', 'Greece', 'Piraeus') , ('Europe', 'Greece', 'Hania')
 , ('Europe', 'Greece', 'Heraklion') , ('Europe', 'Greece', 'Rethymnon')
 , ('Europe', 'Greece', 'Fira');

CREATE TABLE complex_struct_array (continent STRING, country STRUCT <name:
 STRING, city: ARRAY <STRING> >) STORED AS PARQUET;

 | Impala SQL Language Reference | 179

/* Conversion to Parquet and complex and/or nested columns happens in Hive
 */

INSERT INTO complex_struct_array SELECT continent, named_struct('name',
 country, 'city', collect_list(city)) FROM flat_array_array GROUP BY
 continent, country;
Query ID = dev_20151108163535_11a4fa53-0003-4638-97e6-ef13cdb8e09e
Total jobs = 1
Launching Job 1 out of 1
...

/* Back to impala-shell again for analytic queries */

REFRESH complex_struct_array;
SELECT t1.continent, t1.country.name, t2.item
 FROM complex_struct_array t1, t1.country.city t2
+---------------+--------------+-------------+
| continent | country.name | item |
+---------------+--------------+-------------+
Europe	France	Paris
Europe	France	Nice
Europe	France	Marseilles
Europe	France	Cannes
Europe	Greece	Athens
Europe	Greece	Piraeus
Europe	Greece	Hania
Europe	Greece	Heraklion
Europe	Greece	Rethymnon
Europe	Greece	Fira
North America	Canada	Toronto
North America	Canada	Vancouver
North America	Canada	St. John's
North America	Canada	Saint John
North America	Canada	Montreal
North America	Canada	Halifax
North America	Canada	Winnipeg
North America	Canada	Calgary
North America	Canada	Saskatoon
North America	Canada	Ottawa
North America	Canada	Yellowknife
+---------------+--------------+-------------+

Flattening Normalized Tables into a Single Table with Complex Types

One common use for complex types is to embed the contents of one table into another. The traditional technique of
denormalizing results in a huge number of rows with some column values repeated over and over. With complex
types, you can keep the same number of rows as in the original normalized table, and put all the associated data from
the other table in a single new column.

In this flattening scenario, you might frequently use a column that is an ARRAY consisting of STRUCT elements,
where each field within the STRUCT corresponds to a column name from the table that you are combining.

The following example shows a traditional normalized layout using two tables, and then an equivalent layout using
complex types in a single table.

/* Traditional relational design */

 | Impala SQL Language Reference | 180

-- This table just stores numbers, allowing us to look up details about the
 employee
-- and details about their vacation time using a three-table join query.
CREATE table employee_vacations
(
 employee_id BIGINT,
 vacation_id BIGINT
)
STORED AS PARQUET;

-- Each kind of information to track gets its own "fact table".
CREATE table vacation_details
(
 vacation_id BIGINT,
 vacation_start TIMESTAMP,
 duration INT
)
STORED AS PARQUET;

-- Any time we print a human-readable report, we join with this table to
-- display info about employee #1234.
CREATE TABLE employee_contact
(
 employee_id BIGINT,
 name STRING,
 address STRING,
 phone STRING,
 email STRING,
 address_type STRING /* 'home', 'work', 'remote', etc. */
)
STORED AS PARQUET;

/* Equivalent flattened schema using complex types */

-- For analytic queries using complex types, we can bundle the dimension
 table
-- and multiple fact tables into a single table.
CREATE TABLE employee_vacations_nested_types
(
-- We might still use the employee_id for other join queries.
-- The table needs at least one scalar column to serve as an identifier
-- for the complex type columns.
 employee_id BIGINT,

-- Columns of the VACATION_DETAILS table are folded into a STRUCT.
-- We drop the VACATION_ID column because Impala doesn't need
-- synthetic IDs to join a complex type column.
-- Each row from the VACATION_DETAILS table becomes an array element.
 vacation ARRAY < STRUCT <
 vacation_start: TIMESTAMP,
 duration: INT
 >>,

-- The ADDRESS_TYPE column, with a small number of predefined values that
 are distinct
-- for each employee, makes the EMPLOYEE_CONTACT table a good candidate to
 turn into a MAP,
-- with each row represented as a STRUCT. The string value from ADDRESS_TYPE
 becomes the
-- "key" (the anonymous first field) of the MAP.
 contact MAP < STRING, STRUCT <
 address: STRING,
 phone: STRING,
 email: STRING

 | Impala SQL Language Reference | 181

 >>
)
STORED AS PARQUET;

Interchanging Complex Type Tables and Data Files with Hive and Other Components

You can produce Parquet data files through several Hadoop components and APIs.

If you have a Hive-created Parquet table that includes ARRAY, STRUCT, or MAP columns, Impala can query that same
table in Impala 2.3 and higher, subject to the usual restriction that all other columns are of data types supported by
Impala, and also that the file type of the table must be Parquet.

If you have a Parquet data file produced outside of Impala, Impala can automatically deduce the appropriate table
structure using the syntax CREATE TABLE ... LIKE PARQUET 'hdfs_path_of_parquet_file'. In
Impala 2.3 and higher, this feature works for Parquet files that include ARRAY, STRUCT, or MAP types.

/* In impala-shell, find the HDFS data directory of the original table.
DESCRIBE FORMATTED tpch_nested_parquet.customer;
...
| Location: | hdfs://localhost:20500/test-warehouse/tpch_nested_parquet.db/
customer | NULL |
...

In the Unix shell, find the path of any Parquet data file in that HDFS
 directory.
$ hdfs dfs -ls hdfs://localhost:20500/test-warehouse/tpch_nested_parquet.db/
customer
Found 4 items
-rwxr-xr-x 3 dev supergroup 171298918 2015-09-22 23:30 hdfs://
localhost:20500/blah/tpch_nested_parquet.db/customer/000000_0
...

/* Back in impala-shell, use the HDFS path in a CREATE TABLE LIKE PARQUET
 statement. */
CREATE TABLE customer_ctlp
 LIKE PARQUET 'hdfs://localhost:20500/blah/tpch_nested_parquet.db/
customer/000000_0'
 STORED AS PARQUET;

/* Confirm that old and new tables have the same column layout, including
 complex types. */
DESCRIBE tpch_nested_parquet.customer
+--------------+------------------------------------+---------+
| name | type | comment |
+--------------+------------------------------------+---------+
c_custkey	bigint	
c_name	string	
c_address	string	
c_nationkey	smallint	
c_phone	string	
c_acctbal	decimal(12,2)	
c_mktsegment	string	
c_comment	string	
c_orders	array<struct<	
	o_orderkey:bigint,	
	o_orderstatus:string,	
	o_totalprice:decimal(12,2),	
	o_orderdate:string,	
	o_orderpriority:string,	
	o_clerk:string,	
	o_shippriority:int,	
	o_comment:string,	
	o_lineitems:array<struct<	

 | Impala SQL Language Reference | 182

	l_partkey:bigint,	
	l_suppkey:bigint,	
	l_linenumber:int,	
	l_quantity:decimal(12,2),	
	l_extendedprice:decimal(12,2),	
	l_discount:decimal(12,2),	
	l_tax:decimal(12,2),	
	l_returnflag:string,	
	l_linestatus:string,	
	l_shipdate:string,	
	l_commitdate:string,	
	l_receiptdate:string,	
	l_shipinstruct:string,	
	l_shipmode:string,	
	l_comment:string	
	>>	
	>>	
+--------------+------------------------------------+---------+

describe customer_ctlp;
+--------------+------------------------------------
+-----------------------------+
| name | type | comment
 |
+--------------+------------------------------------
+-----------------------------+
| c_custkey | bigint | Inferred from Parquet
 file. |
| c_name | string | Inferred from Parquet
 file. |
| c_address | string | Inferred from Parquet
 file. |
| c_nationkey | int | Inferred from Parquet
 file. |
| c_phone | string | Inferred from Parquet
 file. |
| c_acctbal | decimal(12,2) | Inferred from Parquet
 file. |
| c_mktsegment | string | Inferred from Parquet
 file. |
| c_comment | string | Inferred from Parquet
 file. |
| c_orders | array<struct< | Inferred from Parquet
 file. |
| | o_orderkey:bigint, |
 |
| | o_orderstatus:string, |
 |
| | o_totalprice:decimal(12,2), |
 |
| | o_orderdate:string, |
 |
| | o_orderpriority:string, |
 |
| | o_clerk:string, |
 |
| | o_shippriority:int, |
 |
| | o_comment:string, |
 |
| | o_lineitems:array<struct< |
 |
| | l_partkey:bigint, |
 |

 | Impala SQL Language Reference | 183

| | l_suppkey:bigint, |
 |
| | l_linenumber:int, |
 |
| | l_quantity:decimal(12,2), |
 |
| | l_extendedprice:decimal(12,2), |
 |
| | l_discount:decimal(12,2), |
 |
| | l_tax:decimal(12,2), |
 |
| | l_returnflag:string, |
 |
| | l_linestatus:string, |
 |
| | l_shipdate:string, |
 |
| | l_commitdate:string, |
 |
| | l_receiptdate:string, |
 |
| | l_shipinstruct:string, |
 |
| | l_shipmode:string, |
 |
| | l_comment:string |
 |
| | >> |
 |
| | >> |
 |
+--------------+------------------------------------
+-----------------------------+

Literals
Each of the Impala data types has corresponding notation for literal values of that type. You specify literal values in
SQL statements, such as in the SELECT list or WHERE clause of a query, or as an argument to a function call. See
Data Types on page 107 for a complete list of types, ranges, and conversion rules.

Numeric Literals

To write literals for the integer types (TINYINT, SMALLINT, INT, and BIGINT), use a sequence of digits with
optional leading zeros.

To write literals for the floating-point types (DECIMAL, FLOAT, and DOUBLE), use a sequence of digits with an
optional decimal point (. character). To preserve accuracy during arithmetic expressions, Impala interprets floating-
point literals as the DECIMAL type with the smallest appropriate precision and scale, until required by the context to
convert the result to FLOAT or DOUBLE.

Integer values are promoted to floating-point when necessary, based on the context.

You can also use exponential notation by including an e character. For example, 1e6 is 1 times 10 to the power of 6
(1 million). A number in exponential notation is always interpreted as floating-point.

When Impala encounters a numeric literal, it considers the type to be the “smallest” that can accurately represent the
value. The type is promoted to larger or more accurate types if necessary, based on subsequent parts of an expression.

 | Impala SQL Language Reference | 184

For example, you can see by the types Impala defines for the following table columns how it interprets the
corresponding numeric literals:

[localhost:21000] > create table ten as select 10 as x;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc ten;
+------+---------+---------+
| name | type | comment |
+------+---------+---------+
| x | tinyint | |
+------+---------+---------+

[localhost:21000] > create table four_k as select 4096 as x;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc four_k;
+------+----------+---------+
| name | type | comment |
+------+----------+---------+
| x | smallint | |
+------+----------+---------+

[localhost:21000] > create table one_point_five as select 1.5 as x;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc one_point_five;
+------+--------------+---------+
| name | type | comment |
+------+--------------+---------+
| x | decimal(2,1) | |
+------+--------------+---------+

[localhost:21000] > create table one_point_three_three_three as select 1.333
 as x;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc one_point_three_three_three;
+------+--------------+---------+
| name | type | comment |
+------+--------------+---------+
| x | decimal(4,3) | |
+------+--------------+---------+

String Literals

String literals are quoted using either single or double quotation marks. You can use either kind of quotes for string
literals, even both kinds for different literals within the same statement.

 | Impala SQL Language Reference | 185

Quoted literals are considered to be of type STRING. To use quoted literals in contexts requiring a CHAR or
VARCHAR value, CAST() the literal to a CHAR or VARCHAR of the appropriate length.

Escaping special characters:

To encode special characters within a string literal, precede them with the backslash (\) escape character:

• \t represents a tab.
• \n represents a newline or linefeed. This might cause extra line breaks in impala-shell output.
• \r represents a carriage return. This might cause unusual formatting (making it appear that some content is

overwritten) in impala-shell output.
• \b represents a backspace. This might cause unusual formatting (making it appear that some content is

overwritten) in impala-shell output.
• \0 represents an ASCII nul character (not the same as a SQL NULL). This might not be visible in impala-

shell output.
• \Z represents a DOS end-of-file character. This might not be visible in impala-shell output.
• \% and _ can be used to escape wildcard characters within the string passed to the LIKE operator.
• \ followed by 3 octal digits represents the ASCII code of a single character; for example, \101 is ASCII 65, the

character A.
• Use two consecutive backslashes (\\) to prevent the backslash from being interpreted as an escape character.
• Use the backslash to escape single or double quotation mark characters within a string literal, if the literal is

enclosed by the same type of quotation mark.
• If the character following the \ does not represent the start of a recognized escape sequence, the character is

passed through unchanged.

Quotes within quotes:

To include a single quotation character within a string value, enclose the literal with either single or double quotation
marks, and optionally escape the single quote as a \' sequence. Earlier releases required escaping a single quote
inside double quotes. Continue using escape sequences in this case if you also need to run your SQL code on older
versions of Impala.

To include a double quotation character within a string value, enclose the literal with single quotation marks, no
escaping is necessary in this case. Or, enclose the literal with double quotation marks and escape the double quote as a
\" sequence.

[localhost:21000] > select "What\'s happening?" as single_within_double,
 > 'I\'m not sure.' as single_within_single,
 > "Homer wrote \"The Iliad\"." as
 double_within_double,
 > 'Homer also wrote "The Odyssey".' as
 double_within_single;
+----------------------+----------------------+--------------------------
+---------------------------------+
| single_within_double | single_within_single | double_within_double |
 double_within_single |
+----------------------+----------------------+--------------------------
+---------------------------------+
| What's happening? | I'm not sure. | Homer wrote "The Iliad". |
 Homer also wrote "The Odyssey". |
+----------------------+----------------------+--------------------------
+---------------------------------+

Field terminator character in CREATE TABLE:

Note: The CREATE TABLE clauses FIELDS TERMINATED BY, ESCAPED BY, and LINES TERMINATED BY
have special rules for the string literal used for their argument, because they all require a single character. You can use
a regular character surrounded by single or double quotation marks, an octal sequence such as '\054' (representing
a comma), or an integer in the range '-127'..'128' (with quotation marks but no backslash), which is interpreted as a
single-byte ASCII character. Negative values are subtracted from 256; for example, FIELDS TERMINATED BY

 | Impala SQL Language Reference | 186

'-2' sets the field delimiter to ASCII code 254, the “Icelandic Thorn” character used as a delimiter by some data
formats.

impala-shell considerations:

When dealing with output that includes non-ASCII or non-printable characters such as linefeeds and backspaces, use
the impala-shell options to save to a file, turn off pretty printing, or both rather than relying on how the output
appears visually. See impala-shell Configuration Options on page 612 for a list of impala-shell options.

Boolean Literals

For BOOLEAN values, the literals are TRUE and FALSE, with no quotation marks and case-insensitive.

Examples:

select true;
select * from t1 where assertion = false;
select case bool_col when true then 'yes' when false 'no' else 'null' end
 from t1;

Timestamp Literals

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp
values are accepted in the format "yyyy-MM-dd HH:mm:ss.SSSSSS", and can consist of just the date,
or just the time, with or without the fractional second portion. For example, you can specify TIMESTAMP
values such as '1966-07-30', '08:30:00', or '1985-09-25 17:45:30.005'. Casting an integer
or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting -
use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

You can also use INTERVAL expressions to add or subtract from timestamp literal values, such as
CAST('1966-07-30' AS TIMESTAMP) + INTERVAL 5 YEARS + INTERVAL 3 DAYS. See
TIMESTAMP Data Type on page 141 for details.

Depending on your data pipeline, you might receive date and time data as text, in notation that does not exactly match
the format for Impala TIMESTAMP literals. See Impala Date and Time Functions on page 453 for functions that
can convert between a variety of string literals (including different field order, separators, and timezone notation) and
equivalent TIMESTAMP or numeric values.

NULL

The notion of NULL values is familiar from all kinds of database systems, but each SQL dialect can have its own
behavior and restrictions on NULL values. For Big Data processing, the precise semantics of NULL values are
significant: any misunderstanding could lead to inaccurate results or misformatted data, that could be time-consuming
to correct for large data sets.

• NULL is a different value than an empty string. The empty string is represented by a string literal with nothing
inside, "" or ''.

• In a delimited text file, the NULL value is represented by the special token \N.
• When Impala inserts data into a partitioned table, and the value of one of the partitioning columns is NULL or

the empty string, the data is placed in a special partition that holds only these two kinds of values. When these
values are returned in a query, the result is NULL whether the value was originally NULL or an empty string. This
behavior is compatible with the way Hive treats NULL values in partitioned tables. Hive does not allow empty
strings as partition keys, and it returns a string value such as __HIVE_DEFAULT_PARTITION__ instead of
NULL when such values are returned from a query. For example:

create table t1 (i int) partitioned by (x int, y string);
-- Select an INT column from another table, with all rows going into a
 special HDFS subdirectory

 | Impala SQL Language Reference | 187

-- named __HIVE_DEFAULT_PARTITION__. Depending on whether one or both of
 the partitioning keys
-- are null, this special directory name occurs at different levels of the
 physical data directory
-- for the table.
insert into t1 partition(x=NULL, y=NULL) select c1 from some_other_table;
insert into t1 partition(x, y=NULL) select c1, c2 from some_other_table;
insert into t1 partition(x=NULL, y) select c1, c3 from some_other_table;

• There is no NOT NULL clause when defining a column to prevent NULL values in that column.
• There is no DEFAULT clause to specify a non-NULL default value.
• If an INSERT operation mentions some columns but not others, the unmentioned columns contain NULL for all

inserted rows.
• In Impala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries,

and at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater
than all other values for sorting purposes. The original Impala behavior always put NULL values at the end, even
for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other
popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL
by adding the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.

Note: Because the NULLS FIRST and NULLS LAST keywords are not currently available in Hive queries, any
views you create using those keywords will not be available through Hive.

• In all other contexts besides sorting with ORDER BY, comparing a NULL to anything else returns NULL, making
the comparison meaningless. For example, 10 > NULL produces NULL, 10 < NULL also produces NULL, 5
BETWEEN 1 AND NULL produces NULL, and so on.

Several built-in functions serve as shorthand for evaluating expressions and returning NULL, 0, or some
other substitution value depending on the expression result: ifnull(), isnull(), nvl(), nullif(),
nullifzero(), and zeroifnull(). See Impala Conditional Functions on page 504 for details.

Kudu considerations:

Columns in Kudu tables have an attribute that specifies whether or not they can contain NULL values. A column with
a NULL attribute can contain nulls. A column with a NOT NULL attribute cannot contain any nulls, and an INSERT,
UPDATE, or UPSERT statement will skip any row that attempts to store a null in a column designated as NOT NULL.
Kudu tables default to the NULL setting for each column, except columns that are part of the primary key.

In addition to columns with the NOT NULL attribute, Kudu tables also have restrictions on NULL values in columns
that are part of the primary key for a table. No column that is part of the primary key in a Kudu table can contain any
NULL values.

SQL Operators
SQL operators are a class of comparison functions that are widely used within the WHERE clauses of SELECT
statements.

Arithmetic Operators

The arithmetic operators use expressions with a left-hand argument, the operator, and then (in most cases) a right-
hand argument.

Syntax:

left_hand_arg binary_operator right_hand_arg
unary_operator single_arg

• + and -: Can be used either as unary or binary operators.

 | Impala SQL Language Reference | 188

• With unary notation, such as +5, -2.5, or -col_name, they multiply their single numeric argument by
+1 or -1. Therefore, unary + returns its argument unchanged, while unary - flips the sign of its argument.
Although you can double up these operators in expressions such as ++5 (always positive) or -+2 or +-2
(both always negative), you cannot double the unary minus operator because -- is interpreted as the start of
a comment. (You can use a double unary minus operator if you separate the - characters, for example with a
space or parentheses.)

• With binary notation, such as 2+2, 5-2.5, or col1 + col2, they add or subtract respectively the right-
hand argument to (or from) the left-hand argument. Both arguments must be of numeric types.

• * and /: Multiplication and division respectively. Both arguments must be of numeric types.

When multiplying, the shorter argument is promoted if necessary (such as SMALLINT to INT or BIGINT,
or FLOAT to DOUBLE), and then the result is promoted again to the next larger type. Thus, multiplying a
TINYINT and an INT produces a BIGINT result. Multiplying a FLOAT and a FLOAT produces a DOUBLE
result. Multiplying a FLOAT and a DOUBLE or a DOUBLE and a DOUBLE produces a DECIMAL(38,17),
because DECIMAL values can represent much larger and more precise values than DOUBLE.

When dividing, Impala always treats the arguments and result as DOUBLE values to avoid losing precision. If you
need to insert the results of a division operation into a FLOAT column, use the CAST() function to convert the
result to the correct type.

• DIV: Integer division. Arguments are not promoted to a floating-point type, and any fractional result is discarded.
For example, 13 DIV 7 returns 1, 14 DIV 7 returns 2, and 15 DIV 7 returns 2. This operator is the same as
the QUOTIENT() function.

• %: Modulo operator. Returns the remainder of the left-hand argument divided by the right-hand argument. Both
arguments must be of one of the integer types.

• &, |, ~, and ^: Bitwise operators that return the logical AND, logical OR, NOT, or logical XOR (exclusive OR) of
their argument values. Both arguments must be of one of the integer types. If the arguments are of different type,
the argument with the smaller type is implicitly extended to match the argument with the longer type.

You can chain a sequence of arithmetic expressions, optionally grouping them with parentheses.

The arithmetic operators generally do not have equivalent calling conventions using functional notation. For example,
prior to Impala 2.2, there is no MOD() function equivalent to the % modulo operator. Conversely, there are some
arithmetic functions that do not have a corresponding operator. For example, for exponentiation you use the POW()
function, but there is no ** exponentiation operator. See Impala Mathematical Functions on page 420 for the
arithmetic functions you can use.

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or
value at the bottom of any nested type hierarchy in the column. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM() and AVG() are computed using the numeric
R_NATIONKEY field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME
field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	

 | Impala SQL Language Reference | 189

| | n_comment:string | |
| | >> | |
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------
+---------------+
| r_name | count | sum | avg | minimum | maximum |
 distinct_vals |
+-------------+-------+-----+------+-----------+----------------
+---------------+
| AFRICA | 5 | 50 | 10 | ALGERIA | MOZAMBIQUE | 5
 |
| AMERICA | 5 | 47 | 9.4 | ARGENTINA | UNITED STATES | 5
 |
| ASIA | 5 | 68 | 13.6 | CHINA | VIETNAM | 5
 |
| EUROPE | 5 | 77 | 15.4 | FRANCE | UNITED KINGDOM | 5
 |

 | Impala SQL Language Reference | 190

| MIDDLE EAST | 5 | 58 | 11.6 | EGYPT | SAUDI ARABIA | 5
 |
+-------------+-------+-----+------+-----------+----------------
+---------------+

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r_name, nation.item.n_name, nation.item.n_nationkey * 10
 from region, region.r_nations as nation
where nation.item.n_nationkey < 5;
+-------------+-------------+------------------------------+
| r_name | item.n_name | nation.item.n_nationkey * 10 |
+-------------+-------------+------------------------------+
AMERICA	CANADA	30
AMERICA	BRAZIL	20
AMERICA	ARGENTINA	10
MIDDLE EAST	EGYPT	40
AFRICA	ALGERIA	0
+-------------+-------------+------------------------------+

BETWEEN Operator

In a WHERE clause, compares an expression to both a lower and upper bound. The comparison is successful is the
expression is greater than or equal to the lower bound, and less than or equal to the upper bound. If the bound values
are switched, so the lower bound is greater than the upper bound, does not match any values.

Syntax:

expression BETWEEN lower_bound AND upper_bound

Data types: Typically used with numeric data types. Works with any data type, although not very practical for
BOOLEAN values. (BETWEEN false AND true will match all BOOLEAN values.) Use CAST() if necessary
to ensure the lower and upper bound values are compatible types. Call string or date/time functions if necessary to
extract or transform the relevant portion to compare, especially if the value can be transformed into a number.

Usage notes:

 | Impala SQL Language Reference | 191

Be careful when using short string operands. A longer string that starts with the upper bound value will not be
included, because it is considered greater than the upper bound. For example, BETWEEN 'A' and 'M' would not
match the string value 'Midway'. Use functions such as upper(), lower(), substr(), trim(), and so on if
necessary to ensure the comparison works as expected.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

-- Retrieve data for January through June, inclusive.
select c1 from t1 where month between 1 and 6;

-- Retrieve data for names beginning with 'A' through 'M' inclusive.
-- Only test the first letter to ensure all the values starting with 'M' are
 matched.
-- Do a case-insensitive comparison to match names with various
 capitalization conventions.
select last_name from customers where upper(substr(last_name,1,1)) between
 'A' and 'M';

-- Retrieve data for only the first week of each month.
select count(distinct visitor_id)) from web_traffic where
 dayofmonth(when_viewed) between 1 and 7;

The following example shows how to do a BETWEEN comparison using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in a
comparison operator:

-- The SMALLINT is a field within an array of structs.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r_name, nation.item.n_name, nation.item.n_nationkey
from region, region.r_nations as nation
where nation.item.n_nationkey between 3 and 5
+-------------+-------------+------------------+
| r_name | item.n_name | item.n_nationkey |
+-------------+-------------+------------------+
AMERICA	CANADA	3
MIDDLE EAST	EGYPT	4
AFRICA	ETHIOPIA	5
+-------------+-------------+------------------+

 | Impala SQL Language Reference | 192

Comparison Operators

Impala supports the familiar comparison operators for checking equality and sort order for the column data types:

Syntax:

left_hand_expression comparison_operator right_hand_expression

• =, !=, <>: apply to all types.
• <, <=, >, >=: apply to all types; for BOOLEAN, TRUE is considered greater than FALSE.

Alternatives:

The IN and BETWEEN operators provide shorthand notation for expressing combinations of equality, less than, and
greater than comparisons with a single operator.

Because comparing any value to NULL produces NULL rather than TRUE or FALSE, use the IS NULL and IS NOT
NULL operators to check if a value is NULL or not.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an
item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used with a
comparison operator such as <:

-- The SMALLINT is a field within an array of structs.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r_name, nation.item.n_name, nation.item.n_nationkey
from region, region.r_nations as nation
where nation.item.n_nationkey < 5
+-------------+-------------+------------------+
| r_name | item.n_name | item.n_nationkey |
+-------------+-------------+------------------+
AMERICA	CANADA	3
AMERICA	BRAZIL	2
AMERICA	ARGENTINA	1
MIDDLE EAST	EGYPT	4
AFRICA	ALGERIA	0
+-------------+-------------+------------------+

 | Impala SQL Language Reference | 193

EXISTS Operator

The EXISTS operator tests whether a subquery returns any results. You typically use it to find values from one table
that have corresponding values in another table.

The converse, NOT EXISTS, helps to find all the values from one table that do not have any corresponding values in
another table.

Syntax:

EXISTS (subquery)
NOT EXISTS (subquery)

Usage notes:

The subquery can refer to a different table than the outer query block, or the same table. For example, you might use
EXISTS or NOT EXISTS to check the existence of parent/child relationships between two columns of the same
table.

You can also use operators and function calls within the subquery to test for other kinds of relationships other than
strict equality. For example, you might use a call to COUNT() in the subquery to check whether the number of
matching values is higher or lower than some limit. You might call a UDF in the subquery to check whether values in
one table matches a hashed representation of those same values in a different table.

NULL considerations:

If the subquery returns any value at all (even NULL), EXISTS returns TRUE and NOT EXISTS returns false.

The following example shows how even when the subquery returns only NULL values, EXISTS still returns TRUE
and thus matches all the rows from the table in the outer query block.

[localhost:21000] > create table all_nulls (x int);
[localhost:21000] > insert into all_nulls values (null), (null), (null);
[localhost:21000] > select y from t2 where exists (select x from all_nulls);
+---+
| y |
+---+
| 2 |
| 4 |
| 6 |
+---+

However, if the table in the subquery is empty and so the subquery returns an empty result set, EXISTS returns
FALSE:

[localhost:21000] > create table empty (x int);
[localhost:21000] > select y from t2 where exists (select x from empty);
[localhost:21000] >

Added in: Impala 2.0.0

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Prior to Impala 2.6, the NOT EXISTS operator required a correlated subquery. In Impala 2.6 and higher, NOT
EXISTS works with uncorrelated queries also.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

 | Impala SQL Language Reference | 194

Examples:

The following examples refer to these simple tables containing small sets of integers or strings:

[localhost:21000] > create table t1 (x int);
[localhost:21000] > insert into t1 values (1), (2), (3), (4), (5), (6);

[localhost:21000] > create table t2 (y int);
[localhost:21000] > insert into t2 values (2), (4), (6);

[localhost:21000] > create table t3 (z int);
[localhost:21000] > insert into t3 values (1), (3), (5);

[localhost:21000] > create table month_names (m string);
[localhost:21000] > insert into month_names values
 > ('January'), ('February'), ('March'),
 > ('April'), ('May'), ('June'), ('July'),
 > ('August'), ('September'), ('October'),
 > ('November'), ('December');

The following example shows a correlated subquery that finds all the values in one table that exist in another table.
For each value X from T1, the query checks if the Y column of T2 contains an identical value, and the EXISTS
operator returns TRUE or FALSE as appropriate in each case.

localhost:21000] > select x from t1 where exists (select y from t2 where
 t1.x = y);
+---+
| x |
+---+
| 2 |
| 4 |
| 6 |
+---+

An uncorrelated query is less interesting in this case. Because the subquery always returns TRUE, all rows from T1
are returned. If the table contents where changed so that the subquery did not match any rows, none of the rows from
T1 would be returned.

[localhost:21000] > select x from t1 where exists (select y from t2 where y
 > 5);
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
+---+

The following example shows how an uncorrelated subquery can test for the existence of some condition within a
table. By using LIMIT 1 or an aggregate function, the query returns a single result or no result based on whether the
subquery matches any rows. Here, we know that T1 and T2 contain some even numbers, but T3 does not.

[localhost:21000] > select "contains an even number" from t1 where exists
 (select x from t1 where x % 2 = 0) limit 1;
+---------------------------+
| 'contains an even number' |
+---------------------------+
| contains an even number |
+---------------------------+

 | Impala SQL Language Reference | 195

[localhost:21000] > select "contains an even number" as assertion from t1
 where exists (select x from t1 where x % 2 = 0) limit 1;
+-------------------------+
| assertion |
+-------------------------+
| contains an even number |
+-------------------------+
[localhost:21000] > select "contains an even number" as assertion from t2
 where exists (select x from t2 where y % 2 = 0) limit 1;
ERROR: AnalysisException: couldn't resolve column reference: 'x'
[localhost:21000] > select "contains an even number" as assertion from t2
 where exists (select y from t2 where y % 2 = 0) limit 1;
+-------------------------+
| assertion |
+-------------------------+
| contains an even number |
+-------------------------+
[localhost:21000] > select "contains an even number" as assertion from t3
 where exists (select z from t3 where z % 2 = 0) limit 1;
[localhost:21000] >

The following example finds numbers in one table that are 1 greater than numbers from another table. The EXISTS
notation is simpler than an equivalent CROSS JOIN between the tables. (The example then also illustrates how the
same test could be performed using an IN operator.)

[localhost:21000] > select x from t1 where exists (select y from t2 where x
 = y + 1);
+---+
| x |
+---+
| 3 |
| 5 |
+---+
[localhost:21000] > select x from t1 where x in (select y + 1 from t2);
+---+
| x |
+---+
| 3 |
| 5 |
+---+

The following example finds values from one table that do not exist in another table.

[localhost:21000] > select x from t1 where not exists (select y from t2
 where x = y);
+---+
| x |
+---+
| 1 |
| 3 |
| 5 |
+---+

The following example uses the NOT EXISTS operator to find all the leaf nodes in tree-structured data. This
simplified “tree of life” has multiple levels (class, order, family, and so on), with each item pointing upward through
a PARENT pointer. The example runs an outer query and a subquery on the same table, returning only those items
whose ID value is not referenced by the PARENT of any other item.

[localhost:21000] > create table tree (id int, parent int, name string);
[localhost:21000] > insert overwrite tree values
 > (0, null, "animals"),
 > (1, 0, "placentals"),

 | Impala SQL Language Reference | 196

 > (2, 0, "marsupials"),
 > (3, 1, "bats"),
 > (4, 1, "cats"),
 > (5, 2, "kangaroos"),
 > (6, 4, "lions"),
 > (7, 4, "tigers"),
 > (8, 5, "red kangaroo"),
 > (9, 2, "wallabies");
[localhost:21000] > select name as "leaf node" from tree one
 > where not exists (select parent from tree two where
 one.id = two.parent);
+--------------+
| leaf node |
+--------------+
| bats |
| lions |
| tigers |
| red kangaroo |
| wallabies |
+--------------+

Related information:

Subqueries in Impala SELECT Statements on page 341

ILIKE Operator

A case-insensitive comparison operator for STRING data, with basic wildcard capability using _ to match a single
character and % to match multiple characters. The argument expression must match the entire string value. Typically,
it is more efficient to put any % wildcard match at the end of the string.

This operator, available in Impala 2.5 and higher, is the equivalent of the LIKE operator, but with case-insensitive
comparisons.

Syntax:

string_expression ILIKE wildcard_expression
string_expression NOT ILIKE wildcard_expression

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

In the following examples, strings that are the same except for differences in uppercase and lowercase match
successfully with ILIKE, but do not match with LIKE:

select 'fooBar' ilike 'FOOBAR';
+-------------------------+
| 'foobar' ilike 'foobar' |
+-------------------------+
| true |
+-------------------------+

select 'fooBar' like 'FOOBAR';
+------------------------+
| 'foobar' like 'foobar' |
+------------------------+
| false |

 | Impala SQL Language Reference | 197

+------------------------+

select 'FOOBAR' ilike 'f%';
+---------------------+
| 'foobar' ilike 'f%' |
+---------------------+
| true |
+---------------------+

select 'FOOBAR' like 'f%';
+--------------------+
| 'foobar' like 'f%' |
+--------------------+
| false |
+--------------------+

select 'ABCXYZ' not ilike 'ab_xyz';
+-----------------------------+
| not 'abcxyz' ilike 'ab_xyz' |
+-----------------------------+
| false |
+-----------------------------+

select 'ABCXYZ' not like 'ab_xyz';
+----------------------------+
| not 'abcxyz' like 'ab_xyz' |
+----------------------------+
| true |
+----------------------------+

Related information:

For case-sensitive comparisons, see LIKE Operator on page 204. For a more general kind of search operator using
regular expressions, see REGEXP Operator on page 208 or its case-insensitive counterpart IREGEXP Operator on
page 200.

IN Operator

The IN operator compares an argument value to a set of values, and returns TRUE if the argument matches any value
in the set. The NOT IN operator reverses the comparison, and checks if the argument value is not part of a set of
values.

Syntax:

expression IN (expression [, expression])
expression IN (subquery)

expression NOT IN (expression [, expression])
expression NOT IN (subquery)

The left-hand expression and the set of comparison values must be of compatible types.

The left-hand expression must consist only of a single value, not a tuple. Although the left-hand expression is
typically a column name, it could also be some other value. For example, the WHERE clauses WHERE id IN (5)
and WHERE 5 IN (id) produce the same results.

The set of values to check against can be specified as constants, function calls, column names, or other expressions in
the query text. The maximum number of expressions in the IN list is 9999. (The maximum number of elements of a
single expression is 10,000 items, and the IN operator itself counts as one.)

In Impala 2.0 and higher, the set of values can also be generated by a subquery. IN can evaluate an unlimited number
of results using a subquery.

 | Impala SQL Language Reference | 198

Usage notes:

Any expression using the IN operator could be rewritten as a series of equality tests connected with OR, but the IN
syntax is often clearer, more concise, and easier for Impala to optimize. For example, with partitioned tables, queries
frequently use IN clauses to filter data by comparing the partition key columns to specific values.

NULL considerations:

If there really is a matching non-null value, IN returns TRUE:

[localhost:21000] > select 1 in (1,null,2,3);
+----------------------+
| 1 in (1, null, 2, 3) |
+----------------------+
| true |
+----------------------+
[localhost:21000] > select 1 not in (1,null,2,3);
+--------------------------+
| 1 not in (1, null, 2, 3) |
+--------------------------+
| false |
+--------------------------+

If the searched value is not found in the comparison values, and the comparison values include NULL, the result is
NULL:

[localhost:21000] > select 5 in (1,null,2,3);
+----------------------+
| 5 in (1, null, 2, 3) |
+----------------------+
| NULL |
+----------------------+
[localhost:21000] > select 5 not in (1,null,2,3);
+--------------------------+
| 5 not in (1, null, 2, 3) |
+--------------------------+
| NULL |
+--------------------------+
[localhost:21000] > select 1 in (null);
+-------------+
| 1 in (null) |
+-------------+
| NULL |
+-------------+
[localhost:21000] > select 1 not in (null);
+-----------------+
| 1 not in (null) |
+-----------------+
| NULL |
+-----------------+

If the left-hand argument is NULL, IN always returns NULL. This rule applies even if the comparison values include
NULL.

[localhost:21000] > select null in (1,2,3);
+-------------------+
| null in (1, 2, 3) |
+-------------------+
| NULL |
+-------------------+
[localhost:21000] > select null not in (1,2,3);
+-----------------------+
| null not in (1, 2, 3) |

 | Impala SQL Language Reference | 199

+-----------------------+
| NULL |
+-----------------------+
[localhost:21000] > select null in (null);
+----------------+
| null in (null) |
+----------------+
| NULL |
+----------------+
[localhost:21000] > select null not in (null);
+--------------------+
| null not in (null) |
+--------------------+
| NULL |
+--------------------+

Added in: Available in earlier Impala releases, but new capabilities were added in Impala 2.0.0

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r_name, nation.item.n_name, nation.item.n_nationkey
from region, region.r_nations as nation
where nation.item.n_nationkey in (1,3,5)
+---------+-------------+------------------+
| r_name | item.n_name | item.n_nationkey |
+---------+-------------+------------------+
AMERICA	CANADA	3
AMERICA	ARGENTINA	1
AFRICA	ETHIOPIA	5
+---------+-------------+------------------+

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

 | Impala SQL Language Reference | 200

Examples:

-- Using IN is concise and self-documenting.
SELECT * FROM t1 WHERE c1 IN (1,2,10);
-- Equivalent to series of = comparisons ORed together.
SELECT * FROM t1 WHERE c1 = 1 OR c1 = 2 OR c1 = 10;

SELECT c1 AS "starts with vowel" FROM t2 WHERE upper(substr(c1,1,1)) IN
 ('A','E','I','O','U');

SELECT COUNT(DISTINCT(visitor_id)) FROM web_traffic WHERE month IN
 ('January','June','July');

Related information:

Subqueries in Impala SELECT Statements on page 341

IREGEXP Operator

Tests whether a value matches a regular expression, using case-insensitive string comparisons. Uses the POSIX
regular expression syntax where ^ and $ match the beginning and end of the string, . represents any single character,
* represents a sequence of zero or more items, + represents a sequence of one or more items, ? produces a non-
greedy match, and so on.

This operator, available in Impala 2.5 and higher, is the equivalent of the REGEXP operator, but with case-insensitive
comparisons.

Syntax:

string_expression IREGEXP regular_expression

Usage notes:

The regular expression must match the entire value, not just occur somewhere inside it. Use .* at the beginning,
the end, or both if you only need to match characters anywhere in the middle. Thus, the ^ and $ atoms are often
redundant, although you might already have them in your expression strings that you reuse from elsewhere.

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do
not allow backreferences. To retrieve the part of a value matched within a () section, use the regexp_extract()
built-in function. (Currently, there is not any case-insensitive equivalent for the regexp_extract() function.)

Note:

In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by .*. See
REGEXP Operator on page 208 for examples. Previously, these operators only succeeded when the regular
expression matched the entire target string. This change improves compatibility with the regular expression
support for popular database systems. There is no change to the behavior of the regexp_extract() and
regexp_replace() built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 on page 810 for details.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,

https://code.google.com/p/re2/

 | Impala SQL Language Reference | 201

or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the syntax for the IREGEXP operator.

select 'abcABCaabbcc' iregexp '^[a-c]+$';
+---------------------------------+
| 'abcabcaabbcc' iregexp '[a-c]+' |
+---------------------------------+
| true |
+---------------------------------+

Related information:

REGEXP Operator on page 208

IS DISTINCT FROM Operator

The IS DISTINCT FROM operator, and its converse the IS NOT DISTINCT FROM operator, test whether or not
values are identical. IS NOT DISTINCT FROM is similar to the = operator, and IS DISTINCT FROM is similar
to the != operator, except that NULL values are treated as identical. Therefore, IS NOT DISTINCT FROM returns
true rather than NULL, and IS DISTINCT FROM returns false rather than NULL, when comparing two NULL
values. If one of the values being compared is NULL and the other is not, IS DISTINCT FROM returns true and
IS NOT DISTINCT FROM returns false, again instead of returning NULL in both cases.

Syntax:

expression1 IS DISTINCT FROM expression2

expression1 IS NOT DISTINCT FROM expression2
expression1 <=> expression2

The operator <=> is an alias for IS NOT DISTINCT FROM. It is typically used as a NULL-safe equality operator in
join queries. That is, A <=> B is true if A equals B or if both A and B are NULL.

Usage notes:

This operator provides concise notation for comparing two values and always producing a true or false result,
without treating NULL as a special case. Otherwise, to unambiguously distinguish between two values requires a
compound expression involving IS [NOT] NULL tests of both operands in addition to the = or != operator.

The <=> operator, used like an equality operator in a join query, is more efficient than the equivalent clause: A = B
OR (A IS NULL AND B IS NULL). The <=> operator can use a hash join, while the OR expression cannot.

Examples:

The following examples show how IS DISTINCT FROM gives output similar to the != operator, and IS NOT
DISTINCT FROM gives output similar to the = operator. The exception is when the expression involves a NULL
value on one side or both sides, where != and = return NULL but the IS [NOT] DISTINCT FROM operators still
return true or false.

select 1 is distinct from 0, 1 != 0;
+----------------------+--------+
| 1 is distinct from 0 | 1 != 0 |
+----------------------+--------+
| true | true |
+----------------------+--------+

select 1 is distinct from 1, 1 != 1;
+----------------------+--------+

 | Impala SQL Language Reference | 202

| 1 is distinct from 1 | 1 != 1 |
+----------------------+--------+
| false | false |
+----------------------+--------+

select 1 is distinct from null, 1 != null;
+-------------------------+-----------+
| 1 is distinct from null | 1 != null |
+-------------------------+-----------+
| true | NULL |
+-------------------------+-----------+

select null is distinct from null, null != null;
+----------------------------+--------------+
| null is distinct from null | null != null |
+----------------------------+--------------+
| false | NULL |
+----------------------------+--------------+

select 1 is not distinct from 0, 1 = 0;
+--------------------------+-------+
| 1 is not distinct from 0 | 1 = 0 |
+--------------------------+-------+
| false | false |
+--------------------------+-------+

select 1 is not distinct from 1, 1 = 1;
+--------------------------+-------+
| 1 is not distinct from 1 | 1 = 1 |
+--------------------------+-------+
| true | true |
+--------------------------+-------+

select 1 is not distinct from null, 1 = null;
+-----------------------------+----------+
| 1 is not distinct from null | 1 = null |
+-----------------------------+----------+
| false | NULL |
+-----------------------------+----------+

select null is not distinct from null, null = null;
+--------------------------------+-------------+
| null is not distinct from null | null = null |
+--------------------------------+-------------+
| true | NULL |
+--------------------------------+-------------+

The following example shows how IS DISTINCT FROM considers CHAR values to be the same (not distinct from
each other) if they only differ in the number of trailing spaces. Therefore, sometimes the result of an IS [NOT]
DISTINCT FROM operator differs depending on whether the values are STRING/VARCHAR or CHAR.

select
 'x' is distinct from 'x ' as string_with_trailing_spaces,
 cast('x' as char(5)) is distinct from cast('x ' as char(5)) as
 char_with_trailing_spaces;
+-----------------------------+---------------------------+
| string_with_trailing_spaces | char_with_trailing_spaces |
+-----------------------------+---------------------------+
| true | false |
+-----------------------------+---------------------------+

 | Impala SQL Language Reference | 203

IS NULL Operator

The IS NULL operator, and its converse the IS NOT NULL operator, test whether a specified value is NULL.
Because using NULL with any of the other comparison operators such as = or != also returns NULL rather than TRUE
or FALSE, you use a special-purpose comparison operator to check for this special condition.

In Impala 2.11 and higher, you can use the operators IS UNKNOWN and IS NOT UNKNOWN as synonyms for IS
NULL and IS NOT NULL, respectively.

Syntax:

expression IS NULL
expression IS NOT NULL

expression IS UNKNOWN
expression IS NOT UNKNOWN

Usage notes:

In many cases, NULL values indicate some incorrect or incomplete processing during data ingestion or conversion.
You might check whether any values in a column are NULL, and if so take some followup action to fill them in.

With sparse data, often represented in “wide” tables, it is common for most values to be NULL with only an
occasional non-NULL value. In those cases, you can use the IS NOT NULL operator to identify the rows containing
any data at all for a particular column, regardless of the actual value.

With a well-designed database schema, effective use of NULL values and IS NULL and IS NOT NULL operators
can save having to design custom logic around special values such as 0, -1, 'N/A', empty string, and so on. NULL
lets you distinguish between a value that is known to be 0, false, or empty, and a truly unknown value.

Complex type considerations:

The IS [NOT] UNKNOWN operator, as with the IS [NOT] NULL operator, is not applicable to complex type
columns (STRUCT, ARRAY, or MAP). Using a complex type column with this operator causes a query error.

Examples:

-- If this value is non-zero, something is wrong.
select count(*) from employees where employee_id is null;

-- With data from disparate sources, some fields might be blank.
-- Not necessarily an error condition.
select count(*) from census where household_income is null;

-- Sometimes we expect fields to be null, and followup action
-- is needed when they are not.
select count(*) from web_traffic where weird_http_code is not null;

IS TRUE Operator

This variation of the IS operator tests for truth or falsity, with right-hand arguments [NOT] TRUE, [NOT] FALSE,
and [NOT] UNKNOWN.

Syntax:

expression IS TRUE
expression IS NOT TRUE

expression IS FALSE
expression IS NOT FALSE

Usage notes:

 | Impala SQL Language Reference | 204

This IS TRUE and IS FALSE forms are similar to doing equality comparisons with the Boolean values TRUE
and FALSE, except that IS TRUE and IS FALSE always return either TRUE or FALSE, even if the left-hand side
expression returns NULL

These operators let you simplify Boolean comparisons that must also check for NULL, for example X != 10 AND
X IS NOT NULL is equivalent to (X != 10) IS TRUE.

In Impala 2.11 and higher, you can use the operators IS [NOT] TRUE and IS [NOT] FALSE as equivalents for
the built-in functions istrue(), isnottrue(), isfalse(), and isnotfalse().

Complex type considerations:

The IS [NOT] TRUE and IS [NOT] FALSE operators are not applicable to complex type columns (STRUCT,
ARRAY, or MAP). Using a complex type column with these operators causes a query error.

Added in: Impala 2.11.0

Examples:

select assertion, b, b is true, b is false, b is unknown
 from boolean_test;
+-------------+-------+-----------+------------+-----------+
| assertion | b | istrue(b) | isfalse(b) | b is null |
+-------------+-------+-----------+------------+-----------+
2 + 2 = 4	true	true	false	false
2 + 2 = 5	false	false	true	false
1 = null	NULL	false	false	true
null = null	NULL	false	false	true
+-------------+-------+-----------+------------+-----------+

LIKE Operator

A comparison operator for STRING data, with basic wildcard capability using the underscore (_) to match a single
character and the percent sign (%) to match multiple characters. The argument expression must match the entire string
value. Typically, it is more efficient to put any % wildcard match at the end of the string.

Syntax:

string_expression LIKE wildcard_expression
string_expression NOT LIKE wildcard_expression

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

select distinct c_last_name from customer where c_last_name like 'Mc%' or
 c_last_name like 'Mac%';
select count(c_last_name) from customer where c_last_name like 'M%';
select c_email_address from customer where c_email_address like '%.edu';

-- We can find 4-letter names beginning with 'M' by calling functions...
select distinct c_last_name from customer where length(c_last_name) = 4 and
 substr(c_last_name,1,1) = 'M';
-- ...or in a more readable way by matching M followed by exactly 3
 characters.
select distinct c_last_name from customer where c_last_name like 'M___';

 | Impala SQL Language Reference | 205

For case-insensitive comparisons, see ILIKE Operator on page 196. For a more general kind of search operator
using regular expressions, see REGEXP Operator on page 208 or its case-insensitive counterpart IREGEXP
Operator on page 200.

Logical Operators

Logical operators return a BOOLEAN value, based on a binary or unary logical operation between arguments that are
also Booleans. Typically, the argument expressions use comparison operators.

Syntax:

boolean_expression binary_logical_operator boolean_expression
unary_logical_operator boolean_expression

The Impala logical operators are:

• AND: A binary operator that returns true if its left-hand and right-hand arguments both evaluate to true, NULL
if either argument is NULL, and false otherwise.

• OR: A binary operator that returns true if either of its left-hand and right-hand arguments evaluate to true,
NULL if one argument is NULL and the other is either NULL or false, and false otherwise.

• NOT: A unary operator that flips the state of a Boolean expression from true to false, or false to true.
If the argument expression is NULL, the result remains NULL. (When NOT is used this way as a unary logical
operator, it works differently than the IS NOT NULL comparison operator, which returns true when applied to
a NULL.)

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r_name, nation.item.n_name, nation.item.n_nationkey
 from region, region.r_nations as nation
where
 nation.item.n_nationkey between 3 and 5
 or nation.item.n_nationkey < 15;
+-------------+----------------+------------------+
| r_name | item.n_name | item.n_nationkey |

 | Impala SQL Language Reference | 206

+-------------+----------------+------------------+
EUROPE	UNITED KINGDOM	23
EUROPE	RUSSIA	22
EUROPE	ROMANIA	19
ASIA	VIETNAM	21
ASIA	CHINA	18
AMERICA	UNITED STATES	24
AMERICA	PERU	17
AMERICA	CANADA	3
MIDDLE EAST	SAUDI ARABIA	20
MIDDLE EAST	EGYPT	4
AFRICA	MOZAMBIQUE	16
AFRICA	ETHIOPIA	5
+-------------+----------------+------------------+

Examples:

These examples demonstrate the AND operator:

[localhost:21000] > select true and true;
+---------------+
| true and true |
+---------------+
| true |
+---------------+
[localhost:21000] > select true and false;
+----------------+
| true and false |
+----------------+
| false |
+----------------+
[localhost:21000] > select false and false;
+-----------------+
| false and false |
+-----------------+
| false |
+-----------------+
[localhost:21000] > select true and null;
+---------------+
| true and null |
+---------------+
| NULL |
+---------------+
[localhost:21000] > select (10 > 2) and (6 != 9);
+-----------------------+
| (10 > 2) and (6 != 9) |
+-----------------------+
| true |
+-----------------------+

These examples demonstrate the OR operator:

[localhost:21000] > select true or true;
+--------------+
| true or true |
+--------------+
| true |
+--------------+
[localhost:21000] > select true or false;
+---------------+
| true or false |
+---------------+
| true |

 | Impala SQL Language Reference | 207

+---------------+
[localhost:21000] > select false or false;
+----------------+
| false or false |
+----------------+
| false |
+----------------+
[localhost:21000] > select true or null;
+--------------+
| true or null |
+--------------+
| true |
+--------------+
[localhost:21000] > select null or true;
+--------------+
| null or true |
+--------------+
| true |
+--------------+
[localhost:21000] > select false or null;
+---------------+
| false or null |
+---------------+
| NULL |
+---------------+
[localhost:21000] > select (1 = 1) or ('hello' = 'world');
+--------------------------------+
| (1 = 1) or ('hello' = 'world') |
+--------------------------------+
| true |
+--------------------------------+
[localhost:21000] > select (2 + 2 != 4) or (-1 > 0);
+--------------------------+
| (2 + 2 != 4) or (-1 > 0) |
+--------------------------+
| false |
+--------------------------+

These examples demonstrate the NOT operator:

[localhost:21000] > select not true;
+----------+
| not true |
+----------+
| false |
+----------+
[localhost:21000] > select not false;
+-----------+
| not false |
+-----------+
| true |
+-----------+
[localhost:21000] > select not null;
+----------+
| not null |
+----------+
| NULL |
+----------+
[localhost:21000] > select not (1=1);
+-------------+
| not (1 = 1) |
+-------------+
| false |

 | Impala SQL Language Reference | 208

+-------------+

REGEXP Operator

Tests whether a value matches a regular expression. Uses the POSIX regular expression syntax where ^ and $ match
the beginning and end of the string, . represents any single character, * represents a sequence of zero or more items,
+ represents a sequence of one or more items, ? produces a non-greedy match, and so on.

Syntax:

string_expression REGEXP regular_expression

Usage notes:

The regular expression must match the entire value, not just occur somewhere inside it. Use .* at the beginning,
the end, or both if you only need to match characters anywhere in the middle. Thus, the ^ and $ atoms are often
redundant, although you might already have them in your expression strings that you reuse from elsewhere.

The RLIKE operator is a synonym for REGEXP.

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do
not allow backreferences. To retrieve the part of a value matched within a () section, use the regexp_extract()
built-in function.

Note:

In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by .*. See
REGEXP Operator on page 208 for examples. Previously, these operators only succeeded when the regular
expression matched the entire target string. This change improves compatibility with the regular expression
support for popular database systems. There is no change to the behavior of the regexp_extract() and
regexp_replace() built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 on page 810 for details.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP directly in an operator. You can
apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY,
or the key or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot
notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLIKE operators.

-- Find all customers whose first name starts with 'J', followed by 0 or
 more of any character.
select c_first_name, c_last_name from customer where c_first_name regexp
 '^J.*';
select c_first_name, c_last_name from customer where c_first_name rlike
 '^J.*';

-- Find 'Macdonald', where the first 'a' is optional and the 'D' can be
 upper- or lowercase.
-- The ^...$ are required, to match the start and end of the value.

https://code.google.com/p/re2/

 | Impala SQL Language Reference | 209

select c_first_name, c_last_name from customer where c_last_name regexp
 '^Ma?c[Dd]onald$';
select c_first_name, c_last_name from customer where c_last_name rlike '^Ma?
c[Dd]onald$';

-- Match multiple character sequences, either 'Mac' or 'Mc'.
select c_first_name, c_last_name from customer where c_last_name regexp
 '^(Mac|Mc)donald$';
select c_first_name, c_last_name from customer where c_last_name rlike
 '^(Mac|Mc)donald$';

-- Find names starting with 'S', then one or more vowels, then 'r', then any
 other characters.
-- Matches 'Searcy', 'Sorenson', 'Sauer'.
select c_first_name, c_last_name from customer where c_last_name regexp
 '^S[aeiou]+r.*$';
select c_first_name, c_last_name from customer where c_last_name rlike
 '^S[aeiou]+r.*$';

-- Find names that end with 2 or more vowels: letters from the set
 a,e,i,o,u.
select c_first_name, c_last_name from customer where c_last_name regexp
 '.*[aeiou]{2,}$';
select c_first_name, c_last_name from customer where c_last_name rlike
 '.*[aeiou]{2,}$';

-- You can use letter ranges in the [] blocks, for example to find names
 starting with A, B, or C.
select c_first_name, c_last_name from customer where c_last_name regexp
 '^[A-C].*';
select c_first_name, c_last_name from customer where c_last_name rlike '^[A-
C].*';

-- If you are not sure about case, leading/trailing spaces, and so on, you
 can process the
-- column using string functions first.
select c_first_name, c_last_name from customer where
 lower(trim(c_last_name)) regexp '^de.*';
select c_first_name, c_last_name from customer where
 lower(trim(c_last_name)) rlike '^de.*';

Related information:

For regular expression matching with case-insensitive comparisons, see IREGEXP Operator on page 200.

RLIKE Operator

Synonym for the REGEXP operator. See REGEXP Operator on page 208 for details.

Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLIKE operators.

-- Find all customers whose first name starts with 'J', followed by 0 or
 more of any character.
select c_first_name, c_last_name from customer where c_first_name regexp
 '^J.*';
select c_first_name, c_last_name from customer where c_first_name rlike
 '^J.*';

-- Find 'Macdonald', where the first 'a' is optional and the 'D' can be
 upper- or lowercase.
-- The ^...$ are required, to match the start and end of the value.

 | Impala SQL Language Reference | 210

select c_first_name, c_last_name from customer where c_last_name regexp
 '^Ma?c[Dd]onald$';
select c_first_name, c_last_name from customer where c_last_name rlike '^Ma?
c[Dd]onald$';

-- Match multiple character sequences, either 'Mac' or 'Mc'.
select c_first_name, c_last_name from customer where c_last_name regexp
 '^(Mac|Mc)donald$';
select c_first_name, c_last_name from customer where c_last_name rlike
 '^(Mac|Mc)donald$';

-- Find names starting with 'S', then one or more vowels, then 'r', then any
 other characters.
-- Matches 'Searcy', 'Sorenson', 'Sauer'.
select c_first_name, c_last_name from customer where c_last_name regexp
 '^S[aeiou]+r.*$';
select c_first_name, c_last_name from customer where c_last_name rlike
 '^S[aeiou]+r.*$';

-- Find names that end with 2 or more vowels: letters from the set
 a,e,i,o,u.
select c_first_name, c_last_name from customer where c_last_name regexp
 '.*[aeiou]{2,}$';
select c_first_name, c_last_name from customer where c_last_name rlike
 '.*[aeiou]{2,}$';

-- You can use letter ranges in the [] blocks, for example to find names
 starting with A, B, or C.
select c_first_name, c_last_name from customer where c_last_name regexp
 '^[A-C].*';
select c_first_name, c_last_name from customer where c_last_name rlike '^[A-
C].*';

-- If you are not sure about case, leading/trailing spaces, and so on, you
 can process the
-- column using string functions first.
select c_first_name, c_last_name from customer where
 lower(trim(c_last_name)) regexp '^de.*';
select c_first_name, c_last_name from customer where
 lower(trim(c_last_name)) rlike '^de.*';

Impala Schema Objects and Object Names
With Impala, you work with schema objects that are familiar to database users: primarily databases, tables, views, and
functions. The SQL syntax to work with these objects is explained in Impala SQL Statements on page 223. This
section explains the conceptual knowledge you need to work with these objects and the various ways to specify their
names.

Within a table, partitions can also be considered a kind of object. Partitioning is an important subject for Impala,
with its own documentation section covering use cases and performance considerations. See Partitioning for Impala
Tables on page 681 for details.

Impala does not have a counterpart of the “tablespace” notion from some database systems. By default, all the data
files for a database, table, or partition are located within nested folders within the HDFS file system. You can also
specify a particular HDFS location for a given Impala table or partition. The raw data for these objects is represented
as a collection of data files, providing the flexibility to load data by simply moving files into the expected HDFS
location.

Information about the schema objects is held in the metastore database. This database is shared between Impala
and Hive, allowing each to create, drop, and query each other's databases, tables, and so on. When Impala makes a
change to schema objects through a CREATE, ALTER, DROP, INSERT, or LOAD DATA statement, it broadcasts

 | Impala SQL Language Reference | 211

those changes to all nodes in the cluster through the catalog service. When you make such changes through Hive or
directly through manipulating HDFS files, you use the REFRESH or INVALIDATE METADATA statements on the
Impala side to recognize the newly loaded data, new tables, and so on.

Overview of Impala Aliases

When you write the names of tables, columns, or column expressions in a query, you can assign an alias at the same
time. Then you can specify the alias rather than the original name when making other references to the table or
column in the same statement. You typically specify aliases that are shorter, easier to remember, or both than the
original names. The aliases are printed in the query header, making them useful for self-documenting output.

To set up an alias, add the AS alias clause immediately after any table, column, or expression name in the
SELECT list or FROM list of a query. The AS keyword is optional; you can also specify the alias immediately after the
original name.

-- Make the column headers of the result set easier to understand.
SELECT c1 AS name, c2 AS address, c3 AS phone FROM table_with_terse_columns;
SELECT SUM(ss_xyz_dollars_net) AS total_sales FROM
 table_with_cryptic_columns;
-- The alias can be a quoted string for extra readability.
SELECT c1 AS "Employee ID", c2 AS "Date of hire" FROM t1;
-- The AS keyword is optional.
SELECT c1 "Employee ID", c2 "Date of hire" FROM t1;

-- The table aliases assigned in the FROM clause can be used both earlier
-- in the query (the SELECT list) and later (the WHERE clause).
SELECT one.name, two.address, three.phone
 FROM census one, building_directory two, phonebook three
WHERE one.id = two.id and two.id = three.id;

-- The aliases c1 and c2 let the query handle columns with the same names
 from 2 joined tables.
-- The aliases t1 and t2 let the query abbreviate references to long or
 cryptically named tables.
SELECT t1.column_n AS c1, t2.column_n AS c2 FROM long_name_table AS t1,
 very_long_name_table2 AS t2
 WHERE c1 = c2;
SELECT t1.column_n c1, t2.column_n c2 FROM table1 t1, table2 t2
 WHERE c1 = c2;

To use an alias name that matches one of the Impala reserved keywords (listed in Impala Reserved Words on page
776), surround the identifier with either single or double quotation marks, or `` characters (backticks).

Aliases follow the same rules as identifiers when it comes to case insensitivity. Aliases can be longer than identifiers
(up to the maximum length of a Java string) and can include additional characters such as spaces and dashes when
they are quoted using backtick characters.

Complex type considerations:

Queries involving the complex types (ARRAY, STRUCT, and MAP), typically make extensive use of table aliases.
These queries involve join clauses where the complex type column is treated as a joined table. To construct two-part
or three-part qualified names for the complex column elements in the FROM list, sometimes it is syntactically required
to construct a table alias for the complex column where it is referenced in the join clause. See Complex Types (Impala
2.3 or higher only) on page 152 for details and examples.

Alternatives:

Another way to define different names for the same tables or columns is to create views. See Overview of Impala
Views on page 219 for details.

 | Impala SQL Language Reference | 212

Overview of Impala Databases

In Impala, a database is a logical container for a group of tables. Each database defines a separate namespace. Within
a database, you can refer to the tables inside it using their unqualified names. Different databases can contain tables
with identical names.

Creating a database is a lightweight operation. There are minimal database-specific properties to configure, only
LOCATION and COMMENT. There is no ALTER DATABASE statement.

Typically, you create a separate database for each project or application, to avoid naming conflicts between tables
and to make clear which tables are related to each other. The USE statement lets you switch between databases.
Unqualified references to tables, views, and functions refer to objects within the current database. You can also refer
to objects in other databases by using qualified names of the form dbname.object_name.

Each database is physically represented by a directory in HDFS. When you do not specify a LOCATION attribute, the
directory is located in the Impala data directory with the associated tables managed by Impala. When you do specify
a LOCATION attribute, any read and write operations for tables in that database are relative to the specified HDFS
directory.

There is a special database, named default, where you begin when you connect to Impala. Tables created in
default are physically located one level higher in HDFS than all the user-created databases.

Impala includes another predefined database, _impala_builtins, that serves as the location for the built-in
functions. To see the built-in functions, use a statement like the following:

show functions in _impala_builtins;
show functions in _impala_builtins like '*substring*';

Related statements:

CREATE DATABASE Statement on page 247, DROP DATABASE Statement on page 286, USE Statement on
page 418, SHOW DATABASES on page 399

Overview of Impala Functions

Functions let you apply arithmetic, string, or other computations and transformations to Impala data. You typically
use them in SELECT lists and WHERE clauses to filter and format query results so that the result set is exactly what
you want, with no further processing needed on the application side.

Scalar functions return a single result for each input row. See Impala Built-In Functions on page 418.

[localhost:21000] > select name, population from country where continent =
 'North America' order by population desc limit 4;
[localhost:21000] > select upper(name), population from country where
 continent = 'North America' order by population desc limit 4;
+-------------+------------+
| upper(name) | population |
+-------------+------------+
USA	320000000
MEXICO	122000000
CANADA	25000000
GUATEMALA	16000000
+-------------+------------+

Aggregate functions combine the results from multiple rows: either a single result for the entire table, or a separate
result for each group of rows. Aggregate functions are frequently used in combination with GROUP BY and HAVING
clauses in the SELECT statement. See Impala Aggregate Functions on page 537.

[localhost:21000] > select continent, sum(population) as howmany from
 country group by continent order by howmany desc;
+---------------+------------+
| continent | howmany |

 | Impala SQL Language Reference | 213

+---------------+------------+
Asia	4298723000
Africa	1110635000
Europe	742452000
North America	565265000
South America	406740000
Oceania	38304000
+---------------+------------+

User-defined functions (UDFs) let you code your own logic. They can be either scalar or aggregate functions. UDFs
let you implement important business or scientific logic using high-performance code for Impala to automatically
parallelize. You can also use UDFs to implement convenience functions to simplify reporting or porting SQL from
other database systems. See Impala User-Defined Functions (UDFs) on page 587.

[localhost:21000] > select rot13('Hello world!') as 'Weak obfuscation';
+------------------+
| weak obfuscation |
+------------------+
| Uryyb jbeyq! |
+------------------+
[localhost:21000] > select likelihood_of_new_subatomic_particle(sensor1,
 sensor2, sensor3) as probability
 > from experimental_results group by experiment;

Each function is associated with a specific database. For example, if you issue a USE somedb statement followed
by CREATE FUNCTION somefunc, the new function is created in the somedb database, and you could refer to
it through the fully qualified name somedb.somefunc. You could then issue another USE statement and create a
function with the same name in a different database.

Impala built-in functions are associated with a special database named _impala_builtins, which lets you refer
to them from any database without qualifying the name.

[localhost:21000] > show databases;
+-------------------------+
| name |
+-------------------------+
| _impala_builtins |
| analytic_functions |
| avro_testing |
| data_file_size |
...
[localhost:21000] > show functions in _impala_builtins like '*subs*';
+-------------+-----------------------------------+
| return type | signature |
+-------------+-----------------------------------+
STRING	substr(STRING, BIGINT)
STRING	substr(STRING, BIGINT, BIGINT)
STRING	substring(STRING, BIGINT)
STRING	substring(STRING, BIGINT, BIGINT)
+-------------+-----------------------------------+

Related statements: CREATE FUNCTION Statement on page 250, DROP FUNCTION Statement on page 288

Overview of Impala Identifiers

Identifiers are the names of databases, tables, or columns that you specify in a SQL statement. The rules for identifiers
govern what names you can give to things you create, the notation for referring to names containing unusual
characters, and other aspects such as case sensitivity.

• The minimum length of an identifier is 1 character.
• The maximum length of an identifier is currently 128 characters, enforced by the metastore database.

 | Impala SQL Language Reference | 214

• An identifier must start with an alphabetic character. The remainder can contain any combination of alphanumeric
characters and underscores. Quoting the identifier with backticks has no effect on the allowed characters in the
name.

• An identifier can contain only ASCII characters.
• To use an identifier name that matches one of the Impala reserved keywords (listed in Impala Reserved Words

on page 776), surround the identifier with `` characters (backticks). Quote the reserved word even if it is part
of a fully qualified name. The following example shows how a reserved word can be used as a column name if it
is quoted with backticks in the CREATE TABLE statement, and how the column name must also be quoted with
backticks in a query:

[localhost:21000] > create table reserved (`data` string);

[localhost:21000] > select data from reserved;
ERROR: AnalysisException: Syntax error in line 1:
select data from reserved
 ^
Encountered: DATA
Expected: ALL, CASE, CAST, DISTINCT, EXISTS, FALSE, IF, INTERVAL, NOT,
 NULL, STRAIGHT_JOIN, TRUE, IDENTIFIER
CAUSED BY: Exception: Syntax error

[localhost:21000] > select reserved.data from reserved;
ERROR: AnalysisException: Syntax error in line 1:
select reserved.data from reserved
 ^
Encountered: DATA
Expected: IDENTIFIER
CAUSED BY: Exception: Syntax error

[localhost:21000] > select reserved.`data` from reserved;

[localhost:21000] >

Important: Because the list of reserved words grows over time as new SQL syntax is added, consider adopting
coding conventions (especially for any automated scripts or in packaged applications) to always quote all
identifiers with backticks. Quoting all identifiers protects your SQL from compatibility issues if new reserved
words are added in later releases.

• Impala identifiers are always case-insensitive. That is, tables named t1 and T1 always refer to the same table,
regardless of quote characters. Internally, Impala always folds all specified table and column names to lowercase.
This is why the column headers in query output are always displayed in lowercase.

See Overview of Impala Aliases on page 211 for how to define shorter or easier-to-remember aliases if the
original names are long or cryptic identifiers. Aliases follow the same rules as identifiers when it comes to case
insensitivity. Aliases can be longer than identifiers (up to the maximum length of a Java string) and can include
additional characters such as spaces and dashes when they are quoted using backtick characters.

Another way to define different names for the same tables or columns is to create views. See Overview of Impala
Views on page 219 for details.

Overview of Impala Tables

Tables are the primary containers for data in Impala. They have the familiar row and column layout similar to other
database systems, plus some features such as partitioning often associated with higher-end data warehouse systems.

Logically, each table has a structure based on the definition of its columns, partitions, and other properties.

Physically, each table that uses HDFS storage is associated with a directory in HDFS. The table data consists of all
the data files underneath that directory:

• Internal tables are managed by Impala, and use directories inside the designated Impala work area.

 | Impala SQL Language Reference | 215

• External tables use arbitrary HDFS directories, where the data files are typically shared between different Hadoop
components.

• Large-scale data is usually handled by partitioned tables, where the data files are divided among different HDFS
subdirectories.

Impala tables can also represent data that is stored in HBase, or in the Amazon S3 filesystem (Impala 2.2 or higher),
or on Isilon storage devices (Impala 2.2.3 or higher). See Using Impala to Query HBase Tables on page 738, Using
Impala with the Amazon S3 Filesystem on page 748, and Using Impala with Isilon Storage on page 763 for
details about those special kinds of tables.

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions .tmp or .copying are not considered part of the Impala table. The suffix matching is case-insensitive,
so for example Impala ignores both .copying and .COPYING suffixes.

Related statements: CREATE TABLE Statement on page 256, DROP TABLE Statement on page 295, ALTER
TABLE Statement on page 225 INSERT Statement on page 301, LOAD DATA Statement on page 313,
SELECT Statement on page 322

Internal Tables

The default kind of table produced by the CREATE TABLE statement is known as an internal table. (Its counterpart is
the external table, produced by the CREATE EXTERNAL TABLE syntax.)

• Impala creates a directory in HDFS to hold the data files.
• You can create data in internal tables by issuing INSERT or LOAD DATA statements.
• If you add or replace data using HDFS operations, issue the REFRESH command in impala-shell so that

Impala recognizes the changes in data files, block locations, and so on.
• When you issue a DROP TABLE statement, Impala physically removes all the data files from the directory.
• To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRIBE

FORMATTED table_name. The Table Type field displays MANAGED_TABLE for internal tables and
EXTERNAL_TABLE for external tables. The Location field displays the path of the table directory as an HDFS
URI.

• When you issue an ALTER TABLE statement to rename an internal table, all data files are moved into the new
HDFS directory for the table. The files are moved even if they were formerly in a directory outside the Impala
data directory, for example in an internal table with a LOCATION attribute pointing to an outside HDFS directory.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='TRUE');

-- Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='FALSE');

Related information:

External Tables on page 215, CREATE TABLE Statement on page 256, DROP TABLE Statement on page
295, ALTER TABLE Statement on page 225, DESCRIBE Statement on page 274

External Tables

The syntax CREATE EXTERNAL TABLE sets up an Impala table that points at existing data files, potentially in
HDFS locations outside the normal Impala data directories.. This operation saves the expense of importing the data
into a new table when you already have the data files in a known location in HDFS, in the desired file format.

• You can use Impala to query the data in this table.
• You can create data in external tables by issuing INSERT or LOAD DATA statements.

 | Impala SQL Language Reference | 216

• If you add or replace data using HDFS operations, issue the REFRESH command in impala-shell so that
Impala recognizes the changes in data files, block locations, and so on.

• When you issue a DROP TABLE statement in Impala, that removes the connection that Impala has with the
associated data files, but does not physically remove the underlying data. You can continue to use the data files
with other Hadoop components and HDFS operations.

• To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRIBE
FORMATTED table_name. The Table Type field displays MANAGED_TABLE for internal tables and
EXTERNAL_TABLE for external tables. The Location field displays the path of the table directory as an HDFS
URI.

• When you issue an ALTER TABLE statement to rename an external table, all data files are left in their original
locations.

• You can point multiple external tables at the same HDFS directory by using the same LOCATION attribute for
each one. The tables could have different column definitions, as long as the number and types of columns are
compatible with the schema evolution considerations for the underlying file type. For example, for text data files,
one table might define a certain column as a STRING while another defines the same column as a BIGINT.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='TRUE');

-- Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='FALSE');

Related information:

Internal Tables on page 215, CREATE TABLE Statement on page 256, DROP TABLE Statement on page
295, ALTER TABLE Statement on page 225, DESCRIBE Statement on page 274

File Formats

Each table has an associated file format, which determines how Impala interprets the associated data files. See How
Impala Works with Hadoop File Formats on page 690 for details.

You set the file format during the CREATE TABLE statement, or change it later using the ALTER TABLE statement.
Partitioned tables can have a different file format for individual partitions, allowing you to change the file format used
in your ETL process for new data without going back and reconverting all the existing data in the same table.

Any INSERT statements produce new data files with the current file format of the table. For existing data files,
changing the file format of the table does not automatically do any data conversion. You must use TRUNCATE
TABLE or INSERT OVERWRITE to remove any previous data files that use the old file format. Then you use the
LOAD DATA statement, INSERT ... SELECT, or other mechanism to put data files of the correct format into the
table.

The default file format, text, is the most flexible and easy to produce when you are just getting started with Impala.
The Parquet file format offers the highest query performance and uses compression to reduce storage requirements;
therefore, where practical, use Parquet for Impala tables with substantial amounts of data. Also, the complex types
(ARRAY, STRUCT, and MAP) available in Impala 2.3 and higher are currently only supported with the Parquet file
type. Based on your existing ETL workflow, you might use other file formats such as Avro, possibly doing a final
conversion step to Parquet to take advantage of its performance for analytic queries.

Kudu Tables

Tables stored in Apache Kudu are treated specially, because Kudu manages its data independently of HDFS files.
Some information about the table is stored in the metastore database for use by Impala. Other table metadata is
managed internally by Kudu.

 | Impala SQL Language Reference | 217

When you create a Kudu table through Impala, it is assigned an internal Kudu table name of the form
impala::db_name.table_name. You can see the Kudu-assigned name in the output of DESCRIBE
FORMATTED, in the kudu.table_name field of the table properties. The Kudu-assigned name remains the
same even if you use ALTER TABLE to rename the Impala table or move it to a different Impala database. If you
issue the statement ALTER TABLE impala_name SET TBLPROPERTIES('kudu.table_name' =
'different_kudu_table_name'), the effect is different depending on whether the Impala table was created
with a regular CREATE TABLE statement (that is, if it is an internal or managed table), or if it was created with a
CREATE EXTERNAL TABLE statement (and therefore is an external table). Changing the kudu.table_name
property of an internal table physically renames the underlying Kudu table to match the new name. Changing the
kudu.table_name property of an external table switches which underlying Kudu table the Impala table refers to;
the underlying Kudu table must already exist.

The following example shows what happens with both internal and external Kudu tables as the kudu.table_name
property is changed. In practice, external tables are typically used to access underlying Kudu tables that were created
outside of Impala, that is, through the Kudu API.

-- This is an internal table that we will create and then rename.
create table old_name (id bigint primary key, s string)
 partition by hash(id) partitions 2 stored as kudu;

-- Initially, the name OLD_NAME is the same on the Impala and Kudu sides.
describe formatted old_name;
...
| Location: | hdfs://host.example.com:8020/path/user.db/old_name
| Table Type: | MANAGED_TABLE | NULL
| Table Parameters: | NULL | NULL
| | DO_NOT_UPDATE_STATS | true
| | kudu.master_addresses | vd0342.example.com
| | kudu.table_name | impala::user.old_name

-- ALTER TABLE RENAME TO changes the Impala name but not the underlying Kudu
 name.
alter table old_name rename to new_name;

describe formatted new_name;
| Location: | hdfs://host.example.com:8020/path/user.db/new_name
| Table Type: | MANAGED_TABLE | NULL
| Table Parameters: | NULL | NULL
| | DO_NOT_UPDATE_STATS | true
| | kudu.master_addresses | vd0342.example.com
| | kudu.table_name | impala::user.old_name

-- Setting TBLPROPERTIES changes the underlying Kudu name.
alter table new_name
 set tblproperties('kudu.table_name' = 'impala::user.new_name');

describe formatted new_name;
| Location: | hdfs://host.example.com:8020/path/user.db/new_name
| Table Type: | MANAGED_TABLE | NULL
| Table Parameters: | NULL | NULL
| | DO_NOT_UPDATE_STATS | true
| | kudu.master_addresses | vd0342.example.com
| | kudu.table_name | impala::user.new_name

-- Put some data in the table to demonstrate how external tables can map to
-- different underlying Kudu tables.
insert into new_name values (0, 'zero'), (1, 'one'), (2, 'two');

-- This external table points to the same underlying Kudu table, NEW_NAME,
-- as we created above. No need to declare columns or other table aspects.
create external table kudu_table_alias stored as kudu

 | Impala SQL Language Reference | 218

 tblproperties('kudu.table_name' = 'impala::user.new_name');

-- The external table can fetch data from the NEW_NAME table that already
-- existed and already had data.
select * from kudu_table_alias limit 100;
+----+------+
| id | s |
+----+------+
1	one
0	zero
2	two
+----+------+

-- We cannot re-point the external table at a different underlying Kudu
 table
-- unless that other underlying Kudu table already exists.
alter table kudu_table_alias
 set tblproperties('kudu.table_name' = 'impala::user.yet_another_name');
ERROR:
TableLoadingException: Error opening Kudu table
 'impala::user.yet_another_name',
 Kudu error: The table does not exist: table_name:
 "impala::user.yet_another_name"

-- Once the underlying Kudu table exists, we can re-point the external table
 to it.
create table yet_another_name (id bigint primary key, x int, y int, s
 string)
 partition by hash(id) partitions 2 stored as kudu;

alter table kudu_table_alias
 set tblproperties('kudu.table_name' = 'impala::user.yet_another_name');

-- Now no data is returned because this other table is empty.
select * from kudu_table_alias limit 100;

-- The Impala table automatically recognizes the table schema of the new
 table,
-- for example the extra X and Y columns not present in the original table.
describe kudu_table_alias;
+------+--------+---------+-------------+----------+...
| name | type | comment | primary_key | nullable |...
+------+--------+---------+-------------+----------+...
| id | bigint | | true | false |...
| x | int | | false | true |...
| y | int | | false | true |...
| s | string | | false | true |...
+------+--------+---------+-------------+----------+...

The SHOW TABLE STATS output for a Kudu table shows Kudu-specific details about the layout of the table. Instead
of information about the number and sizes of files, the information is divided by the Kudu tablets. For each tablet,
the output includes the fields # Rows (although this number is not currently computed), Start Key, Stop Key,
Leader Replica, and # Replicas. The output of SHOW COLUMN STATS, illustrating the distribution of
values within each column, is the same for Kudu tables as for HDFS-backed tables.

The distinction between internal and external tables has some special details for Kudu tables. Tables created
entirely through Impala are internal tables. The table name as represented within Kudu includes notation such
as an impala:: prefix and the Impala database name. External Kudu tables are those created by a non-Impala
mechanism, such as a user application calling the Kudu APIs. For these tables, the CREATE EXTERNAL TABLE
syntax lets you establish a mapping from Impala to the existing Kudu table:

 | Impala SQL Language Reference | 219

CREATE EXTERNAL TABLE impala_name STORED AS KUDU
 TBLPROPERTIES('kudu.table_name' = 'original_kudu_name');

External Kudu tables differ in one important way from other external tables: adding or dropping a column or range
partition changes the data in the underlying Kudu table, in contrast to an HDFS-backed external table where existing
data files are left untouched.

Overview of Impala Views

Views are lightweight logical constructs that act as aliases for queries. You can specify a view name in a query (a
SELECT statement or the SELECT portion of an INSERT statement) where you would usually specify a table name.

A view lets you:

• Issue complicated queries with compact and simple syntax:

-- Take a complicated reporting query, plug it into a CREATE VIEW
 statement...
create view v1 as select c1, c2, avg(c3) from t1 group by c3 order by c1
 desc limit 10;
-- ... and now you can produce the report with 1 line of code.
select * from v1;

• Reduce maintenance, by avoiding the duplication of complicated queries across multiple applications in multiple
languages:

create view v2 as select t1.c1, t1.c2, t2.c3 from t1 join t2 on (t1.id =
 t2.id);
-- This simple query is safer to embed in reporting applications than the
 longer query above.
-- The view definition can remain stable even if the structure of the
 underlying tables changes.
select c1, c2, c3 from v2;

• Build a new, more refined query on top of the original query by adding new clauses, select-list expressions,
function calls, and so on:

create view average_price_by_category as select category, avg(price) as
 avg_price from products group by category;
create view expensive_categories as select category, avg_price from
 average_price_by_category order by avg_price desc limit 10000;
create view top_10_expensive_categories as select category, avg_price from
 expensive_categories limit 10;

This technique lets you build up several more or less granular variations of the same query, and switch between
them when appropriate.

• Set up aliases with intuitive names for tables, columns, result sets from joins, and so on:

-- The original tables might have cryptic names inherited from a legacy
 system.
create view action_items as select rrptsk as assignee, treq as due_date,
 dmisc as notes from vxy_t1_br;
-- You can leave original names for compatibility, build new applications
 using more intuitive ones.
select assignee, due_date, notes from action_items;

• Swap tables with others that use different file formats, partitioning schemes, and so on without any downtime for
data copying or conversion:

create table slow (x int, s string) stored as textfile;
create view report as select s from slow where x between 20 and 30;

 | Impala SQL Language Reference | 220

-- Query is kind of slow due to inefficient table definition, but it
 works.
select * from report;

create table fast (s string) partitioned by (x int) stored as parquet;
-- ...Copy data from SLOW to FAST. Queries against REPORT view continue to
 work...

-- After changing the view definition, queries will be faster due to
 partitioning,
-- binary format, and compression in the new table.
alter view report as select s from fast where x between 20 and 30;
select * from report;

• Avoid coding lengthy subqueries and repeating the same subquery text in many other queries.
• Set up fine-grained security where a user can query some columns from a table but not other columns. Because

Impala 2.3 and higher support column-level authorization, this technique is no longer required. If you formerly
implemented column-level security through views, see the documentation for Apache Sentry for details about the
column-level authorization feature.

The SQL statements that configure views are CREATE VIEW Statement on page 271, ALTER VIEW Statement on
page 239, and DROP VIEW Statement on page 296. You can specify view names when querying data (SELECT
Statement on page 322) and copying data from one table to another (INSERT Statement on page 301). The
WITH clause creates an inline view, that only exists for the duration of a single query.

[localhost:21000] > create view trivial as select * from customer;
[localhost:21000] > create view some_columns as select c_first_name,
 c_last_name, c_login from customer;
[localhost:21000] > select * from some_columns limit 5;
Query finished, fetching results ...
+--------------+-------------+---------+
| c_first_name | c_last_name | c_login |
+--------------+-------------+---------+
Javier	Lewis	
Amy	Moses	
Latisha	Hamilton	
Michael	White	
Robert	Moran	
+--------------+-------------+---------+		
[localhost:21000] > create view ordered_results as select * from		
some_columns order by c_last_name desc, c_first_name desc limit 1000;		
[localhost:21000] > select * from ordered_results limit 5;		
Query: select * from ordered_results limit 5		
Query finished, fetching results ...		
+--------------+-------------+---------+		
c_first_name	c_last_name	c_login
+--------------+-------------+---------+		
Thomas	Zuniga	
Sarah	Zuniga	
Norma	Zuniga	
Lloyd	Zuniga	
Lisa	Zuniga	
+--------------+-------------+---------+
Returned 5 row(s) in 0.48s

The previous example uses descending order for ORDERED_RESULTS because in the sample TPCD-H data, there
are some rows with empty strings for both C_FIRST_NAME and C_LAST_NAME, making the lowest-ordered names
unuseful in a sample query.

create view visitors_by_day as select day, count(distinct visitors) as
 howmany from web_traffic group by day;

 | Impala SQL Language Reference | 221

create view top_10_days as select day, howmany from visitors_by_day order by
 howmany limit 10;
select * from top_10_days;

Usage notes:

To see the definition of a view, issue a DESCRIBE FORMATTED statement, which shows the query from the original
CREATE VIEW statement:

[localhost:21000] > create view v1 as select * from t1;
[localhost:21000] > describe formatted v1;
Query finished, fetching results ...
+------------------------------+------------------------------+------------+
| name | type | comment |
+------------------------------+------------------------------+------------+
# col_name	data_type	comment
	NULL	NULL
x	int	None
y	int	None
s	string	None
	NULL	NULL
# Detailed Table Information	NULL	NULL
Database:	views	NULL
Owner:	doc_demo	NULL
CreateTime:	Mon Jul 08 15:56:27 EDT 2013	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	0	NULL
Table Type:	VIRTUAL_VIEW	NULL
Table Parameters:	NULL	NULL
	transient_lastDdlTime	1373313387
	NULL	NULL
# Storage Information	NULL	NULL
SerDe Library:	null	NULL
InputFormat:	null	NULL
OutputFormat:	null	NULL
Compressed:	No	NULL
Num Buckets:	0	NULL
Bucket Columns:	[]	NULL
Sort Columns:	[]	NULL
	NULL	NULL
# View Information	NULL	NULL
View Original Text:	SELECT * FROM t1	NULL
View Expanded Text:	SELECT * FROM t1	NULL
+------------------------------+------------------------------+------------+

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LIKE view_name syntax. In Impala 1.4.0
and higher, you can create a table with the same column definitions as a view using the CREATE TABLE LIKE
technique. Although CREATE TABLE LIKE normally inherits the file format of the original table, a view has no
underlying file format, so CREATE TABLE LIKE view_name produces a text table by default. To specify a
different file format, include a STORED AS file_format clause at the end of the CREATE TABLE LIKE
statement.

Complex type considerations:

For tables containing complex type columns (ARRAY, STRUCT, or MAP), you typically use join queries to refer to the
complex values. You can use views to hide the join notation, making such tables seem like traditional denormalized
tables, and making those tables queryable by business intelligence tools that do not have built-in support for those
complex types. See Accessing Complex Type Data in Flattened Form Using Views on page 173 for details.

 | Impala SQL Language Reference | 222

The STRAIGHT_JOIN hint affects the join order of table references in the query block containing the hint. It does
not affect the join order of nested queries, such as views, inline views, or WHERE-clause subqueries. To use this hint
for performance tuning of complex queries, apply the hint to all query blocks that need a fixed join order.

Restrictions:

• You cannot insert into an Impala view. (In some database systems, this operation is allowed and inserts rows into
the base table.) You can use a view name on the right-hand side of an INSERT statement, in the SELECT part.

• If a view applies to a partitioned table, any partition pruning considers the clauses on both the original query and
any additional WHERE predicates in the query that refers to the view. Prior to Impala 1.4, only the WHERE clauses
on the original query from the CREATE VIEW statement were used for partition pruning.

• An ORDER BY clause without an additional LIMIT clause is ignored in any view definition. If you need to
sort the entire result set from a view, use an ORDER BY clause in the SELECT statement that queries the view.
You can still make a simple “top 10” report by combining the ORDER BY and LIMIT clauses in the same view
definition:

[localhost:21000] > create table unsorted (x bigint);
[localhost:21000] > insert into unsorted values (1), (9), (3), (7), (5),
 (8), (4), (6), (2);
[localhost:21000] > create view sorted_view as select x from unsorted
 order by x;
[localhost:21000] > select x from sorted_view; -- ORDER BY clause in view
 has no effect.
+---+
| x |
+---+
| 1 |
| 9 |
| 3 |
| 7 |
| 5 |
| 8 |
| 4 |
| 6 |
| 2 |
+---+
[localhost:21000] > select x from sorted_view order by x; -- View query
 requires ORDER BY at outermost level.
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
+---+
[localhost:21000] > create view top_3_view as select x from unsorted order
 by x limit 3;
[localhost:21000] > select x from top_3_view; -- ORDER BY and LIMIT
 together in view definition are preserved.
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
+---+

 | Impala SQL Language Reference | 223

• The TABLESAMPLE clause of the SELECT statement does not apply to a table reference derived from a view, a
subquery, or anything other than a real base table. This clause only works for tables backed by HDFS or HDFS-
like data files, therefore it does not apply to Kudu or HBase tables.

Related statements: CREATE VIEW Statement on page 271, ALTER VIEW Statement on page 239, DROP
VIEW Statement on page 296

Impala SQL Statements
The Impala SQL dialect supports a range of standard elements, plus some extensions for Big Data use cases related to
data loading and data warehousing.

Note:

In the impala-shell interpreter, a semicolon at the end of each statement is required. Since the semicolon is not
actually part of the SQL syntax, we do not include it in the syntax definition of each statement, but we do show it in
examples intended to be run in impala-shell.

DDL Statements

DDL refers to “Data Definition Language”, a subset of SQL statements that change the structure of the database
schema in some way, typically by creating, deleting, or modifying schema objects such as databases, tables, and
views. Most Impala DDL statements start with the keywords CREATE, DROP, or ALTER.

The Impala DDL statements are:

• ALTER TABLE Statement on page 225
• ALTER VIEW Statement on page 239
• COMPUTE STATS Statement on page 240
• CREATE DATABASE Statement on page 247
• CREATE FUNCTION Statement on page 250
• CREATE ROLE Statement (Impala 2.0 or higher only) on page 256
• CREATE TABLE Statement on page 256
• CREATE VIEW Statement on page 271
• DROP DATABASE Statement on page 286
• DROP FUNCTION Statement on page 288
• DROP ROLE Statement (Impala 2.0 or higher only) on page 290
• DROP TABLE Statement on page 295
• DROP VIEW Statement on page 296
• GRANT Statement (Impala 2.0 or higher only) on page 300
• REVOKE Statement (Impala 2.0 or higher only) on page 321

After Impala executes a DDL command, information about available tables, columns, views, partitions, and so
on is automatically synchronized between all the Impala nodes in a cluster. (Prior to Impala 1.2, you had to issue
a REFRESH or INVALIDATE METADATA statement manually on the other nodes to make them aware of the
changes.)

If the timing of metadata updates is significant, for example if you use round-robin scheduling where each query
could be issued through a different Impala node, you can enable the SYNC_DDL query option to make the DDL
statement wait until all nodes have been notified about the metadata changes.

See Using Impala with the Amazon S3 Filesystem on page 748 for details about how Impala DDL statements
interact with tables and partitions stored in the Amazon S3 filesystem.

Although the INSERT statement is officially classified as a DML (data manipulation language) statement, it also
involves metadata changes that must be broadcast to all Impala nodes, and so is also affected by the SYNC_DDL
query option.

 | Impala SQL Language Reference | 224

Because the SYNC_DDL query option makes each DDL operation take longer than normal, you might only enable
it before the last DDL operation in a sequence. For example, if you are running a script that issues multiple of DDL
operations to set up an entire new schema, add several new partitions, and so on, you might minimize the performance
overhead by enabling the query option only before the last CREATE, DROP, ALTER, or INSERT statement. The
script only finishes when all the relevant metadata changes are recognized by all the Impala nodes, so you could
connect to any node and issue queries through it.

The classification of DDL, DML, and other statements is not necessarily the same between Impala and Hive. Impala
organizes these statements in a way intended to be familiar to people familiar with relational databases or data
warehouse products. Statements that modify the metastore database, such as COMPUTE STATS, are classified
as DDL. Statements that only query the metastore database, such as SHOW or DESCRIBE, are put into a separate
category of utility statements.

Note: The query types shown in the Impala debug web user interface might not match exactly the categories listed
here. For example, currently the USE statement is shown as DDL in the debug web UI. The query types shown in the
debug web UI are subject to change, for improved consistency.

Related information:

The other major classifications of SQL statements are data manipulation language (see DML Statements on page
224) and queries (see SELECT Statement on page 322).

DML Statements

DML refers to “Data Manipulation Language”, a subset of SQL statements that modify the data stored in tables.
Because Impala focuses on query performance and leverages the append-only nature of HDFS storage, currently
Impala only supports a small set of DML statements:

• DELETE Statement (Impala 2.8 or higher only) on page 273. Works for Kudu tables only.
• INSERT Statement on page 301.
• LOAD DATA Statement on page 313. Does not apply for HBase or Kudu tables.
• UPDATE Statement (Impala 2.8 or higher only) on page 415. Works for Kudu tables only.
• UPSERT Statement (Impala 2.8 or higher only) on page 417. Works for Kudu tables only.

INSERT in Impala is primarily optimized for inserting large volumes of data in a single statement, to make effective
use of the multi-megabyte HDFS blocks. This is the way in Impala to create new data files. If you intend to insert one
or a few rows at a time, such as using the INSERT ... VALUES syntax, that technique is much more efficient for
Impala tables stored in HBase. See Using Impala to Query HBase Tables on page 738 for details.

LOAD DATA moves existing data files into the directory for an Impala table, making them immediately available for
Impala queries. This is one way in Impala to work with data files produced by other Hadoop components. (CREATE
EXTERNAL TABLE is the other alternative; with external tables, you can query existing data files, while the files
remain in their original location.)

In Impala 2.8 and higher, Impala does support the UPDATE, DELETE, and UPSERT statements for Kudu tables. For
HDFS or S3 tables, to simulate the effects of an UPDATE or DELETE statement in other database systems, typically
you use INSERT or CREATE TABLE AS SELECT to copy data from one table to another, filtering out or changing
the appropriate rows during the copy operation.

You can also achieve a result similar to UPDATE by using Impala tables stored in HBase. When you insert a row into
an HBase table, and the table already contains a row with the same value for the key column, the older row is hidden,
effectively the same as a single-row UPDATE.

Impala can perform DML operations for tables or partitions stored in the Amazon S3 filesystem with Impala 2.6 and
higher. See Using Impala with the Amazon S3 Filesystem on page 748 for details.

Related information:

The other major classifications of SQL statements are data definition language (see DDL Statements on page 223)
and queries (see SELECT Statement on page 322).

 | Impala SQL Language Reference | 225

ALTER TABLE Statement

The ALTER TABLE statement changes the structure or properties of an existing Impala table.

In Impala, this is primarily a logical operation that updates the table metadata in the metastore database that Impala
shares with Hive. Most ALTER TABLE operations do not actually rewrite, move, and so on the actual data files.
(The RENAME TO clause is the one exception; it can cause HDFS files to be moved to different paths.) When you do
an ALTER TABLE operation, you typically need to perform corresponding physical filesystem operations, such as
rewriting the data files to include extra fields, or converting them to a different file format.

Syntax:

ALTER TABLE [old_db_name.]old_table_name RENAME TO
 [new_db_name.]new_table_name

ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...])
ALTER TABLE name DROP [COLUMN] column_name
ALTER TABLE name CHANGE column_name new_name new_type

ALTER TABLE name REPLACE COLUMNS (col_spec[, col_spec ...])

-- Kudu tables only.
ALTER TABLE name ALTER [COLUMN] column_name
 { SET kudu_storage_attr attr_value
 | DROP DEFAULT }

kudu_storage_attr ::= { DEFAULT | BLOCK_SIZE | ENCODING | COMPRESSION }

-- Non-Kudu tables only.
ALTER TABLE name ALTER [COLUMN] column_name
 SET COMMENT 'comment_text'

ALTER TABLE name ADD [IF NOT EXISTS] PARTITION (partition_spec)
 [location_spec]
 [cache_spec]
ALTER TABLE name ADD [IF NOT EXISTS] RANGE PARTITION (kudu_partition_spec)

ALTER TABLE name DROP [IF EXISTS] PARTITION (partition_spec)
 [PURGE]
ALTER TABLE name DROP [IF EXISTS] RANGE PARTITION kudu_partition_spec

ALTER TABLE name RECOVER PARTITIONS

ALTER TABLE name [PARTITION (partition_spec)]
 SET { FILEFORMAT file_format
 | LOCATION 'hdfs_path_of_directory'
 | TBLPROPERTIES (table_properties)
 | SERDEPROPERTIES (serde_properties) }

ALTER TABLE name colname
 ('statsKey'='val, ...)

statsKey ::= numDVs | numNulls | avgSize | maxSize

ALTER TABLE name [PARTITION (partition_spec)] SET { CACHED IN
 'pool_name' [WITH REPLICATION = integer] | UNCACHED }

new_name ::= [new_database.]new_table_name

col_spec ::= col_name type_name [kudu_attributes]

kudu_attributes ::= { [NOT] NULL | ENCODING codec | COMPRESSION algorithm |
 DEFAULT constant | BLOCK_SIZE number }

 | Impala SQL Language Reference | 226

partition_spec ::= simple_partition_spec | complex_partition_spec

simple_partition_spec ::= partition_col=constant_value

complex_partition_spec ::= comparison_expression_on_partition_col

kudu_partition_spec ::= constant range_operator
 VALUES range_operator constant | VALUE = constant

cache_spec ::= CACHED IN 'pool_name' [WITH REPLICATION = integer] | UNCACHED

location_spec ::= LOCATION 'hdfs_path_of_directory'

table_properties ::= 'name'='value'[, 'name'='value' ...]

serde_properties ::= 'name'='value'[, 'name'='value' ...]

file_format ::= { PARQUET | TEXTFILE | RCFILE | SEQUENCEFILE | AVRO }

Statement type: DDL

Complex type considerations:

In Impala 2.3 and higher, the ALTER TABLE statement can change the metadata for tables containing complex types
(ARRAY, STRUCT, and MAP). For example, you can use an ADD COLUMNS, DROP COLUMN, or CHANGE clause to
modify the table layout for complex type columns. Although Impala queries only work for complex type columns in
Parquet tables, the complex type support in the ALTER TABLE statement applies to all file formats. For example,
you can use Impala to update metadata for a staging table in a non-Parquet file format where the data is populated by
Hive. Or you can use ALTER TABLE SET FILEFORMAT to change the format of an existing table to Parquet so
that Impala can query it. Remember that changing the file format for a table does not convert the data files within the
table; you must prepare any Parquet data files containing complex types outside Impala, and bring them into the table
using LOAD DATA or updating the table's LOCATION property. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about using complex types.

Usage notes:

Whenever you specify partitions in an ALTER TABLE statement, through the PARTITION (partition_spec)
clause, you must include all the partitioning columns in the specification.

Most of the ALTER TABLE operations work the same for internal tables (managed by Impala) as for external tables
(with data files located in arbitrary locations). The exception is renaming a table; for an external table, the underlying
data directory is not renamed or moved.

Dropping or altering multiple partitions:

In Impala 2.8 and higher, the expression for the partition clause with a DROP or SET operation can include
comparison operators such as <, IN, or BETWEEN, and Boolean operators such as AND and OR.

For example, you might drop a group of partitions corresponding to a particular date range after the data “ages out”:

alter table historical_data drop partition (year < 1995);
alter table historical_data drop partition (year = 1996 and month between 1
 and 6);

For tables with multiple partition keys columns, you can specify multiple conditions separated by commas, and the
operation only applies to the partitions that match all the conditions (similar to using an AND clause):

alter table historical_data drop partition (year < 1995, last_name like 'A
%');

 | Impala SQL Language Reference | 227

This technique can also be used to change the file format of groups of partitions, as part of an ETL pipeline that
periodically consolidates and rewrites the underlying data files in a different file format:

alter table fast_growing_data partition (year = 2016, month in (10,11,12))
 set fileformat parquet;

Note:

The extended syntax involving comparison operators and multiple partitions applies to the SET FILEFORMAT, SET
TBLPROPERTIES, SET SERDEPROPERTIES, and SET [UN]CACHED clauses. You can also use this syntax
with the PARTITION clause in the COMPUTE INCREMENTAL STATS statement, and with the PARTITION clause
of the SHOW FILES statement. Some forms of ALTER TABLE still only apply to one partition at a time: the SET
LOCATION and ADD PARTITION clauses. The PARTITION clauses in the LOAD DATA and INSERT statements
also only apply to one partition at a time.

A DDL statement that applies to multiple partitions is considered successful (resulting in no changes) even if no
partitions match the conditions. The results are the same as if the IF EXISTS clause was specified.

The performance and scalability of this technique is similar to issuing a sequence of single-partition ALTER TABLE
statements in quick succession. To minimize bottlenecks due to communication with the metastore database, or
causing other DDL operations on the same table to wait, test the effects of performing ALTER TABLE statements
that affect large numbers of partitions.

Amazon S3 considerations:

You can specify an s3a:// prefix on the LOCATION attribute of a table or partition to make Impala query data
from the Amazon S3 filesystem. In Impala 2.6 and higher, Impala automatically handles creating or removing the
associated folders when you issue ALTER TABLE statements with the ADD PARTITION or DROP PARTITION
clauses.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 748 for details about reading and writing S3 data with Impala.

HDFS caching (CACHED IN clause):

If you specify the CACHED IN clause, any existing or future data files in the table directory or the partition
subdirectories are designated to be loaded into memory with the HDFS caching mechanism. See Using HDFS
Caching with Impala (Impala 2.1 or higher only) on page 656 for details about using the HDFS caching feature.

In Impala 2.2 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE lets
you specify a replication factor, the number of hosts on which to cache the same data blocks. When Impala processes
a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host that has a
cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the same cached
data block is processed multiple times. Where practical, specify a value greater than or equal to the HDFS block
replication factor.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 394 for details.

The following sections show examples of the use cases for various ALTER TABLE clauses.

To rename a table (RENAME TO clause):

The RENAME TO clause lets you change the name of an existing table, and optionally which database it is located in.

 | Impala SQL Language Reference | 228

For internal tables, this operation physically renames the directory within HDFS that contains the data files; the
original directory name no longer exists. By qualifying the table names with database names, you can use this
technique to move an internal table (and its associated data directory) from one database to another. For example:

create database d1;
create database d2;
create database d3;
use d1;
create table mobile (x int);
use d2;
-- Move table from another database to the current one.
alter table d1.mobile rename to mobile;
use d1;
-- Move table from one database to another.
alter table d2.mobile rename to d3.mobile;

For external tables,

To change the physical location where Impala looks for data files associated with a table or partition:

ALTER TABLE table_name [PARTITION (partition_spec)] SET LOCATION
 'hdfs_path_of_directory';

The path you specify is the full HDFS path where the data files reside, or will be created. Impala does not create any
additional subdirectory named after the table. Impala does not move any data files to this new location or change any
data files that might already exist in that directory.

To set the location for a single partition, include the PARTITION clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table p1 (s string) partitioned by (month int, day int);
-- Each ADD PARTITION clause creates a subdirectory in HDFS.
alter table p1 add partition (month=1, day=1);
alter table p1 add partition (month=1, day=2);
alter table p1 add partition (month=2, day=1);
alter table p1 add partition (month=2, day=2);
-- Redirect queries, INSERT, and LOAD DATA for one partition
-- to a specific different directory.
alter table p1 partition (month=1, day=1) set location '/usr/external_data/
new_years_day';

Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency, use a
single ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses, rather than separate
statements with ADD PARTITION and SET LOCATION clauses.

To automatically detect new partition directories added through Hive or HDFS operations:

In Impala 2.3 and higher, the RECOVER PARTITIONS clause scans a partitioned table to detect if any new partition
directories were added outside of Impala, such as by Hive ALTER TABLE statements or by hdfs dfs or hadoop
fs commands. The RECOVER PARTITIONS clause automatically recognizes any data files present in these new
directories, the same as the REFRESH statement does.

For example, here is a sequence of examples showing how you might create a partitioned table in Impala, create new
partitions through Hive, copy data files into the new partitions with the hdfs command, and have Impala recognize
the new partitions and new data:

In Impala, create the table, and a single partition for demonstration purposes:

create database recover_partitions;
use recover_partitions;

 | Impala SQL Language Reference | 229

create table t1 (s string) partitioned by (yy int, mm int);
insert into t1 partition (yy = 2016, mm = 1) values ('Partition exists');
show files in t1;
+---
+------+--------------+
| Path | Size
 | Partition |
+---
+------+--------------+
| /user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=1/data.txt | 17B
 | yy=2016/mm=1 |
+---
+------+--------------+
quit;

In Hive, create some new partitions. In a real use case, you might create the partitions and populate them with data as
the final stages of an ETL pipeline.

hive> use recover_partitions;
OK
hive> alter table t1 add partition (yy = 2016, mm = 2);
OK
hive> alter table t1 add partition (yy = 2016, mm = 3);
OK
hive> quit;

For demonstration purposes, manually copy data (a single row) into these new partitions, using manual HDFS
operations:

$ hdfs dfs -ls /user/hive/warehouse/recover_partitions.db/t1/yy=2016/
Found 3 items
drwxr-xr-x - impala hive 0 2016-05-09 16:06 /user/hive/warehouse/
recover_partitions.db/t1/yy=2016/mm=1
drwxr-xr-x - jrussell hive 0 2016-05-09 16:14 /user/hive/warehouse/
recover_partitions.db/t1/yy=2016/mm=2
drwxr-xr-x - jrussell hive 0 2016-05-09 16:13 /user/hive/warehouse/
recover_partitions.db/t1/yy=2016/mm=3

$ hdfs dfs -cp /user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=1/
data.txt \
 /user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=2/data.txt
$ hdfs dfs -cp /user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=1/
data.txt \
 /user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=3/data.txt

hive> select * from t1;
OK
Partition exists 2016 1
Partition exists 2016 2
Partition exists 2016 3
hive> quit;

 | Impala SQL Language Reference | 230

In Impala, initially the partitions and data are not visible. Running ALTER TABLE with the RECOVER
PARTITIONS clause scans the table data directory to find any new partition directories, and the data files inside
them:

select * from t1;
+------------------+------+----+
| s | yy | mm |
+------------------+------+----+
| Partition exists | 2016 | 1 |
+------------------+------+----+

alter table t1 recover partitions;
select * from t1;
+------------------+------+----+
| s | yy | mm |
+------------------+------+----+
Partition exists	2016	1
Partition exists	2016	3
Partition exists	2016	2
+------------------+------+----+

To change the key-value pairs of the TBLPROPERTIES and SERDEPROPERTIES fields:

ALTER TABLE table_name SET TBLPROPERTIES ('key1'='value1',
 'key2'='value2'[, ...]);
ALTER TABLE table_name SET SERDEPROPERTIES ('key1'='value1',
 'key2'='value2'[, ...]);

The TBLPROPERTIES clause is primarily a way to associate arbitrary user-specified data items with a particular
table.

The SERDEPROPERTIES clause sets up metadata defining how tables are read or written, needed in some cases by
Hive but not used extensively by Impala. You would use this clause primarily to change the delimiter in an existing
text table or partition, by setting the 'serialization.format' and 'field.delim' property values to the
new delimiter character:

-- This table begins life as pipe-separated text format.
create table change_to_csv (s1 string, s2 string) row format delimited
 fields terminated by '|';
-- Then we change it to a CSV table.
alter table change_to_csv set SERDEPROPERTIES ('serialization.format'=',',
 'field.delim'=',');
insert overwrite change_to_csv values ('stop','go'), ('yes','no');
!hdfs dfs -cat 'hdfs://hostname:8020/data_directory/dbname.db/
change_to_csv/data_file';
stop,go
yes,no

Use the DESCRIBE FORMATTED statement to see the current values of these properties for an existing table.
See CREATE TABLE Statement on page 256 for more details about these clauses. See Setting the NUMROWS
Value Manually through ALTER TABLE on page 645 for an example of using table properties to fine-tune the
performance-related table statistics.

To manually set or update table or column statistics:

Although for most tables the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement is all you need
to keep table and column statistics up to date for a table, sometimes for a very large table or one that is updated
frequently, the length of time to recompute all the statistics might make it impractical to run those statements as often

 | Impala SQL Language Reference | 231

as needed. As a workaround, you can use the ALTER TABLE statement to set table statistics at the level of the entire
table or a single partition, or column statistics at the level of the entire table.

You can set the numrows value for table statistics by changing the TBLPROPERTIES setting for a table or partition.
For example:

create table analysis_data stored as parquet as select * from raw_data;
Inserted 1000000000 rows in 181.98s
compute stats analysis_data;
insert into analysis_data select * from smaller_table_we_forgot_before;
Inserted 1000000 rows in 15.32s
-- Now there are 1001000000 rows. We can update this single data point in
 the stats.
alter table analysis_data set tblproperties('numRows'='1001000000',
 'STATS_GENERATED_VIA_STATS_TASK'='true');

-- If the table originally contained 1 million rows, and we add another
 partition with 30 thousand rows,
-- change the numRows property for the partition and the overall table.
alter table partitioned_data partition(year=2009, month=4) set tblproperties
 ('numRows'='30000', 'STATS_GENERATED_VIA_STATS_TASK'='true');
alter table partitioned_data set tblproperties ('numRows'='1030000',
 'STATS_GENERATED_VIA_STATS_TASK'='true');

See Setting the NUMROWS Value Manually through ALTER TABLE on page 645 for details.

In Impala 2.6 and higher, you can use the SET COLUMN STATS clause to set a specific stats value for a particular
column.

You specify a case-insensitive symbolic name for the kind of statistics: numDVs, numNulls, avgSize, maxSize.
The key names and values are both quoted. This operation applies to an entire table, not a specific partition. For
example:

create table t1 (x int, s string);
insert into t1 values (1, 'one'), (2, 'two'), (2, 'deux');
show column stats t1;
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| x | INT | -1 | -1 | 4 | 4 |
| s | STRING | -1 | -1 | -1 | -1 |
+--------+--------+------------------+--------+----------+----------+
alter table t1 set column stats x ('numDVs'='2','numNulls'='0');
alter table t1 set column stats s ('numdvs'='3','maxsize'='4');
show column stats t1;
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| x | INT | 2 | 0 | 4 | 4 |
| s | STRING | 3 | -1 | 4 | -1 |
+--------+--------+------------------+--------+----------+----------+

To reorganize columns for a table:

ALTER TABLE table_name ADD COLUMNS (column_defs);
ALTER TABLE table_name REPLACE COLUMNS (column_defs);
ALTER TABLE table_name CHANGE column_name new_name new_type;
ALTER TABLE table_name DROP column_name;

The column_spec is the same as in the CREATE TABLE statement: the column name, then its data type, then an
optional comment. You can add multiple columns at a time. The parentheses are required whether you add a single

 | Impala SQL Language Reference | 232

column or multiple columns. When you replace columns, all the original column definitions are discarded. You might
use this technique if you receive a new set of data files with different data types or columns in a different order. (The
data files are retained, so if the new columns are incompatible with the old ones, use INSERT OVERWRITE or LOAD
DATA OVERWRITE to replace all the data before issuing any further queries.)

For example, here is how you might add columns to an existing table. The first ALTER TABLE adds two new
columns, and the second ALTER TABLE adds one new column. A single Impala query reads both the old and new
data files, containing different numbers of columns. For any columns not present in a particular data file, all the
column values are considered to be NULL.

create table t1 (x int);
insert into t1 values (1), (2);

alter table t1 add columns (s string, t timestamp);
insert into t1 values (3, 'three', now());

alter table t1 add columns (b boolean);
insert into t1 values (4, 'four', now(), true);

select * from t1 order by x;
+---+-------+-------------------------------+------+
| x | s | t | b |
+---+-------+-------------------------------+------+
1	NULL	NULL	NULL
2	NULL	NULL	NULL
3	three	2016-05-11 11:19:45.054457000	NULL
4	four	2016-05-11 11:20:20.260733000	true
+---+-------+-------------------------------+------+

You might use the CHANGE clause to rename a single column, or to treat an existing column as a different type than
before, such as to switch between treating a column as STRING and TIMESTAMP, or between INT and BIGINT.
You can only drop a single column at a time; to drop multiple columns, issue multiple ALTER TABLE statements, or
define the new set of columns with a single ALTER TABLE ... REPLACE COLUMNS statement.

The following examples show some safe operations to drop or change columns. Dropping the final column in a table
lets Impala ignore the data causing any disruption to existing data files. Changing the type of a column works if
existing data values can be safely converted to the new type. The type conversion rules depend on the file format of
the underlying table. For example, in a text table, the same value can be interpreted as a STRING or a numeric value,
while in a binary format such as Parquet, the rules are stricter and type conversions only work between certain sizes of
integers.

create table optional_columns (x int, y int, z int, a1 int, a2 int);
insert into optional_columns values (1,2,3,0,0), (2,3,4,100,100);

-- When the last column in the table is dropped, Impala ignores the
-- values that are no longer needed. (Dropping A1 but leaving A2
-- would cause problems, as we will see in a subsequent example.)
alter table optional_columns drop column a2;
alter table optional_columns drop column a1;

select * from optional_columns;
+---+---+---+
| x | y | z |
+---+---+---+
| 1 | 2 | 3 |
| 2 | 3 | 4 |
+---+---+---+

 | Impala SQL Language Reference | 233

create table int_to_string (s string, x int);
insert into int_to_string values ('one', 1), ('two', 2);

-- What was an INT column will now be interpreted as STRING.
-- This technique works for text tables but not other file formats.
-- The second X represents the new name of the column, which we keep the
 same.
alter table int_to_string change x x string;

-- Once the type is changed, we can insert non-integer values into the X
 column
-- and treat that column as a string, for example by uppercasing or
 concatenating.
insert into int_to_string values ('three', 'trois');
select s, upper(x) from int_to_string;
+-------+----------+
| s | upper(x) |
+-------+----------+
one	1
two	2
three	TROIS
+-------+----------+

Remember that Impala does not actually do any conversion for the underlying data files as a result of ALTER TABLE
statements. If you use ALTER TABLE to create a table layout that does not agree with the contents of the underlying
files, you must replace the files yourself, such as using LOAD DATA to load a new set of data files, or INSERT
OVERWRITE to copy from another table and replace the original data.

The following example shows what happens if you delete the middle column from a Parquet table containing three
columns. The underlying data files still contain three columns of data. Because the columns are interpreted based
on their positions in the data file instead of the specific column names, a SELECT * query now reads the first and
second columns from the data file, potentially leading to unexpected results or conversion errors. For this reason,
if you expect to someday drop a column, declare it as the last column in the table, where its data can be ignored by
queries after the column is dropped. Or, re-run your ETL process and create new data files if you drop or change the
type of a column in a way that causes problems with existing data files.

-- Parquet table showing how dropping a column can produce unexpected
 results.
create table p1 (s1 string, s2 string, s3 string) stored as parquet;

insert into p1 values ('one', 'un', 'uno'), ('two', 'deux', 'dos'),
 ('three', 'trois', 'tres');
select * from p1;
+-------+-------+------+
| s1 | s2 | s3 |
+-------+-------+------+
one	un	uno
two	deux	dos
three	trois	tres
+-------+-------+------+

alter table p1 drop column s2;
-- The S3 column contains unexpected results.
-- Because S2 and S3 have compatible types, the query reads
-- values from the dropped S2, because the existing data files
-- still contain those values as the second column.
select * from p1;
+-------+-------+
| s1 | s3 |
+-------+-------+
| one | un |

 | Impala SQL Language Reference | 234

| two | deux |
| three | trois |
+-------+-------+

-- Parquet table showing how dropping a column can produce conversion
 errors.
create table p2 (s1 string, x int, s3 string) stored as parquet;

insert into p2 values ('one', 1, 'uno'), ('two', 2, 'dos'), ('three', 3,
 'tres');
select * from p2;
+-------+---+------+
| s1 | x | s3 |
+-------+---+------+
one	1	uno
two	2	dos
three	3	tres
+-------+---+------+

alter table p2 drop column x;
select * from p2;
WARNINGS:
File 'hdfs_filename' has an incompatible Parquet schema for column
 'add_columns.p2.s3'.
Column type: STRING, Parquet schema:
optional int32 x [i:1 d:1 r:0]

File 'hdfs_filename' has an incompatible Parquet schema for column
 'add_columns.p2.s3'.
Column type: STRING, Parquet schema:
optional int32 x [i:1 d:1 r:0]

In Impala 2.6 and higher, if an Avro table is created without column definitions in the CREATE TABLE statement,
and columns are later added through ALTER TABLE, the resulting table is now queryable. Missing values from the
newly added columns now default to NULL.

To change the file format that Impala expects data to be in, for a table or partition:

Use an ALTER TABLE ... SET FILEFORMAT clause. You can include an optional PARTITION
(col1=val1, col2=val2, ... clause so that the file format is changed for a specific partition rather than the
entire table.

Because this operation only changes the table metadata, you must do any conversion of existing data using regular
Hadoop techniques outside of Impala. Any new data created by the Impala INSERT statement will be in the new
format. You cannot specify the delimiter for Text files; the data files must be comma-delimited.

To set the file format for a single partition, include the PARTITION clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table p1 (s string) partitioned by (month int, day int);
-- Each ADD PARTITION clause creates a subdirectory in HDFS.
alter table p1 add partition (month=1, day=1);
alter table p1 add partition (month=1, day=2);
alter table p1 add partition (month=2, day=1);
alter table p1 add partition (month=2, day=2);
-- Queries and INSERT statements will read and write files
-- in this format for this specific partition.
alter table p1 partition (month=2, day=2) set fileformat parquet;

To add or drop partitions for a table, the table must already be partitioned (that is, created with a PARTITIONED
BY clause). The partition is a physical directory in HDFS, with a name that encodes a particular column value (the

 | Impala SQL Language Reference | 235

partition key). The Impala INSERT statement already creates the partition if necessary, so the ALTER TABLE ...
ADD PARTITION is primarily useful for importing data by moving or copying existing data files into the HDFS
directory corresponding to a partition. (You can use the LOAD DATA statement to move files into the partition
directory, or ALTER TABLE ... PARTITION (...) SET LOCATION to point a partition at a directory that
already contains data files.

The DROP PARTITION clause is used to remove the HDFS directory and associated data files for a particular
set of partition key values; for example, if you always analyze the last 3 months worth of data, at the beginning of
each month you might drop the oldest partition that is no longer needed. Removing partitions reduces the amount of
metadata associated with the table and the complexity of calculating the optimal query plan, which can simplify and
speed up queries on partitioned tables, particularly join queries. Here is an example showing the ADD PARTITION
and DROP PARTITION clauses.

To avoid errors while adding or dropping partitions whose existence is not certain, add the optional IF [NOT]
EXISTS clause between the ADD or DROP keyword and the PARTITION keyword. That is, the entire clause
becomes ADD IF NOT EXISTS PARTITION or DROP IF EXISTS PARTITION. The following example
shows how partitions can be created automatically through INSERT statements, or manually through ALTER TABLE
statements. The IF [NOT] EXISTS clauses let the ALTER TABLE statements succeed even if a new requested
partition already exists, or a partition to be dropped does not exist.

Inserting 2 year values creates 2 partitions:

create table partition_t (s string) partitioned by (y int);
insert into partition_t (s,y) values ('two thousand',2000), ('nineteen
 ninety',1990);
show partitions partition_t;
+-------+-------+--------+------+--------------+-------------------+--------
+-------------------+
| y | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
 | Incremental stats |
+-------+-------+--------+------+--------------+-------------------+--------
+-------+
| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT
 | false |
| 2000 | -1 | 1 | 13B | NOT CACHED | NOT CACHED | TEXT
 | false |
| Total | -1 | 2 | 29B | 0B | |
 | |
+-------+-------+--------+------+--------------+-------------------+--------
+-------+

Without the IF NOT EXISTS clause, an attempt to add a new partition might fail:

alter table partition_t add partition (y=2000);
ERROR: AnalysisException: Partition spec already exists: (y=2000).

The IF NOT EXISTS clause makes the statement succeed whether or not there was already a partition with the
specified key value:

alter table partition_t add if not exists partition (y=2000);
alter table partition_t add if not exists partition (y=2010);
show partitions partition_t;
+-------+-------+--------+------+--------------+-------------------+--------
+-------------------+
| y | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
 | Incremental stats |
+-------+-------+--------+------+--------------+-------------------+--------
+-------+

 | Impala SQL Language Reference | 236

| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT
 | false |
| 2000 | -1 | 1 | 13B | NOT CACHED | NOT CACHED | TEXT
 | false |
| 2010 | -1 | 0 | 0B | NOT CACHED | NOT CACHED | TEXT
 | false |
| Total | -1 | 2 | 29B | 0B | |
 | |
+-------+-------+--------+------+--------------+-------------------+--------
+-------+

Likewise, the IF EXISTS clause lets DROP PARTITION succeed whether or not the partition is already in the
table:

alter table partition_t drop if exists partition (y=2000);
alter table partition_t drop if exists partition (y=1950);
show partitions partition_t;
+-------+-------+--------+------+--------------+-------------------+--------
+-------------------+
| y | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
 | Incremental stats |
+-------+-------+--------+------+--------------+-------------------+--------
+-------+
| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT
 | false |
| 2010 | -1 | 0 | 0B | NOT CACHED | NOT CACHED | TEXT
 | false |
| Total | -1 | 1 | 16B | 0B | |
 | |
+-------+-------+--------+------+--------------+-------------------+--------
+-------+

The optional PURGE keyword, available in Impala 2.3 and higher, is used with the DROP PARTITION clause to
remove associated HDFS data files immediately rather than going through the HDFS trashcan mechanism. Use this
keyword when dropping a partition if it is crucial to remove the data as quickly as possible to free up space, or if there
is a problem with the trashcan, such as the trash cannot being configured or being in a different HDFS encryption
zone than the data files.

-- Create an empty table and define the partitioning scheme.
create table part_t (x int) partitioned by (month int);
-- Create an empty partition into which you could copy data files from some
 other source.
alter table part_t add partition (month=1);
-- After changing the underlying data, issue a REFRESH statement to make the
 data visible in Impala.
refresh part_t;
-- Later, do the same for the next month.
alter table part_t add partition (month=2);

-- Now you no longer need the older data.
alter table part_t drop partition (month=1);
-- If the table was partitioned by month and year, you would issue a
 statement like:
-- alter table part_t drop partition (year=2003,month=1);
-- which would require 12 ALTER TABLE statements to remove a year's worth of
 data.

-- If the data files for subsequent months were in a different file format,
-- you could set a different file format for the new partition as you create
 it.
alter table part_t add partition (month=3) set fileformat=parquet;

 | Impala SQL Language Reference | 237

The value specified for a partition key can be an arbitrary constant expression, without any references to columns. For
example:

alter table time_data add partition (month=concat('Decem','ber'));
alter table sales_data add partition (zipcode = cast(9021 * 10 as string));

Note:

An alternative way to reorganize a table and its associated data files is to use CREATE TABLE to create a variation
of the original table, then use INSERT to copy the transformed or reordered data to the new table. The advantage of
ALTER TABLE is that it avoids making a duplicate copy of the data files, allowing you to reorganize huge volumes
of data in a space-efficient way using familiar Hadoop techniques.

To switch a table between internal and external:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='TRUE');

-- Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='FALSE');

Cancellation: Cannot be cancelled.

HDFS permissions:

Most ALTER TABLE clauses do not actually read or write any HDFS files, and so do not depend on specific HDFS
permissions. For example, the SET FILEFORMAT clause does not actually check the file format existing data files or
convert them to the new format, and the SET LOCATION clause does not require any special permissions on the new
location. (Any permission-related failures would come later, when you actually query or insert into the table.)

In general, ALTER TABLE clauses that do touch HDFS files and directories require the same HDFS permissions
as corresponding CREATE, INSERT, or SELECT statements. The permissions allow the user ID that the impalad
daemon runs under, typically the impala user, to read or write files or directories, or (in the case of the execute
bit) descend into a directory. The RENAME TO clause requires read, write, and execute permission in the source and
destination database directories and in the table data directory, and read and write permission for the data files within
the table. The ADD PARTITION and DROP PARTITION clauses require write and execute permissions for the
associated partition directory.

Kudu considerations:

Because of the extra constraints and features of Kudu tables, such as the NOT NULL and DEFAULT attributes for
columns, ALTER TABLE has specific requirements related to Kudu tables:

• In an ADD COLUMNS operation, you can specify the NULL, NOT NULL, and DEFAULT default_value
column attributes.

• In Impala 2.9 and higher, you can also specify the ENCODING, COMPRESSION, and BLOCK_SIZE attributes
when adding a column.

• If you add a column with a NOT NULL attribute, it must also have a DEFAULT attribute, so the default value can
be assigned to that column for all existing rows.

• The DROP COLUMN clause works the same for a Kudu table as for other kinds of tables.
• Although you can change the name of a column with the CHANGE clause, you cannot change the type of a column

in a Kudu table.
• You cannot change the nullability of existing columns in a Kudu table.
• In Impala 2.10, you can change the default value, encoding, compression, or block size of existing columns in a

Kudu table by using the SET clause.
• You cannot use the REPLACE COLUMNS clause with a Kudu table.

 | Impala SQL Language Reference | 238

• The RENAME TO clause for a Kudu table only affects the name stored in the metastore database
that Impala uses to refer to the table. To change which underlying Kudu table is associated
with an Impala table name, you must change the TBLPROPERTIES property of the table: SET
TBLPROPERTIES('kudu.table_name'='kudu_tbl_name). Doing so causes Kudu to change the name
of the underlying Kudu table.

The following are some examples of using the ADD COLUMNS clause for a Kudu table:

CREATE TABLE t1 (x INT, PRIMARY KEY (x))
 PARTITION BY HASH (x) PARTITIONS 16
 STORED AS KUDU

ALTER TABLE t1 ADD COLUMNS (y STRING ENCODING prefix_encoding);
ALTER TABLE t1 ADD COLUMNS (z INT DEFAULT 10);
ALTER TABLE t1 ADD COLUMNS (a STRING NOT NULL DEFAULT '', t TIMESTAMP
 COMPRESSION default_compression);

The following are some examples of modifying column defaults and storage attributes for a Kudu table:

create table kt (x bigint primary key, s string default 'yes', t timestamp)
 stored as kudu;

-- You can change the default value for a column, which affects any rows
-- inserted after this change is made.
alter table kt alter column s set default 'no';

-- You can remove the default value for a column, which affects any rows
-- inserted after this change is made. If the column is nullable, any
-- future inserts default to NULL for this column. If the column is marked
-- NOT NULL, any future inserts must specify a value for the column.
alter table kt alter column s drop default;

insert into kt values (1, 'foo', now());
-- Because of the DROP DEFAULT above, omitting S from the insert
-- gives it a value of NULL.
insert into kt (x, t) values (2, now());

select * from kt;
+---+------+-------------------------------+
| x | s | t |
+---+------+-------------------------------+
| 2 | NULL | 2017-10-02 00:03:40.652156000 |
| 1 | foo | 2017-10-02 00:03:04.346185000 |
+---+------+-------------------------------+

-- Other storage-related attributes can also be changed for columns.
-- These changes take effect for any newly inserted rows, or rows
-- rearranged due to compaction after deletes or updates.
alter table kt alter column s set encoding prefix_encoding;
-- The COLUMN keyword is optional in the syntax.
alter table kt alter x set block_size 2048;
alter table kt alter column t set compression zlib;

desc kt;
+------+-----------+---------+-------------+----------+---------------
+-----------------+---------------------+------------+
| name | type | comment | primary_key | nullable | default_value |
 encoding | compression | block_size |
+------+-----------+---------+-------------+----------+---------------
+-----------------+---------------------+------------+

 | Impala SQL Language Reference | 239

| x | bigint | | true | false | |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 2048 |
| s | string | | false | true | |
 PREFIX_ENCODING | DEFAULT_COMPRESSION | 0 |
| t | timestamp | | false | true | |
 AUTO_ENCODING | ZLIB | 0 |
+------+-----------+---------+-------------+----------+---------------
+-----------------+---------------------+------------+

Kudu tables all use an underlying partitioning mechanism. The partition syntax is different than for non-Kudu tables.
You can use the ALTER TABLE statement to add and drop range partitions from a Kudu table. Any new range
must not overlap with any existing ranges. Dropping a range removes all the associated rows from the table. See
Partitioning for Kudu Tables on page 730 for details.

Related information:

Overview of Impala Tables on page 214, CREATE TABLE Statement on page 256, DROP TABLE Statement on
page 295, Partitioning for Impala Tables on page 681, Internal Tables on page 215, External Tables on page
215

ALTER VIEW Statement

Changes the characteristics of a view. The syntax has two forms:

• The AS clause associates the view with a different query.
• The RENAME TO clause changes the name of the view, moves the view to a different database, or both.

Because a view is purely a logical construct (an alias for a query) with no physical data behind it, ALTER VIEW only
involves changes to metadata in the metastore database, not any data files in HDFS.

Syntax:

ALTER VIEW [database_name.]view_name AS select_statement
ALTER VIEW [database_name.]view_name RENAME TO [database_name.]view_name

Statement type: DDL

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 394 for details.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

create table t1 (x int, y int, s string);
create table t2 like t1;
create view v1 as select * from t1;
alter view v1 as select * from t2;
alter view v1 as select x, upper(s) s from t2;

To see the definition of a view, issue a DESCRIBE FORMATTED statement, which shows the query from the original
CREATE VIEW statement:

[localhost:21000] > create view v1 as select * from t1;

 | Impala SQL Language Reference | 240

[localhost:21000] > describe formatted v1;
Query finished, fetching results ...
+------------------------------+------------------------------+------------+
| name | type | comment |
+------------------------------+------------------------------+------------+
# col_name	data_type	comment
	NULL	NULL
x	int	None
y	int	None
s	string	None
	NULL	NULL
# Detailed Table Information	NULL	NULL
Database:	views	NULL
Owner:	doc_demo	NULL
CreateTime:	Mon Jul 08 15:56:27 EDT 2013	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	0	NULL
Table Type:	VIRTUAL_VIEW	NULL
Table Parameters:	NULL	NULL
	transient_lastDdlTime	1373313387
	NULL	NULL
# Storage Information	NULL	NULL
SerDe Library:	null	NULL
InputFormat:	null	NULL
OutputFormat:	null	NULL
Compressed:	No	NULL
Num Buckets:	0	NULL
Bucket Columns:	[]	NULL
Sort Columns:	[]	NULL
	NULL	NULL
# View Information	NULL	NULL
View Original Text:	SELECT * FROM t1	NULL
View Expanded Text:	SELECT * FROM t1	NULL
+------------------------------+------------------------------+------------+

Related information:

Overview of Impala Views on page 219, CREATE VIEW Statement on page 271, DROP VIEW Statement on
page 296

COMPUTE STATS Statement

Gathers information about volume and distribution of data in a table and all associated columns and partitions.
The information is stored in the metastore database, and used by Impala to help optimize queries. For example, if
Impala can determine that a table is large or small, or has many or few distinct values it can organize parallelize the
work appropriately for a join query or insert operation. For details about the kinds of information gathered by this
statement, see Table and Column Statistics on page 636.

Syntax:

COMPUTE STATS [db_name.]table_name
COMPUTE INCREMENTAL STATS [db_name.]table_name [PARTITION (partition_spec)]

partition_spec ::= simple_partition_spec | complex_partition_spec

simple_partition_spec ::= partition_col=constant_value

complex_partition_spec ::= comparison_expression_on_partition_col

The PARTITION clause is only allowed in combination with the INCREMENTAL clause. It is optional for COMPUTE
INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions

 | Impala SQL Language Reference | 241

through the PARTITION (partition_spec) clause in a COMPUTE INCREMENTAL STATS or DROP
INCREMENTAL STATS statement, you must include all the partitioning columns in the specification, and specify
constant values for all the partition key columns.

Usage notes:

Originally, Impala relied on users to run the Hive ANALYZE TABLE statement, but that method of gathering
statistics proved unreliable and difficult to use. The Impala COMPUTE STATS statement is built from the ground up
to improve the reliability and user-friendliness of this operation. COMPUTE STATS does not require any setup steps
or special configuration. You only run a single Impala COMPUTE STATS statement to gather both table and column
statistics, rather than separate Hive ANALYZE TABLE statements for each kind of statistics.

The COMPUTE INCREMENTAL STATS variation is a shortcut for partitioned tables that works on a subset of
partitions rather than the entire table. The incremental nature makes it suitable for large tables with many partitions,
where a full COMPUTE STATS operation takes too long to be practical each time a partition is added or dropped. See
Overview of Incremental Statistics on page 641 for full usage details.

Important:

For a particular table, use either COMPUTE STATS or COMPUTE INCREMENTAL STATS, but never combine the
two or alternate between them. If you switch from COMPUTE STATS to COMPUTE INCREMENTAL STATS during
the lifetime of a table, or vice versa, drop all statistics (by running both DROP STATS and DROP INCREMENTAL
STATS) before making the switch.

When you run COMPUTE INCREMENTAL STATS on a table for the first time, the statistics are computed again
from scratch regardless of whether the table already has statistics. Therefore, expect a one-time resource-intensive
operation for scanning the entire table when running COMPUTE INCREMENTAL STATS for the first time on a
given table.

For a table with a huge number of partitions and many columns, the approximately 400 bytes of metadata per column
per partition can add up to significant memory overhead, as it must be cached on the catalogd host and on every
impalad host that is eligible to be a coordinator. If this metadata for all tables combined exceeds 2 GB, you might
experience service downtime.

COMPUTE INCREMENTAL STATS only applies to partitioned tables. If you use the INCREMENTAL clause for an
unpartitioned table, Impala automatically uses the original COMPUTE STATS statement. Such tables display false
under the Incremental stats column of the SHOW TABLE STATS output.

Note: Because many of the most performance-critical and resource-intensive operations rely on table and column
statistics to construct accurate and efficient plans, COMPUTE STATS is an important step at the end of your ETL
process. Run COMPUTE STATS on all tables as your first step during performance tuning for slow queries, or
troubleshooting for out-of-memory conditions:

• Accurate statistics help Impala construct an efficient query plan for join queries, improving performance and
reducing memory usage.

• Accurate statistics help Impala distribute the work effectively for insert operations into Parquet tables, improving
performance and reducing memory usage.

• Accurate statistics help Impala estimate the memory required for each query, which is important when you use
resource management features, such as admission control and the YARN resource management framework. The
statistics help Impala to achieve high concurrency, full utilization of available memory, and avoid contention with
workloads from other Hadoop components.

• In Impala 2.8 and higher, when you run the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement
against a Parquet table, Impala automatically applies the query option setting MT_DOP=4 to increase the amount
of intra-node parallelism during this CPU-intensive operation. See MT_DOP Query Option on page 381 for
details about what this query option does and how to use it with CPU-intensive SELECT statements.

Computing stats for groups of partitions:

In Impala 2.8 and higher, you can run COMPUTE INCREMENTAL STATS on multiple partitions, instead of the
entire table or one partition at a time. You include comparison operators other than = in the PARTITION clause, and
the COMPUTE INCREMENTAL STATS statement applies to all partitions that match the comparison expression.

 | Impala SQL Language Reference | 242

For example, the INT_PARTITIONS table contains 4 partitions. The following COMPUTE INCREMENTAL
STATS statements affect some but not all partitions, as indicated by the Updated n partition(s) messages.
The partitions that are affected depend on values in the partition key column X that match the comparison expression
in the PARTITION clause.

show partitions int_partitions;
+-------+-------+--------+------+--------------+-------------------
+---------+...
| x | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
 |...
+-------+-------+--------+------+--------------+-------------------
+---------+...
| 99 | -1 | 0 | 0B | NOT CACHED | NOT CACHED | PARQUET
 |...
| 120 | -1 | 0 | 0B | NOT CACHED | NOT CACHED | TEXT
 |...
| 150 | -1 | 0 | 0B | NOT CACHED | NOT CACHED | TEXT
 |...
| 200 | -1 | 0 | 0B | NOT CACHED | NOT CACHED | TEXT
 |...
| Total | -1 | 0 | 0B | 0B | |
 |...
+-------+-------+--------+------+--------------+-------------------
+---------+...

compute incremental stats int_partitions partition (x < 100);
+---+
| summary |
+---+
| Updated 1 partition(s) and 1 column(s). |
+---+

compute incremental stats int_partitions partition (x in (100, 150, 200));
+---+
| summary |
+---+
| Updated 2 partition(s) and 1 column(s). |
+---+

compute incremental stats int_partitions partition (x between 100 and 175);
+---+
| summary |
+---+
| Updated 2 partition(s) and 1 column(s). |
+---+

compute incremental stats int_partitions partition (x in (100, 150, 200) or
 x < 100);
+---+
| summary |
+---+
| Updated 3 partition(s) and 1 column(s). |
+---+

compute incremental stats int_partitions partition (x != 150);
+---+
| summary |
+---+
| Updated 3 partition(s) and 1 column(s). |
+---+

 | Impala SQL Language Reference | 243

Complex type considerations:

Currently, the statistics created by the COMPUTE STATS statement do not include information about complex type
columns. The column stats metrics for complex columns are always shown as -1. For queries involving complex type
columns, Impala uses heuristics to estimate the data distribution within such columns.

HBase considerations:

COMPUTE STATS works for HBase tables also. The statistics gathered for HBase tables are somewhat different
than for HDFS-backed tables, but that metadata is still used for optimization when HBase tables are involved in join
queries.

Amazon S3 considerations:

COMPUTE STATS also works for tables where data resides in the Amazon Simple Storage Service (S3). See Using
Impala with the Amazon S3 Filesystem on page 748 for details.

Performance considerations:

The statistics collected by COMPUTE STATS are used to optimize join queries INSERT operations into Parquet
tables, and other resource-intensive kinds of SQL statements. See Table and Column Statistics on page 636 for
details.

For large tables, the COMPUTE STATS statement itself might take a long time and you might need to tune its
performance. The COMPUTE STATS statement does not work with the EXPLAIN statement, or the SUMMARY
command in impala-shell. You can use the PROFILE statement in impala-shell to examine timing
information for the statement as a whole. If a basic COMPUTE STATS statement takes a long time for a partitioned
table, consider switching to the COMPUTE INCREMENTAL STATS syntax so that only newly added partitions are
analyzed each time.

Examples:

This example shows two tables, T1 and T2, with a small number distinct values linked by a parent-child relationship
between T1.ID and T2.PARENT. T1 is tiny, while T2 has approximately 100K rows. Initially, the statistics
includes physical measurements such as the number of files, the total size, and size measurements for fixed-length
columns such as with the INT type. Unknown values are represented by -1. After running COMPUTE STATS for
each table, much more information is available through the SHOW STATS statements. If you were running a join
query involving both of these tables, you would need statistics for both tables to get the most effective optimization
for the query.

[localhost:21000] > show table stats t1;
Query: show table stats t1
+-------+--------+------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+------+--------+
| -1 | 1 | 33B | TEXT |
+-------+--------+------+--------+
Returned 1 row(s) in 0.02s
[localhost:21000] > show table stats t2;
Query: show table stats t2
+-------+--------+----------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+----------+--------+
| -1 | 28 | 960.00KB | TEXT |
+-------+--------+----------+--------+
Returned 1 row(s) in 0.01s
[localhost:21000] > show column stats t1;
Query: show column stats t1
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| id | INT | -1 | -1 | 4 | 4 |
| s | STRING | -1 | -1 | -1 | -1 |
+--------+--------+------------------+--------+----------+----------+

 | Impala SQL Language Reference | 244

Returned 2 row(s) in 1.71s
[localhost:21000] > show column stats t2;
Query: show column stats t2
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| parent | INT | -1 | -1 | 4 | 4 |
| s | STRING | -1 | -1 | -1 | -1 |
+--------+--------+------------------+--------+----------+----------+
Returned 2 row(s) in 0.01s
[localhost:21000] > compute stats t1;
Query: compute stats t1
+---+
| summary |
+---+
| Updated 1 partition(s) and 2 column(s). |
+---+
Returned 1 row(s) in 5.30s
[localhost:21000] > show table stats t1;
Query: show table stats t1
+-------+--------+------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+------+--------+
| 3 | 1 | 33B | TEXT |
+-------+--------+------+--------+
Returned 1 row(s) in 0.01s
[localhost:21000] > show column stats t1;
Query: show column stats t1
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| id | INT | 3 | -1 | 4 | 4 |
| s | STRING | 3 | -1 | -1 | -1 |
+--------+--------+------------------+--------+----------+----------+
Returned 2 row(s) in 0.02s
[localhost:21000] > compute stats t2;
Query: compute stats t2
+---+
| summary |
+---+
| Updated 1 partition(s) and 2 column(s). |
+---+
Returned 1 row(s) in 5.70s
[localhost:21000] > show table stats t2;
Query: show table stats t2
+-------+--------+----------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+----------+--------+
| 98304 | 1 | 960.00KB | TEXT |
+-------+--------+----------+--------+
Returned 1 row(s) in 0.03s
[localhost:21000] > show column stats t2;
Query: show column stats t2
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| parent | INT | 3 | -1 | 4 | 4 |
| s | STRING | 6 | -1 | 14 | 9.3 |
+--------+--------+------------------+--------+----------+----------+
Returned 2 row(s) in 0.01s

 | Impala SQL Language Reference | 245

The following example shows how to use the INCREMENTAL clause, available in Impala 2.1.0 and higher. The
COMPUTE INCREMENTAL STATS syntax lets you collect statistics for newly added or changed partitions, without
rescanning the entire table.

-- Initially the table has no incremental stats, as indicated
-- 'false' under Incremental stats.
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------
+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+------------------
| Books | -1 | 1 | 223.74KB | NOT CACHED | PARQUET | false
| Children | -1 | 1 | 230.05KB | NOT CACHED | PARQUET | false
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Home | -1 | 1 | 232.56KB | NOT CACHED | PARQUET | false
| Jewelry | -1 | 1 | 223.72KB | NOT CACHED | PARQUET | false
| Men | -1 | 1 | 231.25KB | NOT CACHED | PARQUET | false
| Music | -1 | 1 | 237.90KB | NOT CACHED | PARQUET | false
| Shoes | -1 | 1 | 234.90KB | NOT CACHED | PARQUET | false
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | -1 | 1 | 226.27KB | NOT CACHED | PARQUET | false
| Total | -1 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+------------------

-- After the first COMPUTE INCREMENTAL STATS,
-- all partitions have stats. The first
-- COMPUTE INCREMENTAL STATS scans the whole
-- table, discarding any previous stats from
-- a traditional COMPUTE STATS statement.
compute incremental stats item_partitioned;
+---+
| summary |
+---+
| Updated 10 partition(s) and 21 column(s). |
+---+
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------
+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+------------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+------------------

-- Add a new partition...
alter table item_partitioned add partition (i_category='Camping');
-- Add or replace files in HDFS outside of Impala,
-- rendering the stats for a partition obsolete.

 | Impala SQL Language Reference | 246

!import_data_into_sports_partition.sh
refresh item_partitioned;
drop incremental stats item_partitioned partition (i_category='Sports');
-- Now some partitions have incremental stats
-- and some do not.
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------
+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+------------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Camping | -1 | 1 | 408.02KB | NOT CACHED | PARQUET | false
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 11 | 2.65MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+------------------

-- After another COMPUTE INCREMENTAL STATS,
-- all partitions have incremental stats, and only the 2
-- partitions without incremental stats were scanned.
compute incremental stats item_partitioned;
+--+
| summary |
+--+
| Updated 2 partition(s) and 21 column(s). |
+--+
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------
+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+------------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Camping | 5328 | 1 | 408.02KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 11 | 2.65MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+------------------

File format considerations:

The COMPUTE STATS statement works with tables created with any of the file formats supported by Impala. See
How Impala Works with Hadoop File Formats on page 690 for details about working with the different file
formats. The following considerations apply to COMPUTE STATS depending on the file format of the table.

 | Impala SQL Language Reference | 247

The COMPUTE STATS statement works with text tables with no restrictions. These tables can be created through
either Impala or Hive.

The COMPUTE STATS statement works with Parquet tables. These tables can be created through either Impala or
Hive.

The COMPUTE STATS statement works with Avro tables without restriction in Impala 2.2 and higher. In earlier
releases, COMPUTE STATS worked only for Avro tables created through Hive, and required the CREATE TABLE
statement to use SQL-style column names and types rather than an Avro-style schema specification.

The COMPUTE STATS statement works with RCFile tables with no restrictions. These tables can be created through
either Impala or Hive.

The COMPUTE STATS statement works with SequenceFile tables with no restrictions. These tables can be created
through either Impala or Hive.

The COMPUTE STATS statement works with partitioned tables, whether all the partitions use the same file format, or
some partitions are defined through ALTER TABLE to use different file formats.

Statement type: DDL

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COMPUTE STATS) can be
cancelled during some stages, when running INSERT or SELECT operations internally. To cancel this statement, use
Ctrl-C from the impala-shell interpreter, the Cancel button from the Watch page in Hue, or Cancel from the list
of in-flight queries (for a particular node) on the Queries tab in the Impala web UI (port 25000).

Restrictions:

Note: Prior to Impala 1.4.0, COMPUTE STATS counted the number of NULL values in each column and recorded
that figure in the metastore database. Because Impala does not currently use the NULL count during query planning,
Impala 1.4.0 and higher speeds up the COMPUTE STATS statement by skipping this NULL counting.

Internal details:

Behind the scenes, the COMPUTE STATS statement executes two statements: one to count the rows of each
partition in the table (or the entire table if unpartitioned) through the COUNT(*) function, and another to count the
approximate number of distinct values in each column through the NDV() function. You might see these queries in
your monitoring and diagnostic displays. The same factors that affect the performance, scalability, and execution of
other queries (such as parallel execution, memory usage, admission control, and timeouts) also apply to the queries
run by the COMPUTE STATS statement.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permission for all
affected files in the source directory: all files in the case of an unpartitioned table or a partitioned table in the case of
COMPUTE STATS; or all the files in partitions without incremental stats in the case of COMPUTE INCREMENTAL
STATS. It must also have read and execute permissions for all relevant directories holding the data files. (Essentially,
COMPUTE STATS requires the same permissions as the underlying SELECT queries it runs against the table.)

Kudu considerations:

The COMPUTE STATS statement applies to Kudu tables. Impala does not compute the number of rows for each
partition for Kudu tables. Therefore, you do not need to re-run the operation when you see -1 in the # Rows column
of the output from SHOW TABLE STATS. That column always shows -1 for all Kudu tables.

Related information:

DROP STATS Statement on page 290, SHOW TABLE STATS Statement on page 404, SHOW COLUMN STATS
Statement on page 406, Table and Column Statistics on page 636

CREATE DATABASE Statement

Creates a new database.

In Impala, a database is both:

 | Impala SQL Language Reference | 248

• A logical construct for grouping together related tables, views, and functions within their own namespace. You
might use a separate database for each application, set of related tables, or round of experimentation.

• A physical construct represented by a directory tree in HDFS. Tables (internal tables), partitions, and data files
are all located under this directory. You can perform HDFS-level operations such as backing it up and measuring
space usage, or remove it with a DROP DATABASE statement.

Syntax:

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name[COMMENT
 'database_comment']
 [LOCATION hdfs_path];

Statement type: DDL

Usage notes:

A database is physically represented as a directory in HDFS, with a filename extension .db, under the main Impala
data directory. If the associated HDFS directory does not exist, it is created for you. All databases and their associated
directories are top-level objects, with no physical or logical nesting.

After creating a database, to make it the current database within an impala-shell session, use the USE statement.
You can refer to tables in the current database without prepending any qualifier to their names.

When you first connect to Impala through impala-shell, the database you start in (before issuing any CREATE
DATABASE or USE statements) is named default.

Impala includes another predefined database, _impala_builtins, that serves as the location for the built-in
functions. To see the built-in functions, use a statement like the following:

show functions in _impala_builtins;
show functions in _impala_builtins like '*substring*';

After creating a database, your impala-shell session or another impala-shell connected to the same node
can immediately access that database. To access the database through the Impala daemon on a different node, issue
the INVALIDATE METADATA statement first while connected to that other node.

Setting the LOCATION attribute for a new database is a way to work with sets of files in an HDFS directory structure
outside the default Impala data directory, as opposed to setting the LOCATION attribute for each individual table.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 394 for details.

Hive considerations:

When you create a database in Impala, the database can also be used by Hive. When you create a database in Hive,
issue an INVALIDATE METADATA statement in Impala to make Impala permanently aware of the new database.

The SHOW DATABASES statement lists all databases, or the databases whose name matches a wildcard pattern.
In Impala 2.5 and higher, the SHOW DATABASES output includes a second column that displays the associated
comment, if any, for each database.

Amazon S3 considerations:

To specify that any tables created within a database reside on the Amazon S3 system, you can include an s3a://
prefix on the LOCATION attribute. In Impala 2.6 and higher, Impala automatically creates any required folders as the
databases, tables, and partitions are created, and removes them when they are dropped.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 748 for details about reading and writing S3 data with Impala.

 | Impala SQL Language Reference | 249

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have write permission for the
parent HDFS directory under which the database is located.

Examples:

create database first_db;
use first_db;
create table t1 (x int);

create database second_db;
use second_db;
-- Each database has its own namespace for tables.
-- You can reuse the same table names in each database.
create table t1 (s string);

create database temp;

-- You can either USE a database after creating it,
-- or qualify all references to the table name with the name of the
 database.
-- Here, tables T2 and T3 are both created in the TEMP database.

create table temp.t2 (x int, y int);
use database temp;
create table t3 (s string);

-- You cannot drop a database while it is selected by the USE statement.
drop database temp;
ERROR: AnalysisException: Cannot drop current default database: temp

-- The always-available database 'default' is a convenient one to USE
-- before dropping a database you created.
use default;

-- Before dropping a database, first drop all the tables inside it,
-- or in Impala 2.3 and higher use the CASCADE clause.
drop database temp;
ERROR: ImpalaRuntimeException: Error making 'dropDatabase' RPC to Hive
 Metastore:
CAUSED BY: InvalidOperationException: Database temp is not empty
show tables in temp;
+------+
| name |
+------+
| t3 |
+------+

-- Impala 2.3 and higher:
drop database temp cascade;

-- Earlier releases:
drop table temp.t3;
drop database temp;

Related information:

Overview of Impala Databases on page 212, DROP DATABASE Statement on page 286, USE Statement on page
418, SHOW DATABASES on page 399, Overview of Impala Tables on page 214

 | Impala SQL Language Reference | 250

CREATE FUNCTION Statement

Creates a user-defined function (UDF), which you can use to implement custom logic during SELECT or INSERT
operations.

Syntax:

The syntax is different depending on whether you create a scalar UDF, which is called once for each row and
implemented by a single function, or a user-defined aggregate function (UDA), which is implemented by multiple
functions that compute intermediate results across sets of rows.

In Impala 2.5 and higher, the syntax is also different for creating or dropping scalar Java-based UDFs. The statements
for Java UDFs use a new syntax, without any argument types or return type specified. Java-based UDFs created using
the new syntax persist across restarts of the Impala catalog server, and can be shared transparently between Impala
and Hive.

To create a persistent scalar C++ UDF with CREATE FUNCTION:

CREATE FUNCTION [IF NOT EXISTS]
 [db_name.]function_name([arg_type[, arg_type...])
 RETURNS return_type
 LOCATION 'hdfs_path_to_dot_so'
 SYMBOL='symbol_name'

To create a persistent Java UDF with CREATE FUNCTION:

CREATE FUNCTION [IF NOT EXISTS] [db_name.]function_name
 LOCATION 'hdfs_path_to_jar'
 SYMBOL='class_name'

To create a persistent UDA, which must be written in C++, issue a CREATE AGGREGATE FUNCTION statement:

CREATE [AGGREGATE] FUNCTION [IF NOT EXISTS]
 [db_name.]function_name([arg_type[, arg_type...])
 RETURNS return_type
 LOCATION 'hdfs_path'
 [INIT_FN='function]
 UPDATE_FN='function
 MERGE_FN='function
 [PREPARE_FN='function]
 [CLOSEFN='function]
 [SERIALIZE_FN='function]
 [FINALIZE_FN='function]
 [INTERMEDIATE type_spec]

Statement type: DDL

Varargs notation:

Note:

Variable-length argument lists are supported for C++ UDFs, but currently not for Java UDFs.

If the underlying implementation of your function accepts a variable number of arguments:

• The variable arguments must go last in the argument list.
• The variable arguments must all be of the same type.
• You must include at least one instance of the variable arguments in every function call invoked from SQL.
• You designate the variable portion of the argument list in the CREATE FUNCTION statement by including ...

immediately after the type name of the first variable argument. For example, to create a function that accepts

 | Impala SQL Language Reference | 251

an INT argument, followed by a BOOLEAN, followed by one or more STRING arguments, your CREATE
FUNCTION statement would look like:

CREATE FUNCTION func_name (INT, BOOLEAN, STRING ...)
 RETURNS type LOCATION 'path' SYMBOL='entry_point';

See Variable-Length Argument Lists on page 593 for how to code a C++ UDF to accept variable-length argument
lists.

Scalar and aggregate functions:

The simplest kind of user-defined function returns a single scalar value each time it is called, typically once for
each row in the result set. This general kind of function is what is usually meant by UDF. User-defined aggregate
functions (UDAs) are a specialized kind of UDF that produce a single value based on the contents of multiple rows.
You usually use UDAs in combination with a GROUP BY clause to condense a large result set into a smaller one, or
even a single row summarizing column values across an entire table.

You create UDAs by using the CREATE AGGREGATE FUNCTION syntax. The clauses INIT_FN, UPDATE_FN,
MERGE_FN, SERIALIZE_FN, FINALIZE_FN, and INTERMEDIATE only apply when you create a UDA rather
than a scalar UDF.

The *_FN clauses specify functions to call at different phases of function processing.

• Initialize: The function you specify with the INIT_FN clause does any initial setup, such as initializing member
variables in internal data structures. This function is often a stub for simple UDAs. You can omit this clause and a
default (no-op) function will be used.

• Update: The function you specify with the UPDATE_FN clause is called once for each row in the original result
set, that is, before any GROUP BY clause is applied. A separate instance of the function is called for each different
value returned by the GROUP BY clause. The final argument passed to this function is a pointer, to which you
write an updated value based on its original value and the value of the first argument.

• Merge: The function you specify with the MERGE_FN clause is called an arbitrary number of times, to combine
intermediate values produced by different nodes or different threads as Impala reads and processes data files in
parallel. The final argument passed to this function is a pointer, to which you write an updated value based on its
original value and the value of the first argument.

• Serialize: The function you specify with the SERIALIZE_FN clause frees memory allocated to intermediate
results. It is required if any memory was allocated by the Allocate function in the Init, Update, or Merge functions,
or if the intermediate type contains any pointers. See the UDA code samples for details.

• Finalize: The function you specify with the FINALIZE_FN clause does any required teardown for resources
acquired by your UDF, such as freeing memory, closing file handles if you explicitly opened any files, and so on.
This function is often a stub for simple UDAs. You can omit this clause and a default (no-op) function will be
used. It is required in UDAs where the final return type is different than the intermediate type. or if any memory
was allocated by the Allocate function in the Init, Update, or Merge functions. See the UDA code samples for
details.

If you use a consistent naming convention for each of the underlying functions, Impala can automatically determine
the names based on the first such clause, so the others are optional.

For end-to-end examples of UDAs, see Impala User-Defined Functions (UDFs) on page 587.

Complex type considerations:

Currently, Impala UDFs cannot accept arguments or return values of the Impala complex types (STRUCT, ARRAY, or
MAP).

Usage notes:

• You can write Impala UDFs in either C++ or Java. C++ UDFs are new to Impala, and are the recommended
format for high performance utilizing native code. Java-based UDFs are compatible between Impala and Hive, and
are most suited to reusing existing Hive UDFs. (Impala can run Java-based Hive UDFs but not Hive UDAs.)

• Impala 2.5 introduces UDF improvements to persistence for both C++ and Java UDFs, and better compatibility
between Impala and Hive for Java UDFs. See Impala User-Defined Functions (UDFs) on page 587 for details.

 | Impala SQL Language Reference | 252

• The body of the UDF is represented by a .so or .jar file, which you store in HDFS and the CREATE
FUNCTION statement distributes to each Impala node.

• Impala calls the underlying code during SQL statement evaluation, as many times as needed to process all the
rows from the result set. All UDFs are assumed to be deterministic, that is, to always return the same result when
passed the same argument values. Impala might or might not skip some invocations of a UDF if the result value
is already known from a previous call. Therefore, do not rely on the UDF being called a specific number of times,
and do not return different result values based on some external factor such as the current time, a random number
function, or an external data source that could be updated while an Impala query is in progress.

• The names of the function arguments in the UDF are not significant, only their number, positions, and data types.
• You can overload the same function name by creating multiple versions of the function, each with a different

argument signature. For security reasons, you cannot make a UDF with the same name as any built-in function.
• In the UDF code, you represent the function return result as a struct. This struct contains 2 fields. The first

field is a boolean representing whether the value is NULL or not. (When this field is true, the return value is
interpreted as NULL.) The second field is the same type as the specified function return type, and holds the return
value when the function returns something other than NULL.

• In the UDF code, you represent the function arguments as an initial pointer to a UDF context structure, followed
by references to zero or more structs, corresponding to each of the arguments. Each struct has the same 2
fields as with the return value, a boolean field representing whether the argument is NULL, and a field of the
appropriate type holding any non-NULL argument value.

• For sample code and build instructions for UDFs, see the sample UDFs in the Impala github repo.
• Because the file representing the body of the UDF is stored in HDFS, it is automatically available to all the Impala

nodes. You do not need to manually copy any UDF-related files between servers.
• Because Impala currently does not have any ALTER FUNCTION statement, if you need to rename a function,

move it to a different database, or change its signature or other properties, issue a DROP FUNCTION statement
for the original function followed by a CREATE FUNCTION with the desired properties.

• Because each UDF is associated with a particular database, either issue a USE statement before doing any
CREATE FUNCTION statements, or specify the name of the function as db_name.function_name.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 394 for details.

Compatibility:

Impala can run UDFs that were created through Hive, as long as they refer to Impala-compatible data types (not
composite or nested column types). Hive can run Java-based UDFs that were created through Impala, but not Impala
UDFs written in C++.

The Hive current_user() function cannot be called from a Java UDF through Impala.

Persistence:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTION syntax
do not persist across restarts because they are held in the memory of the catalogd daemon. Until you re-create
such Java UDFs using the new CREATE FUNCTION syntax, you must reload those Java-based UDFs by running the
original CREATE FUNCTION statements again each time you restart the catalogd daemon. Prior to Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

For additional examples of all kinds of user-defined functions, see Impala User-Defined Functions (UDFs) on page
587.

 | Impala SQL Language Reference | 253

The following example shows how to take a Java jar file and make all the functions inside one of its classes into
UDFs under a single (overloaded) function name in Impala. Each CREATE FUNCTION or DROP FUNCTION
statement applies to all the overloaded Java functions with the same name. This example uses the signatureless syntax
for CREATE FUNCTION and DROP FUNCTION, which is available in Impala 2.5 and higher.

At the start, the jar file is in the local filesystem. Then it is copied into HDFS, so that it is available for Impala to
reference through the CREATE FUNCTION statement and queries that refer to the Impala function name.

$ jar -tvf udf-examples.jar
 0 Mon Feb 22 04:06:50 PST 2016 META-INF/
 122 Mon Feb 22 04:06:48 PST 2016 META-INF/MANIFEST.MF
 0 Mon Feb 22 04:06:46 PST 2016 org/
 0 Mon Feb 22 04:06:46 PST 2016 org/apache/
 0 Mon Feb 22 04:06:46 PST 2016 org/apache/impala/
 2460 Mon Feb 22 04:06:46 PST 2016 org/apache/impala/
IncompatibleUdfTest.class
 541 Mon Feb 22 04:06:46 PST 2016 org/apache/impala/TestUdfException.class
 3438 Mon Feb 22 04:06:46 PST 2016 org/apache/impala/JavaUdfTest.class
 5872 Mon Feb 22 04:06:46 PST 2016 org/apache/impala/TestUdf.class
...
$ hdfs dfs -put udf-examples.jar /user/impala/udfs
$ hdfs dfs -ls /user/impala/udfs
Found 2 items
-rw-r--r-- 3 jrussell supergroup 853 2015-10-09 14:05 /user/impala/
udfs/hello_world.jar
-rw-r--r-- 3 jrussell supergroup 7366 2016-06-08 14:25 /user/impala/
udfs/udf-examples.jar

In impala-shell, the CREATE FUNCTION refers to the HDFS path of the jar file and the fully qualified class
name inside the jar. Each of the functions inside the class becomes an Impala function, each one overloaded under the
specified Impala function name.

[localhost:21000] > create function testudf location '/user/impala/udfs/udf-
examples.jar' symbol='org.apache.impala.TestUdf';
[localhost:21000] > show functions;
+-------------+---------------------------------------+-------------
+---------------+
| return type | signature | binary type | is
 persistent |
+-------------+---------------------------------------+-------------
+---------------+
| BIGINT | testudf(BIGINT) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN, BOOLEAN) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN, BOOLEAN, BOOLEAN) | JAVA | true
 |
| DOUBLE | testudf(DOUBLE) | JAVA | true
 |
| DOUBLE | testudf(DOUBLE, DOUBLE) | JAVA | true
 |
| DOUBLE | testudf(DOUBLE, DOUBLE, DOUBLE) | JAVA | true
 |
| FLOAT | testudf(FLOAT) | JAVA | true
 |
| FLOAT | testudf(FLOAT, FLOAT) | JAVA | true
 |

 | Impala SQL Language Reference | 254

| FLOAT | testudf(FLOAT, FLOAT, FLOAT) | JAVA | true
 |
| INT | testudf(INT) | JAVA | true
 |
| DOUBLE | testudf(INT, DOUBLE) | JAVA | true
 |
| INT | testudf(INT, INT) | JAVA | true
 |
| INT | testudf(INT, INT, INT) | JAVA | true
 |
| SMALLINT | testudf(SMALLINT) | JAVA | true
 |
| SMALLINT | testudf(SMALLINT, SMALLINT) | JAVA | true
 |
| SMALLINT | testudf(SMALLINT, SMALLINT, SMALLINT) | JAVA | true
 |
| STRING | testudf(STRING) | JAVA | true
 |
| STRING | testudf(STRING, STRING) | JAVA | true
 |
| STRING | testudf(STRING, STRING, STRING) | JAVA | true
 |
| TINYINT | testudf(TINYINT) | JAVA | true
 |
+-------------+---------------------------------------+-------------
+---------------+

These are all simple functions that return their single arguments, or sum, concatenate, and so on their multiple
arguments. Impala determines which overloaded function to use based on the number and types of the arguments.

insert into bigint_x values (1), (2), (4), (3);
select testudf(x) from bigint_x;
+-----------------+
| udfs.testudf(x) |
+-----------------+
| 1 |
| 2 |
| 4 |
| 3 |
+-----------------+

insert into int_x values (1), (2), (4), (3);
select testudf(x, x+1, x*x) from int_x;
+-------------------------------+
| udfs.testudf(x, x + 1, x * x) |
+-------------------------------+
| 4 |
| 9 |
| 25 |
| 16 |
+-------------------------------+

select testudf(x) from string_x;
+-----------------+
| udfs.testudf(x) |
+-----------------+
| one |
| two |
| four |
| three |
+-----------------+
select testudf(x,x) from string_x;

 | Impala SQL Language Reference | 255

+--------------------+
| udfs.testudf(x, x) |
+--------------------+
| oneone |
| twotwo |
| fourfour |
| threethree |
+--------------------+

The previous example used the same Impala function name as the name of the class. This example shows how the
Impala function name is independent of the underlying Java class or function names. A second CREATE FUNCTION
statement results in a set of overloaded functions all named my_func, to go along with the overloaded functions all
named testudf.

create function my_func location '/user/impala/udfs/udf-examples.jar'
 symbol='org.apache.impala.TestUdf';

show functions;
+-------------+---------------------------------------+-------------
+---------------+
| return type | signature | binary type | is
 persistent |
+-------------+---------------------------------------+-------------
+---------------+
| BIGINT | my_func(BIGINT) | JAVA | true
 |
| BOOLEAN | my_func(BOOLEAN) | JAVA | true
 |
| BOOLEAN | my_func(BOOLEAN, BOOLEAN) | JAVA | true
 |
...
| BIGINT | testudf(BIGINT) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN, BOOLEAN) | JAVA | true
 |
...

The corresponding DROP FUNCTION statement with no signature drops all the overloaded functions with that name.

drop function my_func;
show functions;
+-------------+---------------------------------------+-------------
+---------------+
| return type | signature | binary type | is
 persistent |
+-------------+---------------------------------------+-------------
+---------------+
| BIGINT | testudf(BIGINT) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN, BOOLEAN) | JAVA | true
 |
...

The signatureless CREATE FUNCTION syntax for Java UDFs ensures that the functions shown in this example
remain available after the Impala service (specifically, the Catalog Server) are restarted.

 | Impala SQL Language Reference | 256

Related information:

Impala User-Defined Functions (UDFs) on page 587 for more background information, usage instructions, and
examples for Impala UDFs; DROP FUNCTION Statement on page 288

CREATE ROLE Statement (Impala 2.0 or higher only)

The CREATE ROLE statement creates a role to which privileges can be granted. Privileges can be granted to roles,
which can then be assigned to users. A user that has been assigned a role will only be able to exercise the privileges
of that role. Only users that have administrative privileges can create/drop roles. By default, the hive, impala and
hue users have administrative privileges in Sentry.

Syntax:

CREATE ROLE role_name

Required privileges:

Only administrative users (those with ALL privileges on the server, defined in the Sentry policy file) can use this
statement.

Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive
makes use of any roles and privileges specified by the GRANT and REVOKE statements in Impala. The Impala GRANT
and REVOKE statements for privileges do not require the ROLE keyword to be repeated before each role name, unlike
the equivalent Hive statements.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 87, GRANT Statement (Impala 2.0 or higher only) on page
300, REVOKE Statement (Impala 2.0 or higher only) on page 321, DROP ROLE Statement (Impala 2.0 or
higher only) on page 290, SHOW Statement on page 394

CREATE TABLE Statement

Creates a new table and specifies its characteristics. While creating a table, you optionally specify aspects such as:

• Whether the table is internal or external.
• The columns and associated data types.
• The columns used for physically partitioning the data.
• The file format for data files.
• The HDFS directory where the data files are located.

Syntax:

The general syntax for creating a table and specifying its columns is as follows:

Explicit column definitions:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
 (col_name data_type
 [COMMENT 'col_comment']
 [, ...]
)
 [PARTITIONED BY (col_name data_type [COMMENT 'col_comment'], ...)]
 [SORT BY ([column [, column ...]])]
 [COMMENT 'table_comment']
 [WITH SERDEPROPERTIES ('key1'='value1', 'key2'='value2', ...)]

 | Impala SQL Language Reference | 257

 [
 [ROW FORMAT row_format] [STORED AS file_format]
]
 [LOCATION 'hdfs_path']
 [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [CACHED IN 'pool_name' [WITH REPLICATION = integer] | UNCACHED]

CREATE TABLE AS SELECT:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] db_name.]table_name
 [PARTITIONED BY (col_name[, ...])]
 [SORT BY ([column [, column ...]])]
 [COMMENT 'table_comment']
 [WITH SERDEPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [
 [ROW FORMAT row_format] [STORED AS ctas_file_format]
]
 [LOCATION 'hdfs_path']
 [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [CACHED IN 'pool_name' [WITH REPLICATION = integer] | UNCACHED]
AS
 select_statement

primitive_type:
 TINYINT
 | SMALLINT
 | INT
 | BIGINT
 | BOOLEAN
 | FLOAT
 | DOUBLE
 | DECIMAL
 | STRING
 | CHAR
 | VARCHAR
 | TIMESTAMP

complex_type:
 struct_type
 | array_type
 | map_type

struct_type: STRUCT < name : primitive_or_complex_type [COMMENT
 'comment_string'], ... >

array_type: ARRAY < primitive_or_complex_type >

map_type: MAP < primitive_type, primitive_or_complex_type >

row_format:
 DELIMITED [FIELDS TERMINATED BY 'char' [ESCAPED BY 'char']]
 [LINES TERMINATED BY 'char']

file_format:
 PARQUET
 | TEXTFILE
 | AVRO
 | SEQUENCEFILE
 | RCFILE

ctas_file_format:
 PARQUET

 | Impala SQL Language Reference | 258

 | TEXTFILE

Column definitions inferred from data file:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
 LIKE PARQUET 'hdfs_path_of_parquet_file'
 [SORT BY ([column [, column ...]])]
 [COMMENT 'table_comment']
 [PARTITIONED BY (col_name data_type [COMMENT 'col_comment'], ...)]
 [WITH SERDEPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [
 [ROW FORMAT row_format] [STORED AS file_format]
]
 [LOCATION 'hdfs_path']
 [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [CACHED IN 'pool_name' [WITH REPLICATION = integer] | UNCACHED]
data_type:
 primitive_type
 | array_type
 | map_type
 | struct_type

Kudu tables:

CREATE TABLE [IF NOT EXISTS] [db_name.]table_name
 (col_name data_type
 [kudu_column_attribute ...]
 [COMMENT 'col_comment']
 [, ...]
 [PRIMARY KEY (col_name[, ...])]
)
 [PARTITION BY kudu_partition_clause]
 [COMMENT 'table_comment']
 STORED AS KUDU
 [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]

Kudu column attributes:

 PRIMARY KEY
| [NOT] NULL
| ENCODING codec
| COMPRESSION algorithm
| DEFAULT constant
| BLOCK_SIZE number

kudu_partition_clause:

kudu_partition_clause ::= [hash_clause] [, range_clause [, range_clause]]

hash_clause ::=
 HASH [(pk_col [, ...])]
 PARTITIONS n

range_clause ::=
 RANGE [(pk_col [, ...])]
 (
 {
 PARTITION constant_expression range_comparison_operator
 VALUES range_comparison_operator constant_expression
 | PARTITION VALUE = constant_expression_or_tuple

 | Impala SQL Language Reference | 259

 }
 [, ...]
)

range_comparison_operator ::= { < | <= }

External Kudu tables:

CREATE EXTERNAL TABLE [IF NOT EXISTS] [db_name.]table_name
 [COMMENT 'table_comment']
 STORED AS KUDU
 [TBLPROPERTIES ('kudu.table_name'='internal_kudu_name')]

CREATE TABLE AS SELECT for Kudu tables:

CREATE TABLE [IF NOT EXISTS] db_name.]table_name
 [PRIMARY KEY (col_name[, ...])]
 [PARTITION BY kudu_partition_clause]
 [COMMENT 'table_comment']
 STORED AS KUDU
 [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
AS
 select_statement

Statement type: DDL

Column definitions:

Depending on the form of the CREATE TABLE statement, the column definitions are required or not allowed.

With the CREATE TABLE AS SELECT and CREATE TABLE LIKE syntax, you do not specify the columns at
all; the column names and types are derived from the source table, query, or data file.

With the basic CREATE TABLE syntax, you must list one or more columns, its name, type, and optionally a
comment, in addition to any columns used as partitioning keys. There is one exception where the column list is not
required: when creating an Avro table with the STORED AS AVRO clause, you can omit the list of columns and
specify the same metadata as part of the TBLPROPERTIES clause.

Complex type considerations:

The Impala complex types (STRUCT, ARRAY, or MAP) are available in Impala 2.3 and higher. Because you can nest
these types (for example, to make an array of maps or a struct with an array field), these types are also sometimes
referred to as nested types. See Complex Types (Impala 2.3 or higher only) on page 152 for usage details.

Impala can create tables containing complex type columns, with any supported file format. Because currently Impala
can only query complex type columns in Parquet tables, creating tables with complex type columns and other file
formats such as text is of limited use. For example, you might create a text table including some columns with
complex types with Impala, and use Hive as part of your to ingest the nested type data and copy it to an identical
Parquet table. Or you might create a partitioned table containing complex type columns using one file format, and use
ALTER TABLE to change the file format of individual partitions to Parquet; Impala can then query only the Parquet-
format partitions in that table.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

Internal and external tables (EXTERNAL and LOCATION clauses):

By default, Impala creates an “internal” table, where Impala manages the underlying data files for the table, and
physically deletes the data files when you drop the table. If you specify the EXTERNAL clause, Impala treats the
table as an “external” table, where the data files are typically produced outside Impala and queried from their original
locations in HDFS, and Impala leaves the data files in place when you drop the table. For details about internal and
external tables, see Overview of Impala Tables on page 214.

 | Impala SQL Language Reference | 260

Typically, for an external table you include a LOCATION clause to specify the path to the HDFS directory where
Impala reads and writes files for the table. For example, if your data pipeline produces Parquet files in the HDFS
directory /user/etl/destination, you might create an external table as follows:

CREATE EXTERNAL TABLE external_parquet (c1 INT, c2 STRING, c3 TIMESTAMP)
 STORED AS PARQUET LOCATION '/user/etl/destination';

Although the EXTERNAL and LOCATION clauses are often specified together, LOCATION is optional for external
tables, and you can also specify LOCATION for internal tables. The difference is all about whether Impala “takes
control” of the underlying data files and moves them when you rename the table, or deletes them when you drop the
table. For more about internal and external tables and how they interact with the LOCATION attribute, see Overview
of Impala Tables on page 214.

Partitioned tables (PARTITIONED BY clause):

The PARTITIONED BY clause divides the data files based on the values from one or more specified columns.
Impala queries can use the partition metadata to minimize the amount of data that is read from disk or transmitted
across the network, particularly during join queries. For details about partitioning, see Partitioning for Impala Tables
on page 681.

Note:

All Kudu tables require partitioning, which involves different syntax than non-Kudu tables. See the PARTITION BY
clause, rather than PARTITIONED BY, for Kudu tables.

In Impala 2.10 and higher, the PARTITION BY clause is optional for Kudu tables. If the clause is omitted, Impala
automatically constructs a single partition that is not connected to any column. Because such a table cannot take
advantage of Kudu features for parallelized queries and query optimizations, omitting the PARTITION BY clause is
only appropriate for small lookup tables.

Prior to Impala 2.5, you could use a partitioned table as the source and copy data from it, but could not specify any
partitioning clauses for the new table. In Impala 2.5 and higher, you can now use the PARTITIONED BY clause
with a CREATE TABLE AS SELECT statement. See the examples under the following discussion of the CREATE
TABLE AS SELECT syntax variation.

Sorted tables (SORT BY clause):

The optional SORT BY clause lets you specify zero or more columns that are sorted in the data files created by each
Impala INSERT or CREATE TABLE AS SELECT operation. Creating data files that are sorted is most useful
for Parquet tables, where the metadata stored inside each file includes the minimum and maximum values for each
column in the file. (The statistics apply to each row group within the file; for simplicity, Impala writes a single row
group in each file.) Grouping data values together in relatively narrow ranges within each data file makes it possible
for Impala to quickly skip over data files that do not contain value ranges indicated in the WHERE clause of a query,
and can improve the effectiveness of Parquet encoding and compression.

This clause is not applicable for Kudu tables or HBase tables. Although it works for other HDFS file formats besides
Parquet, the more efficient layout is most evident with Parquet tables, because each Parquet data file includes
statistics about the data values in that file.

The SORT BY columns cannot include any partition key columns for a partitioned table, because those column values
are not represented in the underlying data files.

Because data files can arrive in Impala tables by mechanisms that do not respect the SORT BY clause, such as LOAD
DATA or ETL tools that create HDFS files, Impala does not guarantee or rely on the data being sorted. The sorting
aspect is only used to create a more efficient layout for Parquet files generated by Impala, which helps to optimize
the processing of those Parquet files during Impala queries. During an INSERT or CREATE TABLE AS SELECT
operation, the sorting occurs when the SORT BY clause applies to the destination table for the data, regardless of
whether the source table has a SORT BY clause.

For example, when creating a table intended to contain census data, you might define sort columns such as last name
and state. If a data file in this table contains a narrow range of last names, for example from Smith to Smythe,

 | Impala SQL Language Reference | 261

Impala can quickly detect that this data file contains no matches for a WHERE clause such as WHERE last_name =
'Jones' and avoid reading the entire file.

CREATE TABLE census_data (last_name STRING, first_name STRING, state STRING,
 address STRING)
 SORT BY (last_name, state)
 STORED AS PARQUET;

Likewise, if an existing table contains data without any sort order, you can reorganize the data in a more efficient way
by using INSERT or CREATE TABLE AS SELECT to copy that data into a new table with a SORT BY clause:

CREATE TABLE sorted_census_data
 SORT BY (last_name, state)
 STORED AS PARQUET
 AS SELECT last_name, first_name, state, address
 FROM unsorted_census_data;

The metadata for the SORT BY clause is stored in the TBLPROPERTIES fields for the table. Other SQL engines that
can interoperate with Impala tables, such as Hive and Spark SQL, do not recognize this property when inserting into a
table that has a SORT BY clause.

Kudu considerations:

Because Kudu tables do not support clauses related to HDFS and S3 data files and partitioning mechanisms, the
syntax associated with the STORED AS KUDU clause is shown separately in the above syntax descriptions. Kudu
tables have their own syntax for CREATE TABLE, CREATE EXTERNAL TABLE, and CREATE TABLE AS
SELECT. Prior to Impala 2.10, all internal Kudu tables require a PARTITION BY clause, different than the
PARTITIONED BY clause for HDFS-backed tables.

Here are some examples of creating empty Kudu tables:

-- Single partition. Only for Impala 2.10 and higher.
-- Only suitable for small lookup tables.
CREATE TABLE kudu_no_partition_by_clause
 (
 id bigint PRIMARY KEY, s STRING, b BOOLEAN
)
 STORED AS KUDU;

-- Single-column primary key.
CREATE TABLE kudu_t1 (id BIGINT PRIMARY key, s STRING, b BOOLEAN)
 PARTITION BY HASH (id) PARTITIONS 20 STORED AS KUDU;

-- Multi-column primary key.
CREATE TABLE kudu_t2 (id BIGINT, s STRING, b BOOLEAN, PRIMARY KEY (id,s))
 PARTITION BY HASH (s) PARTITIONS 30 STORED AS KUDU;

-- Meaningful primary key column is good for range partitioning.
CREATE TABLE kudu_t3 (id BIGINT, year INT, s STRING,
 b BOOLEAN, PRIMARY KEY (id,year))
 PARTITION BY HASH (id) PARTITIONS 20,
 RANGE (year) (PARTITION 1980 <= VALUES < 1990,
 PARTITION 1990 <= VALUES < 2000,
 PARTITION VALUE = 2001,
 PARTITION 2001 < VALUES)
 STORED AS KUDU;

Here is an example of creating an external Kudu table:

 | Impala SQL Language Reference | 262

-- Inherits column definitions from original table.
-- For tables created through Impala, the kudu.table_name property
-- comes from DESCRIBE FORMATTED output from the original table.
CREATE EXTERNAL TABLE external_t1 STORED AS KUDU
 TBLPROPERTIES ('kudu.table_name'='kudu_tbl_created_via_api');

Here is an example of CREATE TABLE AS SELECT syntax for a Kudu table:

-- The CTAS statement defines the primary key and partitioning scheme.
-- The rest of the column definitions are derived from the select list.
CREATE TABLE ctas_t1
 PRIMARY KEY (id) PARTITION BY HASH (id) PARTITIONS 10
 STORED AS KUDU
 AS SELECT id, s FROM kudu_t1;

The following CREATE TABLE clauses are not supported for Kudu tables:

• PARTITIONED BY (Kudu tables use the clause PARTITION BY instead)
• LOCATION
• ROWFORMAT
• CACHED IN | UNCACHED
• WITH SERDEPROPERTIES

For more on the PRIMARY KEY clause, see Primary Key Columns for Kudu Tables on page 725 and PRIMARY
KEY Attribute on page 726.

For more on the NULL and NOT NULL attributes, see NULL | NOT NULL Attribute on page 727.

For more on the ENCODING attribute, see ENCODING Attribute on page 728.

For more on the COMPRESSION attribute, see COMPRESSION Attribute on page 729.

For more on the DEFAULT attribute, see DEFAULT Attribute on page 728.

For more on the BLOCK_SIZE attribute, see BLOCK_SIZE Attribute on page 730.

Partitioning for Kudu tables (PARTITION BY clause)

For Kudu tables, you specify logical partitioning across one or more columns using the PARTITION BY clause. In
contrast to partitioning for HDFS-based tables, multiple values for a partition key column can be located in the same
partition. The optional HASH clause lets you divide one or a set of partition key columns into a specified number of
buckets. You can use more than one HASH clause, specifying a distinct set of partition key columns for each. The
optional RANGE clause further subdivides the partitions, based on a set of comparison operations for the partition key
columns.

Here are some examples of the PARTITION BY HASH syntax:

-- Apply hash function to 1 primary key column.
create table hash_t1 (x bigint, y bigint, s string, primary key (x,y))
 partition by hash (x) partitions 10
 stored as kudu;

-- Apply hash function to a different primary key column.
create table hash_t2 (x bigint, y bigint, s string, primary key (x,y))
 partition by hash (y) partitions 10
 stored as kudu;

-- Apply hash function to both primary key columns.
-- In this case, the total number of partitions is 10.
create table hash_t3 (x bigint, y bigint, s string, primary key (x,y))

 | Impala SQL Language Reference | 263

 partition by hash (x,y) partitions 10
 stored as kudu;

-- When the column list is omitted, apply hash function to all primary key
 columns.
create table hash_t4 (x bigint, y bigint, s string, primary key (x,y))
 partition by hash partitions 10
 stored as kudu;

-- Hash the X values independently from the Y values.
-- In this case, the total number of partitions is 10 x 20.
create table hash_t5 (x bigint, y bigint, s string, primary key (x,y))
 partition by hash (x) partitions 10, hash (y) partitions 20
 stored as kudu;

Here are some examples of the PARTITION BY RANGE syntax:

-- Create partitions that cover every possible value of X.
-- Ranges that span multiple values use the keyword VALUES between
-- a pair of < and <= comparisons.
create table range_t1 (x bigint, s string, s2 string, primary key (x, s))
 partition by range (x)
 (
 partition 0 <= values <= 49, partition 50 <= values <= 100,
 partition values < 0, partition 100 < values
)
 stored as kudu;

-- Create partitions that cover some possible values of X.
-- Values outside the covered range(s) are rejected.
-- New range partitions can be added through ALTER TABLE.
create table range_t2 (x bigint, s string, s2 string, primary key (x, s))
 partition by range (x)
 (
 partition 0 <= values <= 49, partition 50 <= values <= 100
)
 stored as kudu;

-- A range can also specify a single specific value, using the keyword VALUE
-- with an = comparison.
create table range_t3 (x bigint, s string, s2 string, primary key (x, s))
 partition by range (s)
 (
 partition value = 'Yes', partition value = 'No', partition value =
 'Maybe'
)
 stored as kudu;

-- Using multiple columns in the RANGE clause and tuples inside the
 partition spec
-- only works for partitions specified with the VALUE= syntax.
create table range_t4 (x bigint, s string, s2 string, primary key (x, s))
 partition by range (x,s)
 (
 partition value = (0,'zero'), partition value = (1,'one'), partition
 value = (2,'two')
)
 stored as kudu;

 | Impala SQL Language Reference | 264

Here are some examples combining both HASH and RANGE syntax for the PARTITION BY clause:

-- Values from each range partition are hashed into 10 associated buckets.
-- Total number of partitions in this case is 10 x 2.
create table combined_t1 (x bigint, s string, s2 string, primary key (x, s))
 partition by hash (x) partitions 10, range (x)
 (
 partition 0 <= values <= 49, partition 50 <= values <= 100
)
 stored as kudu;

-- The hash partitioning and range partitioning can apply to different
 columns.
-- But all the columns used in either partitioning scheme must be from the
 primary key.
create table combined_t2 (x bigint, s string, s2 string, primary key (x, s))
 partition by hash (s) partitions 10, range (x)
 (
 partition 0 <= values <= 49, partition 50 <= values <= 100
)
 stored as kudu;

For more usage details and examples of the Kudu partitioning syntax, see Using Impala to Query Kudu Tables on
page 724.

Specifying file format (STORED AS and ROW FORMAT clauses):

The STORED AS clause identifies the format of the underlying data files. Currently, Impala can query more types
of file formats than it can create or insert into. Use Hive to perform any create or data load operations that are not
currently available in Impala. For example, Impala can create an Avro, SequenceFile, or RCFile table but cannot
insert data into it. There are also Impala-specific procedures for using compression with each kind of file format. For
details about working with data files of various formats, see How Impala Works with Hadoop File Formats on page
690.

Note: In Impala 1.4.0 and higher, Impala can create Avro tables, which formerly required doing the CREATE
TABLE statement in Hive. See Using the Avro File Format with Impala Tables on page 714 for details and
examples.

By default (when no STORED AS clause is specified), data files in Impala tables are created as text files with Ctrl-
A (hex 01) characters as the delimiter. Specify the ROW FORMAT DELIMITED clause to produce or ingest data
files that use a different delimiter character such as tab or |, or a different line end character such as carriage return
or newline. When specifying delimiter and line end characters with the FIELDS TERMINATED BY and LINES
TERMINATED BY clauses, use '\t' for tab, '\n' for newline or linefeed, '\r' for carriage return, and \0 for
ASCII nul (hex 00). For more examples of text tables, see Using Text Data Files with Impala Tables on page 692.

The ESCAPED BY clause applies both to text files that you create through an INSERT statement to an Impala
TEXTFILE table, and to existing data files that you put into an Impala table directory. (You can ingest existing data
files either by creating the table with CREATE EXTERNAL TABLE ... LOCATION, the LOAD DATA statement,
or through an HDFS operation such as hdfs dfs -put file hdfs_path.) Choose an escape character that
is not used anywhere else in the file, and put it in front of each instance of the delimiter character that occurs within
a field value. Surrounding field values with quotation marks does not help Impala to parse fields with embedded
delimiter characters; the quotation marks are considered to be part of the column value. If you want to use \ as the
escape character, specify the clause in impala-shell as ESCAPED BY '\\'.

Note: The CREATE TABLE clauses FIELDS TERMINATED BY, ESCAPED BY, and LINES TERMINATED BY
have special rules for the string literal used for their argument, because they all require a single character. You can use
a regular character surrounded by single or double quotation marks, an octal sequence such as '\054' (representing
a comma), or an integer in the range '-127'..'128' (with quotation marks but no backslash), which is interpreted as a
single-byte ASCII character. Negative values are subtracted from 256; for example, FIELDS TERMINATED BY

 | Impala SQL Language Reference | 265

'-2' sets the field delimiter to ASCII code 254, the “Icelandic Thorn” character used as a delimiter by some data
formats.

Cloning tables (LIKE clause):

To create an empty table with the same columns, comments, and other attributes as another table, use the following
variation. The CREATE TABLE ... LIKE form allows a restricted set of clauses, currently only the LOCATION,
COMMENT, and STORED AS clauses.

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
 LIKE { [db_name.]table_name | PARQUET 'hdfs_path_of_parquet_file' }
 [COMMENT 'table_comment']
 [STORED AS file_format]
 [LOCATION 'hdfs_path']

Note:

To clone the structure of a table and transfer data into it in a single operation, use the CREATE TABLE AS SELECT
syntax described in the next subsection.

When you clone the structure of an existing table using the CREATE TABLE ... LIKE syntax, the new table
keeps the same file format as the original one, so you only need to specify the STORED AS clause if you want to use
a different file format, or when specifying a view as the original table. (Creating a table “like” a view produces a text
table by default.)

Although normally Impala cannot create an HBase table directly, Impala can clone the structure of an existing HBase
table with the CREATE TABLE ... LIKE syntax, preserving the file format and metadata from the original table.

There are some exceptions to the ability to use CREATE TABLE ... LIKE with an Avro table. For example, you
cannot use this technique for an Avro table that is specified with an Avro schema but no columns. When in doubt,
check if a CREATE TABLE ... LIKE operation works in Hive; if not, it typically will not work in Impala either.

If the original table is partitioned, the new table inherits the same partition key columns. Because the new table is
initially empty, it does not inherit the actual partitions that exist in the original one. To create partitions in the new
table, insert data or issue ALTER TABLE ... ADD PARTITION statements.

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LIKE view_name syntax. In Impala 1.4.0
and higher, you can create a table with the same column definitions as a view using the CREATE TABLE LIKE
technique. Although CREATE TABLE LIKE normally inherits the file format of the original table, a view has no
underlying file format, so CREATE TABLE LIKE view_name produces a text table by default. To specify a
different file format, include a STORED AS file_format clause at the end of the CREATE TABLE LIKE
statement.

Because CREATE TABLE ... LIKE only manipulates table metadata, not the physical data of the table, issue
INSERT INTO TABLE statements afterward to copy any data from the original table into the new one, optionally
converting the data to a new file format. (For some file formats, Impala can do a CREATE TABLE ... LIKE to
create the table, but Impala cannot insert data in that file format; in these cases, you must load the data in Hive. See
How Impala Works with Hadoop File Formats on page 690 for details.)

CREATE TABLE AS SELECT:

The CREATE TABLE AS SELECT syntax is a shorthand notation to create a table based on column definitions
from another table, and copy data from the source table to the destination table without issuing any separate INSERT
statement. This idiom is so popular that it has its own acronym, “CTAS”.

The following examples show how to copy data from a source table T1 to a variety of destinations tables, applying
various transformations to the table properties, table layout, or the data itself as part of the operation:

-- Sample table to be the source of CTAS operations.
CREATE TABLE t1 (x INT, y STRING);
INSERT INTO t1 VALUES (1, 'one'), (2, 'two'), (3, 'three');

 | Impala SQL Language Reference | 266

-- Clone all the columns and data from one table to another.
CREATE TABLE clone_of_t1 AS SELECT * FROM t1;
+-------------------+
| summary |
+-------------------+
| Inserted 3 row(s) |
+-------------------+

-- Clone the columns and data, and convert the data to a different file
 format.
CREATE TABLE parquet_version_of_t1 STORED AS PARQUET AS SELECT * FROM t1;
+-------------------+
| summary |
+-------------------+
| Inserted 3 row(s) |
+-------------------+

-- Copy only some rows to the new table.
CREATE TABLE subset_of_t1 AS SELECT * FROM t1 WHERE x >= 2;
+-------------------+
| summary |
+-------------------+
| Inserted 2 row(s) |
+-------------------+

-- Same idea as CREATE TABLE LIKE: clone table layout but do not copy any
 data.
CREATE TABLE empty_clone_of_t1 AS SELECT * FROM t1 WHERE 1=0;
+-------------------+
| summary |
+-------------------+
| Inserted 0 row(s) |
+-------------------+

-- Reorder and rename columns and transform the data.
CREATE TABLE t5 AS SELECT upper(y) AS s, x+1 AS a, 'Entirely new column' AS
 n FROM t1;
+-------------------+
| summary |
+-------------------+
| Inserted 3 row(s) |
+-------------------+
SELECT * FROM t5;
+-------+---+---------------------+
| s | a | n |
+-------+---+---------------------+
ONE	2	Entirely new column
TWO	3	Entirely new column
THREE	4	Entirely new column
+-------+---+---------------------+

See SELECT Statement on page 322 for details about query syntax for the SELECT portion of a CREATE TABLE
AS SELECT statement.

The newly created table inherits the column names that you select from the original table, which you can override by
specifying column aliases in the query. Any column or table comments from the original table are not carried over to
the new table.

Note: When using the STORED AS clause with a CREATE TABLE AS SELECT statement, the destination table
must be a file format that Impala can write to: currently, text or Parquet. You cannot specify an Avro, SequenceFile,
or RCFile table as the destination table for a CTAS operation.

 | Impala SQL Language Reference | 267

Prior to Impala 2.5 you could use a partitioned table as the source and copy data from it, but could not specify any
partitioning clauses for the new table. In Impala 2.5 and higher, you can now use the PARTITIONED BY clause with
a CREATE TABLE AS SELECT statement. The following example demonstrates how you can copy data from an
unpartitioned table in a CREATE TABLE AS SELECT operation, creating a new partitioned table in the process.
The main syntax consideration is the column order in the PARTITIONED BY clause and the select list: the partition
key columns must be listed last in the select list, in the same order as in the PARTITIONED BY clause. Therefore, in
this case, the column order in the destination table is different from the source table. You also only specify the column
names in the PARTITIONED BY clause, not the data types or column comments.

create table partitions_no (year smallint, month tinyint, s string);
insert into partitions_no values (2016, 1, 'January 2016'),
 (2016, 2, 'February 2016'), (2016, 3, 'March 2016');

-- Prove that the source table is not partitioned.
show partitions partitions_no;
ERROR: AnalysisException: Table is not partitioned:
 ctas_partition_by.partitions_no

-- Create new table with partitions based on column values from source
 table.
create table partitions_yes partitioned by (year, month)
 as select s, year, month from partitions_no;
+-------------------+
| summary |
+-------------------+
| Inserted 3 row(s) |
+-------------------+

-- Prove that the destination table is partitioned.
show partitions partitions_yes;
+-------+-------+-------+--------+------+...
| year | month | #Rows | #Files | Size |...
+-------+-------+-------+--------+------+...
| 2016 | 1 | -1 | 1 | 13B |...
| 2016 | 2 | -1 | 1 | 14B |...
| 2016 | 3 | -1 | 1 | 11B |...
| Total | | -1 | 3 | 38B |...
+-------+-------+-------+--------+------+...

The most convenient layout for partitioned tables is with all the partition key columns at the end. The CTAS
PARTITIONED BY syntax requires that column order in the select list, resulting in that same column order in the
destination table.

describe partitions_no;
+-------+----------+---------+
| name | type | comment |
+-------+----------+---------+
year	smallint	
month	tinyint	
s	string	
+-------+----------+---------+

-- The CTAS operation forced us to put the partition key columns last.
-- Having those columns last works better with idioms such as SELECT *
-- for partitioned tables.
describe partitions_yes;
+-------+----------+---------+
| name | type | comment |
+-------+----------+---------+
| s | string | |

 | Impala SQL Language Reference | 268

| year | smallint | |
| month | tinyint | |
+-------+----------+---------+

Attempting to use a select list with the partition key columns not at the end results in an error due to a column name
mismatch:

-- We expect this CTAS to fail because non-key column S
-- comes after key columns YEAR and MONTH in the select list.
create table partitions_maybe partitioned by (year, month)
 as select year, month, s from partitions_no;
ERROR: AnalysisException: Partition column name mismatch: year != month

For example, the following statements show how you can clone all the data in a table, or a subset of the columns and/
or rows, or reorder columns, rename them, or construct them out of expressions:

As part of a CTAS operation, you can convert the data to any file format that Impala can write (currently, TEXTFILE
and PARQUET). You cannot specify the lower-level properties of a text table, such as the delimiter.

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement,
any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation
potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data
being stored in sorted order is impractical.

CREATE TABLE LIKE PARQUET:

The variation CREATE TABLE ... LIKE PARQUET 'hdfs_path_of_parquet_file' lets you skip
the column definitions of the CREATE TABLE statement. The column names and data types are automatically
configured based on the organization of the specified Parquet data file, which must already reside in HDFS. You can
use a data file located outside the Impala database directories, or a file from an existing Impala Parquet table; either
way, Impala only uses the column definitions from the file and does not use the HDFS location for the LOCATION
attribute of the new table. (Although you can also specify the enclosing directory with the LOCATION attribute, to
both use the same schema as the data file and point the Impala table at the associated directory for querying.)

The following considerations apply when you use the CREATE TABLE LIKE PARQUET technique:

• Any column comments from the original table are not preserved in the new table. Each column in the new table
has a comment stating the low-level Parquet field type used to deduce the appropriate SQL column type.

• If you use a data file from a partitioned Impala table, any partition key columns from the original table are left
out of the new table, because they are represented in HDFS directory names rather than stored in the data file.
To preserve the partition information, repeat the same PARTITION clause as in the original CREATE TABLE
statement.

• The file format of the new table defaults to text, as with other kinds of CREATE TABLE statements. To make the
new table also use Parquet format, include the clause STORED AS PARQUET in the CREATE TABLE LIKE
PARQUET statement.

• If the Parquet data file comes from an existing Impala table, currently, any TINYINT or SMALLINT columns are
turned into INT columns in the new table. Internally, Parquet stores such values as 32-bit integers.

• When the destination table uses the Parquet file format, the CREATE TABLE AS SELECT and INSERT ...
SELECT statements always create at least one data file, even if the SELECT part of the statement does not match
any rows. You can use such an empty Parquet data file as a template for subsequent CREATE TABLE LIKE
PARQUET statements.

For more details about creating Parquet tables, and examples of the CREATE TABLE LIKE PARQUET syntax, see
Using the Parquet File Format with Impala Tables on page 699.

Visibility and Metadata (TBLPROPERTIES and WITH SERDEPROPERTIES clauses):

You can associate arbitrary items of metadata with a table by specifying the TBLPROPERTIES clause. This clause
takes a comma-separated list of key-value pairs and stores those items in the metastore database. You can also
change the table properties later with an ALTER TABLE statement. You can observe the table properties for different

 | Impala SQL Language Reference | 269

delimiter and escape characters using the DESCRIBE FORMATTED command, and change those settings for an
existing table with ALTER TABLE ... SET TBLPROPERTIES.

You can also associate SerDes properties with the table by specifying key-value pairs through the WITH
SERDEPROPERTIES clause. This metadata is not used by Impala, which has its own built-in serializer and
deserializer for the file formats it supports. Particular property values might be needed for Hive compatibility with
certain variations of file formats, particularly Avro.

Some DDL operations that interact with other Hadoop components require specifying particular values in the
SERDEPROPERTIES or TBLPROPERTIES fields, such as creating an Avro table or an HBase table. (You typically
create HBase tables in Hive, because they require additional clauses not currently available in Impala.)

To see the column definitions and column comments for an existing table, for example before issuing a CREATE
TABLE ... LIKE or a CREATE TABLE ... AS SELECT statement, issue the statement DESCRIBE
table_name. To see even more detail, such as the location of data files and the values for clauses such as
ROW FORMAT and STORED AS, issue the statement DESCRIBE FORMATTED table_name. DESCRIBE
FORMATTED is also needed to see any overall table comment (as opposed to individual column comments).

After creating a table, your impala-shell session or another impala-shell connected to the same node can
immediately query that table. There might be a brief interval (one statestore heartbeat) before the table can be queried
through a different Impala node. To make the CREATE TABLE statement return only when the table is recognized by
all Impala nodes in the cluster, enable the SYNC_DDL query option.

HDFS caching (CACHED IN clause):

If you specify the CACHED IN clause, any existing or future data files in the table directory or the partition
subdirectories are designated to be loaded into memory with the HDFS caching mechanism. See Using HDFS
Caching with Impala (Impala 2.1 or higher only) on page 656 for details about using the HDFS caching feature.

In Impala 2.2 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE lets
you specify a replication factor, the number of hosts on which to cache the same data blocks. When Impala processes
a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host that has a
cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the same cached
data block is processed multiple times. Where practical, specify a value greater than or equal to the HDFS block
replication factor.

Column order:

If you intend to use the table to hold data files produced by some external source, specify the columns in the same
order as they appear in the data files.

If you intend to insert or copy data into the table through Impala, or if you have control over the way externally
produced data files are arranged, use your judgment to specify columns in the most convenient order:

• If certain columns are often NULL, specify those columns last. You might produce data files that omit these
trailing columns entirely. Impala automatically fills in the NULL values if so.

• If an unpartitioned table will be used as the source for an INSERT ... SELECT operation into a partitioned
table, specify last in the unpartitioned table any columns that correspond to partition key columns in the
partitioned table, and in the same order as the partition key columns are declared in the partitioned table. This
technique lets you use INSERT ... SELECT * when copying data to the partitioned table, rather than
specifying each column name individually.

• If you specify columns in an order that you later discover is suboptimal, you can sometimes work around the
problem without recreating the table. You can create a view that selects columns from the original table in a
permuted order, then do a SELECT * from the view. When inserting data into a table, you can specify a permuted
order for the inserted columns to match the order in the destination table.

Hive considerations:

Impala queries can make use of metadata about the table and columns, such as the number of rows in a table or the
number of different values in a column. Prior to Impala 1.2.2, to create this metadata, you issued the ANALYZE
TABLE statement in Hive to gather this information, after creating the table and loading representative data into it. In

 | Impala SQL Language Reference | 270

Impala 1.2.2 and higher, the COMPUTE STATS statement produces these statistics within Impala, without needing to
use Hive at all.

HBase considerations:

Note:

The Impala CREATE TABLE statement cannot create an HBase table, because it currently does not support the
STORED BY clause needed for HBase tables. Create such tables in Hive, then query them through Impala. For
information on using Impala with HBase tables, see Using Impala to Query HBase Tables on page 738.

Amazon S3 considerations:

To create a table where the data resides in the Amazon Simple Storage Service (S3), specify a s3a:// prefix
LOCATION attribute pointing to the data files in S3.

In Impala 2.6 and higher, you can use this special LOCATION syntax as part of a CREATE TABLE AS SELECT
statement.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 748 for details about reading and writing S3 data with Impala.

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement,
any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation
potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data
being stored in sorted order is impractical.

HDFS considerations:

The CREATE TABLE statement for an internal table creates a directory in HDFS. The CREATE EXTERNAL
TABLE statement associates the table with an existing HDFS directory, and does not create any new directory in
HDFS. To locate the HDFS data directory for a table, issue a DESCRIBE FORMATTED table statement. To
examine the contents of that HDFS directory, use an OS command such as hdfs dfs -ls hdfs://path, either
from the OS command line or through the shell or ! commands in impala-shell.

The CREATE TABLE AS SELECT syntax creates data files under the table data directory to hold any data copied
by the INSERT portion of the statement. (Even if no data is copied, Impala might create one or more empty data
files.)

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have both execute and write
permission for the database directory where the table is being created.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COMPUTE STATS) can be
cancelled during some stages, when running INSERT or SELECT operations internally. To cancel this statement, use
Ctrl-C from the impala-shell interpreter, the Cancel button from the Watch page in Hue, or Cancel from the list
of in-flight queries (for a particular node) on the Queries tab in the Impala web UI (port 25000).

Related information:

Overview of Impala Tables on page 214, ALTER TABLE Statement on page 225, DROP TABLE Statement on
page 295, Partitioning for Impala Tables on page 681, Internal Tables on page 215, External Tables on page
215, COMPUTE STATS Statement on page 240, SYNC_DDL Query Option on page 394, SHOW TABLES
Statement on page 400, SHOW CREATE TABLE Statement on page 402, DESCRIBE Statement on page 274

 | Impala SQL Language Reference | 271

CREATE VIEW Statement

The CREATE VIEW statement lets you create a shorthand abbreviation for a more complicated query. The base query
can involve joins, expressions, reordered columns, column aliases, and other SQL features that can make a query hard
to understand or maintain.

Because a view is purely a logical construct (an alias for a query) with no physical data behind it, ALTER VIEW only
involves changes to metadata in the metastore database, not any data files in HDFS.

Syntax:

CREATE VIEW [IF NOT EXISTS] view_name [(column_list)]
 AS select_statement

Statement type: DDL

Usage notes:

The CREATE VIEW statement can be useful in scenarios such as the following:

• To turn even the most lengthy and complicated SQL query into a one-liner. You can issue simple queries against
the view from applications, scripts, or interactive queries in impala-shell. For example:

select * from view_name;
select * from view_name order by c1 desc limit 10;

The more complicated and hard-to-read the original query, the more benefit there is to simplifying the query using
a view.

• To hide the underlying table and column names, to minimize maintenance problems if those names change. In
that case, you re-create the view using the new names, and all queries that use the view rather than the underlying
tables keep running with no changes.

• To experiment with optimization techniques and make the optimized queries available to all applications. For
example, if you find a combination of WHERE conditions, join order, join hints, and so on that works the best for a
class of queries, you can establish a view that incorporates the best-performing techniques. Applications can then
make relatively simple queries against the view, without repeating the complicated and optimized logic over and
over. If you later find a better way to optimize the original query, when you re-create the view, all the applications
immediately take advantage of the optimized base query.

• To simplify a whole class of related queries, especially complicated queries involving joins between multiple
tables, complicated expressions in the column list, and other SQL syntax that makes the query difficult to
understand and debug. For example, you might create a view that joins several tables, filters using several WHERE
conditions, and selects several columns from the result set. Applications might issue queries against this view that
only vary in their LIMIT, ORDER BY, and similar simple clauses.

For queries that require repeating complicated clauses over and over again, for example in the select list, ORDER BY,
and GROUP BY clauses, you can use the WITH clause as an alternative to creating a view.

Complex type considerations:

For tables containing complex type columns (ARRAY, STRUCT, or MAP), you typically use join queries to refer to the
complex values. You can use views to hide the join notation, making such tables seem like traditional denormalized
tables, and making those tables queryable by business intelligence tools that do not have built-in support for those
complex types. See Accessing Complex Type Data in Flattened Form Using Views on page 173 for details.

Because you cannot directly issue SELECT col_name against a column of complex type, you cannot use a view or
a WITH clause to “rename” a column by selecting it with a column alias.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 394 for details.

Security considerations:

 | Impala SQL Language Reference | 272

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

-- Create a view that is exactly the same as the underlying table.
create view v1 as select * from t1;

-- Create a view that includes only certain columns from the underlying
 table.
create view v2 as select c1, c3, c7 from t1;

-- Create a view that filters the values from the underlying table.
create view v3 as select distinct c1, c3, c7 from t1 where c1 is not null
 and c5 > 0;

-- Create a view that that reorders and renames columns from the underlying
 table.
create view v4 as select c4 as last_name, c6 as address, c2 as birth_date
 from t1;

-- Create a view that runs functions to convert or transform certain
 columns.
create view v5 as select c1, cast(c3 as string) c3, concat(c4,c5) c5,
 trim(c6) c6, "Constant" c8 from t1;

-- Create a view that hides the complexity of a view query.
create view v6 as select t1.c1, t2.c2 from t1 join t2 on t1.id = t2.id;

The following example creates a series of views and then drops them. These examples illustrate how views are
associated with a particular database, and both the view definitions and the view names for CREATE VIEW and
DROP VIEW can refer to a view in the current database or a fully qualified view name.

-- Create and drop a view in the current database.
CREATE VIEW few_rows_from_t1 AS SELECT * FROM t1 LIMIT 10;
DROP VIEW few_rows_from_t1;

-- Create and drop a view referencing a table in a different database.
CREATE VIEW table_from_other_db AS SELECT x FROM db1.foo WHERE x IS NOT
 NULL;
DROP VIEW table_from_other_db;

USE db1;
-- Create a view in a different database.
CREATE VIEW db2.v1 AS SELECT * FROM db2.foo;
-- Switch into the other database and drop the view.
USE db2;
DROP VIEW v1;

USE db1;
-- Create a view in a different database.
CREATE VIEW db2.v1 AS SELECT * FROM db2.foo;
-- Drop a view in the other database.
DROP VIEW db2.v1;

Related information:

 | Impala SQL Language Reference | 273

Overview of Impala Views on page 219, ALTER VIEW Statement on page 239, DROP VIEW Statement on page
296

DELETE Statement (Impala 2.8 or higher only)

Deletes an arbitrary number of rows from a Kudu table. This statement only works for Impala tables that use the
Kudu storage engine.

Syntax:

DELETE [FROM] [database_name.]table_name [WHERE where_conditions]

DELETE table_ref FROM [joined_table_refs] [WHERE where_conditions]

The first form evaluates rows from one table against an optional WHERE clause, and deletes all the rows that match
the WHERE conditions, or all rows if WHERE is omitted.

The second form evaluates one or more join clauses, and deletes all matching rows from one of the tables. The join
clauses can include non-Kudu tables, but the table from which the rows are deleted must be a Kudu table. The FROM
keyword is required in this case, to separate the name of the table whose rows are being deleted from the table names
of the join clauses.

Usage notes:

The conditions in the WHERE clause are the same ones allowed for the SELECT statement. See SELECT Statement on
page 322 for details.

The conditions in the WHERE clause can refer to any combination of primary key columns or other columns.
Referring to primary key columns in the WHERE clause is more efficient than referring to non-primary key columns.

If the WHERE clause is omitted, all rows are removed from the table.

Because Kudu currently does not enforce strong consistency during concurrent DML operations, be aware that the
results after this statement finishes might be different than you intuitively expect:

• If some rows cannot be deleted because their some primary key columns are not found, due to their being deleted
by a concurrent DELETE operation, the statement succeeds but returns a warning.

• A DELETE statement might also overlap with INSERT, UPDATE, or UPSERT statements running concurrently on
the same table. After the statement finishes, there might be more or fewer rows than expected in the table because
it is undefined whether the DELETE applies to rows that are inserted or updated while the DELETE is in progress.

The number of affected rows is reported in an impala-shell message and in the query profile.

Statement type: DML

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Examples:

The following examples show how to delete rows from a specified table, either all rows or rows that match a WHERE
clause:

-- Deletes all rows. The FROM keyword is optional.
DELETE FROM kudu_table;
DELETE kudu_table;

-- Deletes 0, 1, or more rows.
-- (If c1 is a single-column primary key, the statement could only

 | Impala SQL Language Reference | 274

-- delete 0 or 1 rows.)
DELETE FROM kudu_table WHERE c1 = 100;

-- Deletes all rows that match all the WHERE conditions.
DELETE FROM kudu_table WHERE
 (c1 > c2 OR c3 IN ('hello','world')) AND c4 IS NOT NULL;
DELETE FROM t1 WHERE
 (c1 IN (1,2,3) AND c2 > c3) OR c4 IS NOT NULL;
DELETE FROM time_series WHERE
 year = 2016 AND month IN (11,12) AND day > 15;

-- WHERE condition with a subquery.
DELETE FROM t1 WHERE
 c5 IN (SELECT DISTINCT other_col FROM other_table);

-- Does not delete any rows, because the WHERE condition is always false.
DELETE FROM kudu_table WHERE 1 = 0;

The following examples show how to delete rows that are part of the result set from a join:

-- Remove _all_ rows from t1 that have a matching X value in t2.
DELETE t1 FROM t1 JOIN t2 ON t1.x = t2.x;

-- Remove _some_ rows from t1 that have a matching X value in t2.
DELETE t1 FROM t1 JOIN t2 ON t1.x = t2.x
 WHERE t1.y = FALSE and t2.z > 100;

-- Delete from a Kudu table based on a join with a non-Kudu table.
DELETE t1 FROM kudu_table t1 JOIN non_kudu_table t2 ON t1.x = t2.x;

-- The tables can be joined in any order as long as the Kudu table
-- is specified as the deletion target.
DELETE t2 FROM non_kudu_table t1 JOIN kudu_table t2 ON t1.x = t2.x;

Related information:

Using Impala to Query Kudu Tables on page 724, INSERT Statement on page 301, UPDATE Statement (Impala
2.8 or higher only) on page 415, UPSERT Statement (Impala 2.8 or higher only) on page 417

DESCRIBE Statement

The DESCRIBE statement displays metadata about a table, such as the column names and their data types. In Impala
2.3 and higher, you can specify the name of a complex type column, which takes the form of a dotted path. The path
might include multiple components in the case of a nested type definition. In Impala 2.5 and higher, the DESCRIBE
DATABASE form can display information about a database.

Syntax:

DESCRIBE [DATABASE] [FORMATTED|EXTENDED] object_name

object_name ::=
 [db_name.]table_name[.complex_col_name ...]
 | db_name

You can use the abbreviation DESC for the DESCRIBE statement.

The DESCRIBE FORMATTED variation displays additional information, in a format familiar to users of Apache
Hive. The extra information includes low-level details such as whether the table is internal or external, when it was
created, the file format, the location of the data in HDFS, whether the object is a table or a view, and (for views) the
text of the query from the view definition.

 | Impala SQL Language Reference | 275

Note: The Compressed field is not a reliable indicator of whether the table contains compressed data. It typically
always shows No, because the compression settings only apply during the session that loads data and are not stored
persistently with the table metadata.

Describing databases:

By default, the DESCRIBE output for a database includes the location and the comment, which can be set by the
LOCATION and COMMENT clauses on the CREATE DATABASE statement.

The additional information displayed by the FORMATTED or EXTENDED keyword includes the HDFS user ID that
is considered the owner of the database, and any optional database properties. The properties could be specified by
the WITH DBPROPERTIES clause if the database is created using a Hive CREATE DATABASE statement. Impala
currently does not set or do any special processing based on those properties.

The following examples show the variations in syntax and output for describing databases. This feature is available in
Impala 2.5 and higher.

describe database default;
+---------+----------------------+-----------------------+
| name | location | comment |
+---------+----------------------+-----------------------+
| default | /user/hive/warehouse | Default Hive database |
+---------+----------------------+-----------------------+

describe database formatted default;
+---------+----------------------+-----------------------+
| name | location | comment |
+---------+----------------------+-----------------------+
default	/user/hive/warehouse	Default Hive database
Owner:		
	public	ROLE
+---------+----------------------+-----------------------+

describe database extended default;
+---------+----------------------+-----------------------+
| name | location | comment |
+---------+----------------------+-----------------------+
default	/user/hive/warehouse	Default Hive database
Owner:		
	public	ROLE
+---------+----------------------+-----------------------+

Describing tables:

If the DATABASE keyword is omitted, the default for the DESCRIBE statement is to refer to a table.

-- By default, the table is assumed to be in the current database.
describe my_table;
+------+--------+---------+
| name | type | comment |
+------+--------+---------+
| x | int | |
| s | string | |
+------+--------+---------+

-- Use a fully qualified table name to specify a table in any database.
describe my_database.my_table;
+------+--------+---------+
| name | type | comment |
+------+--------+---------+
| x | int | |

 | Impala SQL Language Reference | 276

| s | string | |
+------+--------+---------+

-- The formatted or extended output includes additional useful information.
-- The LOCATION field is especially useful to know for DDL statements and
 HDFS commands
-- during ETL jobs. (The LOCATION includes a full hdfs:// URL, omitted here
 for readability.)
describe formatted my_table;
+------------------------------
+--+----------------------+
| name | type
 | comment |
+------------------------------
+--+----------------------+
| # col_name | data_type
 | comment |
| | NULL
 | NULL |
| x | int
 | NULL |
| s | string
 | NULL |
| | NULL
 | NULL |
| # Detailed Table Information | NULL
 | NULL |
| Database: | my_database
 | NULL |
| Owner: | jrussell
 | NULL |
| CreateTime: | Fri Mar 18 15:58:00 PDT 2016
 | NULL |
| LastAccessTime: | UNKNOWN
 | NULL |
| Protect Mode: | None
 | NULL |
| Retention: | 0
 | NULL |
| Location: | /user/hive/warehouse/my_database.db/
my_table | NULL |
| Table Type: | MANAGED_TABLE
 | NULL |
| Table Parameters: | NULL
 | NULL |
| | transient_lastDdlTime
 | 1458341880 |
| | NULL
 | NULL |
| # Storage Information | NULL
 | NULL |
| SerDe Library: | org.LazySimpleSerDe
 | NULL |
| InputFormat: | org.apache.hadoop.mapred.TextInputFormat
 | NULL |
| OutputFormat: | org.HiveIgnoreKeyTextOutputFormat
 | NULL |
| Compressed: | No
 | NULL |
| Num Buckets: | 0
 | NULL |
| Bucket Columns: | []
 | NULL |

 | Impala SQL Language Reference | 277

| Sort Columns: | []
 | NULL |
+------------------------------
+--+----------------------+

Complex type considerations:

Because the column definitions for complex types can become long, particularly when such types are nested, the
DESCRIBE statement uses special formatting for complex type columns to make the output readable.

For the ARRAY, STRUCT, and MAP types available in Impala 2.3 and higher, the DESCRIBE output is formatted to
avoid excessively long lines for multiple fields within a STRUCT, or a nested sequence of complex types.

You can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were a table. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.a1. If table T1 contained a STRUCT column S1, and a field F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE t1.s1.f1. An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP is
shown as a two-column table, with KEY and VALUE columns.

For example, here is the DESCRIBE output for a table containing a single top-level column of each complex type:

create table t1 (x int, a array<int>, s struct<f1: string, f2: bigint>, m
 map<string,int>) stored as parquet;

describe t1;
+------+-----------------+---------+
| name | type | comment |
+------+-----------------+---------+
x	int	
a	array<int>	
s	struct<	
	f1:string,	
	f2:bigint	
	>	
m	map<string,int>	
+------+-----------------+---------+

Here are examples showing how to “drill down” into the layouts of complex types, including using multi-part names
to examine the definitions of nested types. The < > delimiters identify the columns with complex types; these are
the columns where you can descend another level to see the parts that make up the complex type. This technique
helps you to understand the multi-part names you use as table references in queries involving complex types, and the
corresponding column names you refer to in the SELECT list. These tables are from the “nested TPC-H” schema,
shown in detail in Sample Schema and Data for Experimenting with Impala Complex Types on page 175.

The REGION table contains an ARRAY of STRUCT elements:

• The first DESCRIBE specifies the table name, to display the definition of each top-level column.
• The second DESCRIBE specifies the name of a complex column, REGION.R_NATIONS, showing that when you

include the name of an ARRAY column in a FROM clause, that table reference acts like a two-column table with
columns ITEM and POS.

• The final DESCRIBE specifies the fully qualified name of the ITEM field, to display the layout of its underlying
STRUCT type in table format, with the fields mapped to column names.

-- #1: The overall layout of the entire table.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
| r_regionkey | smallint | |

 | Impala SQL Language Reference | 278

r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- #2: The ARRAY column within the table.
describe region.r_nations;
+------+-------------------------+---------+
| name | type | comment |
+------+-------------------------+---------+
item	struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>	
pos	bigint	
+------+-------------------------+---------+

-- #3: The STRUCT that makes up each ARRAY element.
-- The fields of the STRUCT act like columns of a table.
describe region.r_nations.item;
+-------------+----------+---------+
| name | type | comment |
+-------------+----------+---------+
n_nationkey	smallint	
n_name	string	
n_comment	string	
+-------------+----------+---------+

The CUSTOMER table contains an ARRAY of STRUCT elements, where one field in the STRUCT is another ARRAY of
STRUCT elements:

• Again, the initial DESCRIBE specifies only the table name.
• The second DESCRIBE specifies the qualified name of the complex column, CUSTOMER.C_ORDERS, showing

how an ARRAY is represented as a two-column table with columns ITEM and POS.
• The third DESCRIBE specifies the qualified name of the ITEM of the ARRAY column, to see the structure of the

nested ARRAY. Again, it has has two parts, ITEM and POS. Because the ARRAY contains a STRUCT, the layout of
the STRUCT is shown.

• The fourth and fifth DESCRIBE statements drill down into a STRUCT field that is itself a complex type, an
ARRAY of STRUCT. The ITEM portion of the qualified name is only required when the ARRAY elements
are anonymous. The fields of the STRUCT give names to any other complex types nested inside the
STRUCT. Therefore, the DESCRIBE parameters CUSTOMER.C_ORDERS.ITEM.O_LINEITEMS and
CUSTOMER.C_ORDERS.O_LINEITEMS are equivalent. (For brevity, leave out the ITEM portion of a qualified
name when it is not required.)

• The final DESCRIBE shows the layout of the deeply nested STRUCT type. Because there are no more complex
types nested inside this STRUCT, this is as far as you can drill down into the layout for this table.

-- #1: The overall layout of the entire table.
describe customer;
+--------------+------------------------------------+
| name | type |
+--------------+------------------------------------+
| c_custkey | bigint |
... more scalar columns ...
| c_orders | array<struct< |
| | o_orderkey:bigint, |

 | Impala SQL Language Reference | 279

	o_orderstatus:string,
	o_totalprice:decimal(12,2),
	o_orderdate:string,
	o_orderpriority:string,
	o_clerk:string,
	o_shippriority:int,
	o_comment:string,
	o_lineitems:array<struct<
	l_partkey:bigint,
	l_suppkey:bigint,
	l_linenumber:int,
	l_quantity:decimal(12,2),
	l_extendedprice:decimal(12,2),
	l_discount:decimal(12,2),
	l_tax:decimal(12,2),
	l_returnflag:string,
	l_linestatus:string,
	l_shipdate:string,
	l_commitdate:string,
	l_receiptdate:string,
	l_shipinstruct:string,
	l_shipmode:string,
	l_comment:string
	>>
	>>
+--------------+------------------------------------+

-- #2: The ARRAY column within the table.
describe customer.c_orders;
+------+------------------------------------+
| name | type |
+------+------------------------------------+
item	struct<
	o_orderkey:bigint,
	o_orderstatus:string,
... more struct fields ...	
	o_lineitems:array<struct<
	l_partkey:bigint,
	l_suppkey:bigint,
... more nested struct fields ...	
	l_comment:string
	>>
	>
pos	bigint
+------+------------------------------------+

-- #3: The STRUCT that makes up each ARRAY element.
-- The fields of the STRUCT act like columns of a table.
describe customer.c_orders.item;
+-----------------+----------------------------------+
| name | type |
+-----------------+----------------------------------+
o_orderkey	bigint
o_orderstatus	string
o_totalprice	decimal(12,2)
o_orderdate	string
o_orderpriority	string
o_clerk	string
o_shippriority	int
o_comment	string
o_lineitems	array<struct<
	l_partkey:bigint,
	l_suppkey:bigint,
... more struct fields ...

 | Impala SQL Language Reference | 280

| | l_comment:string |
| | >> |
+-----------------+----------------------------------+

-- #4: The ARRAY nested inside the STRUCT elements of the first ARRAY.
describe customer.c_orders.item.o_lineitems;
+------+----------------------------------+
| name | type |
+------+----------------------------------+
item	struct<
	l_partkey:bigint,
	l_suppkey:bigint,
... more struct fields ...	
	l_comment:string
	>
pos	bigint
+------+----------------------------------+

-- #5: Shorter form of the previous DESCRIBE. Omits the .ITEM portion of the
 name
-- because O_LINEITEMS and other field names provide a way to refer to
 things
-- inside the ARRAY element.
describe customer.c_orders.o_lineitems;
+------+----------------------------------+
| name | type |
+------+----------------------------------+
item	struct<
	l_partkey:bigint,
	l_suppkey:bigint,
... more struct fields ...	
	l_comment:string
	>
pos	bigint
+------+----------------------------------+

-- #6: The STRUCT representing ARRAY elements nested inside
-- another ARRAY of STRUCTs. The lack of any complex types
-- in this output means this is as far as DESCRIBE can
-- descend into the table layout.
describe customer.c_orders.o_lineitems.item;
+-----------------+---------------+
| name | type |
+-----------------+---------------+
| l_partkey | bigint |
| l_suppkey | bigint |
... more scalar columns ...
| l_comment | string |
+-----------------+---------------+

Usage notes:

After the impalad daemons are restarted, the first query against a table can take longer than subsequent queries,
because the metadata for the table is loaded before the query is processed. This one-time delay for each table can
cause misleading results in benchmark tests or cause unnecessary concern. To “warm up” the Impala metadata cache,
you can issue a DESCRIBE statement in advance for each table you intend to access later.

When you are dealing with data files stored in HDFS, sometimes it is important to know details such as the path
of the data files for an Impala table, and the hostname for the namenode. You can get this information from the
DESCRIBE FORMATTED output. You specify HDFS URIs or path specifications with statements such as LOAD
DATA and the LOCATION clause of CREATE TABLE or ALTER TABLE. You might also use HDFS URIs or paths
with Linux commands such as hadoop and hdfs to copy, rename, and so on, data files in HDFS.

 | Impala SQL Language Reference | 281

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 394 for details.

Each table can also have associated table statistics and column statistics. To see these categories of information, use
the SHOW TABLE STATS table_name and SHOW COLUMN STATS table_name statements. See SHOW
Statement on page 394 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Examples:

The following example shows the results of both a standard DESCRIBE and DESCRIBE FORMATTED for different
kinds of schema objects:

• DESCRIBE for a table or a view returns the name, type, and comment for each of the columns. For a view, if the
column value is computed by an expression, the column name is automatically generated as _c0, _c1, and so on
depending on the ordinal number of the column.

• A table created with no special format or storage clauses is designated as a MANAGED_TABLE (an “internal table”
in Impala terminology). Its data files are stored in an HDFS directory under the default Hive data directory. By
default, it uses Text data format.

• A view is designated as VIRTUAL_VIEW in DESCRIBE FORMATTED output. Some of its properties are NULL
or blank because they are inherited from the base table. The text of the query that defines the view is part of the
DESCRIBE FORMATTED output.

• A table with additional clauses in the CREATE TABLE statement has differences in DESCRIBE FORMATTED
output. The output for T2 includes the EXTERNAL_TABLE keyword because of the CREATE EXTERNAL
TABLE syntax, and different InputFormat and OutputFormat fields to reflect the Parquet file format.

[localhost:21000] > create table t1 (x int, y int, s string);
Query: create table t1 (x int, y int, s string)
[localhost:21000] > describe t1;
Query: describe t1
Query finished, fetching results ...
+------+--------+---------+
| name | type | comment |
+------+--------+---------+
x	int	
y	int	
s	string	
+------+--------+---------+		
Returned 3 row(s) in 0.13s		
[localhost:21000] > describe formatted t1;		
Query: describe formatted t1		
Query finished, fetching results ...		
+------------------------------+--		
+------------+		
name	type	
comment		
+------------------------------+--		
+------------+		
# col_name	data_type	
comment		
	NULL	
NULL		
x	int	
None		
y	int	
None		

 | Impala SQL Language Reference | 282

| s | string
 | None |
| | NULL
 | NULL |
| # Detailed Table Information | NULL
 | NULL |
| Database: | describe_formatted
 | NULL |
| Owner: | doc_demo
 | NULL |
| CreateTime: | Mon Jul 22 17:03:16 EDT 2013
 | NULL |
| LastAccessTime: | UNKNOWN
 | NULL |
| Protect Mode: | None
 | NULL |
| Retention: | 0
 | NULL |
| Location: | hdfs://127.0.0.1:8020/user/hive/warehouse/
 | |
| | describe_formatted.db/t1
 | NULL |
| Table Type: | MANAGED_TABLE
 | NULL |
| Table Parameters: | NULL
 | NULL |
| | transient_lastDdlTime
 | 1374526996 |
| | NULL
 | NULL |
| # Storage Information | NULL
 | NULL |
| SerDe Library: | org.apache.hadoop.hive.serde2.lazy.
 | |
| | LazySimpleSerDe
 | NULL |
| InputFormat: | org.apache.hadoop.mapred.TextInputFormat
 | NULL |
| OutputFormat: | org.apache.hadoop.hive.ql.io.
 | |
| | HiveIgnoreKeyTextOutputFormat
 | NULL |
| Compressed: | No
 | NULL |
| Num Buckets: | 0
 | NULL |
| Bucket Columns: | []
 | NULL |
| Sort Columns: | []
 | NULL |
+------------------------------+--
+------------+
Returned 26 row(s) in 0.03s
[localhost:21000] > create view v1 as select x, upper(s) from t1;
Query: create view v1 as select x, upper(s) from t1
[localhost:21000] > describe v1;
Query: describe v1
Query finished, fetching results ...
+------+--------+---------+
| name | type | comment |
+------+--------+---------+
| x | int | |
| _c1 | string | |
+------+--------+---------+

 | Impala SQL Language Reference | 283

Returned 2 row(s) in 0.10s
[localhost:21000] > describe formatted v1;
Query: describe formatted v1
Query finished, fetching results ...
+------------------------------+------------------------------
+----------------------+
| name | type | comment
 |
+------------------------------+------------------------------
+----------------------+
| # col_name | data_type | comment
 |
| | NULL | NULL
 |
| x | int | None
 |
| _c1 | string | None
 |
| | NULL | NULL
 |
| # Detailed Table Information | NULL | NULL
 |
| Database: | describe_formatted | NULL
 |
| Owner: | doc_demo | NULL
 |
| CreateTime: | Mon Jul 22 16:56:38 EDT 2013 | NULL
 |
| LastAccessTime: | UNKNOWN | NULL
 |
| Protect Mode: | None | NULL
 |
| Retention: | 0 | NULL
 |
| Table Type: | VIRTUAL_VIEW | NULL
 |
| Table Parameters: | NULL | NULL
 |
| | transient_lastDdlTime | 1374526598
 |
| | NULL | NULL
 |
| # Storage Information | NULL | NULL
 |
| SerDe Library: | null | NULL
 |
| InputFormat: | null | NULL
 |
| OutputFormat: | null | NULL
 |
| Compressed: | No | NULL
 |
| Num Buckets: | 0 | NULL
 |
| Bucket Columns: | [] | NULL
 |
| Sort Columns: | [] | NULL
 |
| | NULL | NULL
 |
| # View Information | NULL | NULL
 |
| View Original Text: | SELECT x, upper(s) FROM t1 | NULL
 |

 | Impala SQL Language Reference | 284

| View Expanded Text: | SELECT x, upper(s) FROM t1 | NULL
 |
+------------------------------+------------------------------
+----------------------+
Returned 28 row(s) in 0.03s
[localhost:21000] > create external table t2 (x int, y int, s string) stored
 as parquet location '/user/doc_demo/sample_data';
[localhost:21000] > describe formatted t2;
Query: describe formatted t2
Query finished, fetching results ...
+------------------------------
+--+------------+
| name | type
 | comment |
+------------------------------
+--+------------+
| # col_name | data_type
 | comment |
| | NULL
 | NULL |
| x | int
 | None |
| y | int
 | None |
| s | string
 | None |
| | NULL
 | NULL |
| # Detailed Table Information | NULL
 | NULL |
| Database: | describe_formatted
 | NULL |
| Owner: | doc_demo
 | NULL |
| CreateTime: | Mon Jul 22 17:01:47 EDT 2013
 | NULL |
| LastAccessTime: | UNKNOWN
 | NULL |
| Protect Mode: | None
 | NULL |
| Retention: | 0
 | NULL |
| Location: | hdfs://127.0.0.1:8020/user/doc_demo/
sample_data | NULL |
| Table Type: | EXTERNAL_TABLE
 | NULL |
| Table Parameters: | NULL
 | NULL |
| | EXTERNAL
 | TRUE |
| | transient_lastDdlTime
 | 1374526907 |
| | NULL
 | NULL |
| # Storage Information | NULL
 | NULL |
| SerDe Library: |
 org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe | NULL |
| InputFormat: |
 org.apache.impala.hive.serde.ParquetInputFormat | NULL |
| OutputFormat: |
 org.apache.impala.hive.serde.ParquetOutputFormat | NULL |
| Compressed: | No
 | NULL |

 | Impala SQL Language Reference | 285

| Num Buckets: | 0
 | NULL |
| Bucket Columns: | []
 | NULL |
| Sort Columns: | []
 | NULL |
+------------------------------
+--+------------+
Returned 27 row(s) in 0.17s

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute
permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it
is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory
based on its LOCATION attribute.)

Kudu considerations:

The information displayed for Kudu tables includes the additional attributes that are only applicable for Kudu tables:

• Whether or not the column is part of the primary key. Every Kudu table has a true value here for at least one
column. There could be multiple true values, for tables with composite primary keys.

• Whether or not the column is nullable. Specified by the NULL or NOT NULL attributes on the CREATE TABLE
statement. Columns that are part of the primary key are automatically non-nullable.

• The default value, if any, for the column. Specified by the DEFAULT attribute on the CREATE TABLE statement.
If the default value is NULL, that is not indicated in this column. It is implied by nullable being true and no
other default value specified.

• The encoding used for values in the column. Specified by the ENCODING attribute on the CREATE TABLE
statement.

• The compression used for values in the column. Specified by the COMPRESSION attribute on the CREATE
TABLE statement.

• The block size (in bytes) used for the underlying Kudu storage layer for the column. Specified by the
BLOCK_SIZE attribute on the CREATE TABLE statement.

The following example shows DESCRIBE output for a simple Kudu table, with a single-column primary key and all
column attributes left with their default values:

describe million_rows;
+------+--------+---------+-------------+----------+---------------
+---------------+---------------------+------------+
| name | type | comment | primary_key | nullable | default_value |
 encoding | compression | block_size |
+------+--------+---------+-------------+----------+---------------
+---------------+---------------------+------------+
| id | string | | true | false | |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 0 |
| s | string | | false | false | |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 0 |
+------+--------+---------+-------------+----------+---------------
+---------------+---------------------+------------+

The following example shows DESCRIBE output for a Kudu table with a two-column primary key, and Kudu-
specific attributes applied to some columns:

create table kudu_describe_example
(
 c1 int, c2 int,

 | Impala SQL Language Reference | 286

 c3 string, c4 string not null, c5 string default 'n/a', c6 string default
 '',
 c7 bigint not null, c8 bigint null default null, c9 bigint default -1
 encoding bit_shuffle,
 primary key(c1,c2)
)
partition by hash (c1, c2) partitions 10 stored as kudu;

describe kudu_describe_example;
+------+--------+---------+-------------+----------+---------------
+---------------+---------------------+------------+
| name | type | comment | primary_key | nullable | default_value |
 encoding | compression | block_size |
+------+--------+---------+-------------+----------+---------------
+---------------+---------------------+------------+
| c1 | int | | true | false | |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 0 |
| c2 | int | | true | false | |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 0 |
| c3 | string | | false | true | |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 0 |
| c4 | string | | false | false | |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 0 |
| c5 | string | | false | true | n/a |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 0 |
| c6 | string | | false | true | |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 0 |
| c7 | bigint | | false | false | |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 0 |
| c8 | bigint | | false | true | |
 AUTO_ENCODING | DEFAULT_COMPRESSION | 0 |
| c9 | bigint | | false | true | -1 |
 BIT_SHUFFLE | DEFAULT_COMPRESSION | 0 |
+------+--------+---------+-------------+----------+---------------
+---------------+---------------------+------------+

Related information:

Overview of Impala Tables on page 214, CREATE TABLE Statement on page 256, SHOW TABLES Statement
on page 400, SHOW CREATE TABLE Statement on page 402

DROP DATABASE Statement

Removes a database from the system. The physical operations involve removing the metadata for the database from
the metastore, and deleting the corresponding *.db directory from HDFS.

Syntax:

DROP (DATABASE|SCHEMA) [IF EXISTS] database_name [RESTRICT | CASCADE];

Statement type: DDL

Usage notes:

By default, the database must be empty before it can be dropped, to avoid losing any data.

In Impala 2.3 and higher, you can include the CASCADE clause to make Impala drop all tables and other objects in
the database before dropping the database itself. The RESTRICT clause enforces the original requirement that the
database be empty before being dropped. Because the RESTRICT behavior is still the default, this clause is optional.

The automatic dropping resulting from the CASCADE clause follows the same rules as the corresponding DROP
TABLE, DROP VIEW, and DROP FUNCTION statements. In particular, the HDFS directories and data files for any
external tables are left behind when the tables are removed.

 | Impala SQL Language Reference | 287

When you do not use the CASCADE clause, drop or move all the objects inside the database manually before dropping
the database itself:

• Use the SHOW TABLES statement to locate all tables and views in the database, and issue DROP TABLE and
DROP VIEW statements to remove them all.

• Use the SHOW FUNCTIONS and SHOW AGGREGATE FUNCTIONS statements to locate all user-defined
functions in the database, and issue DROP FUNCTION and DROP AGGREGATE FUNCTION statements to
remove them all.

• To keep tables or views contained by a database while removing the database itself, use ALTER TABLE and
ALTER VIEW to move the relevant objects to a different database before dropping the original database.

You cannot drop the current database, that is, the database your session connected to either through the USE statement
or the -d option of impala-shell. Issue a USE statement to switch to a different database first. Because the
default database is always available, issuing USE default is a convenient way to leave the current database
before dropping it.

Hive considerations:

When you drop a database in Impala, the database can no longer be used by Hive.

Examples:

See CREATE DATABASE Statement on page 247 for examples covering CREATE DATABASE, USE, and DROP
DATABASE.

Amazon S3 considerations:

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 748 for details about reading and writing S3 data with Impala.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have write permission for the
directory associated with the database.

Examples:

create database first_db;
use first_db;
create table t1 (x int);

create database second_db;
use second_db;
-- Each database has its own namespace for tables.
-- You can reuse the same table names in each database.
create table t1 (s string);

create database temp;

-- You can either USE a database after creating it,
-- or qualify all references to the table name with the name of the
 database.
-- Here, tables T2 and T3 are both created in the TEMP database.

create table temp.t2 (x int, y int);
use database temp;
create table t3 (s string);

-- You cannot drop a database while it is selected by the USE statement.

 | Impala SQL Language Reference | 288

drop database temp;
ERROR: AnalysisException: Cannot drop current default database: temp

-- The always-available database 'default' is a convenient one to USE
-- before dropping a database you created.
use default;

-- Before dropping a database, first drop all the tables inside it,
-- or in Impala 2.3 and higher use the CASCADE clause.
drop database temp;
ERROR: ImpalaRuntimeException: Error making 'dropDatabase' RPC to Hive
 Metastore:
CAUSED BY: InvalidOperationException: Database temp is not empty
show tables in temp;
+------+
| name |
+------+
| t3 |
+------+

-- Impala 2.3 and higher:
drop database temp cascade;

-- Earlier releases:
drop table temp.t3;
drop database temp;

Related information:

Overview of Impala Databases on page 212, CREATE DATABASE Statement on page 247, USE Statement on
page 418, SHOW DATABASES on page 399, DROP TABLE Statement on page 295

DROP FUNCTION Statement

Removes a user-defined function (UDF), so that it is not available for execution during Impala SELECT or INSERT
operations.

Syntax:

To drop C++ UDFs and UDAs:

DROP [AGGREGATE] FUNCTION [IF EXISTS]
 [db_name.]function_name(type[, type...])

Note:

The preceding syntax, which includes the function signature, also applies to Java UDFs that were created using the
corresponding CREATE FUNCTION syntax that includes the argument and return types. After upgrading to Impala
2.5 or higher, consider re-creating all Java UDFs with the CREATE FUNCTION syntax that does not include the
function signature. Java UDFs created this way are now persisted in the metastore database and do not need to be re-
created after an Impala restart.

To drop Java UDFs (created using the CREATE FUNCTION syntax with no function signature):

DROP FUNCTION [IF EXISTS] [db_name.]function_name

Statement type: DDL

Usage notes:

Because the same function name could be overloaded with different argument signatures, you specify the argument
types to identify the exact function to drop.

Restrictions:

 | Impala SQL Language Reference | 289

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTION syntax
do not persist across restarts because they are held in the memory of the catalogd daemon. Until you re-create
such Java UDFs using the new CREATE FUNCTION syntax, you must reload those Java-based UDFs by running the
original CREATE FUNCTION statements again each time you restart the catalogd daemon. Prior to Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, does not need any particular HDFS
permissions to perform this statement. All read and write operations are on the metastore database, not HDFS files
and directories.

Examples:

The following example shows how to drop Java functions created with the signatureless CREATE FUNCTION syntax
in Impala 2.5 and higher. Issuing DROP FUNCTION function_name removes all the overloaded functions under
that name. (See CREATE FUNCTION Statement on page 250 for a longer example showing how to set up such
functions in the first place.)

create function my_func location '/user/impala/udfs/udf-examples.jar'
 symbol='org.apache.impala.TestUdf';

show functions;
+-------------+---------------------------------------+-------------
+---------------+
| return type | signature | binary type | is
 persistent |
+-------------+---------------------------------------+-------------
+---------------+
| BIGINT | my_func(BIGINT) | JAVA | true
 |
| BOOLEAN | my_func(BOOLEAN) | JAVA | true
 |
| BOOLEAN | my_func(BOOLEAN, BOOLEAN) | JAVA | true
 |
...
| BIGINT | testudf(BIGINT) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN, BOOLEAN) | JAVA | true
 |
...

drop function my_func;
show functions;
+-------------+---------------------------------------+-------------
+---------------+
| return type | signature | binary type | is
 persistent |
+-------------+---------------------------------------+-------------
+---------------+
| BIGINT | testudf(BIGINT) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN) | JAVA | true
 |
| BOOLEAN | testudf(BOOLEAN, BOOLEAN) | JAVA | true
 |

 | Impala SQL Language Reference | 290

...

Related information:

Impala User-Defined Functions (UDFs) on page 587, CREATE FUNCTION Statement on page 250

DROP ROLE Statement (Impala 2.0 or higher only)

The DROP ROLE statement removes a role from the metastore database. Once dropped, the role is revoked for all
users to whom it was previously assigned, and all privileges granted to that role are revoked. Queries that are already
executing are not affected. Impala verifies the role information approximately every 60 seconds, so the effects of
DROP ROLE might not take effect for new Impala queries for a brief period.

Syntax:

DROP ROLE role_name

Required privileges:

Only administrative users (initially, a predefined set of users specified in the Sentry service configuration file) can use
this statement.

Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive
makes use of any roles and privileges specified by the GRANT and REVOKE statements in Impala. The Impala GRANT
and REVOKE statements for privileges do not require the ROLE keyword to be repeated before each role name, unlike
the equivalent Hive statements.

Related information:

Enabling Sentry Authorization for Impala on page 87, GRANT Statement (Impala 2.0 or higher only) on page
300 REVOKE Statement (Impala 2.0 or higher only) on page 321, CREATE ROLE Statement (Impala 2.0 or
higher only) on page 256, SHOW Statement on page 394

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

DROP STATS Statement

Removes the specified statistics from a table or partition. The statistics were originally created by the COMPUTE
STATS or COMPUTE INCREMENTAL STATS statement.

Syntax:

DROP STATS [database_name.]table_name
DROP INCREMENTAL STATS [database_name.]table_name PARTITION (partition_spec)

partition_spec ::= partition_col=constant_value

The PARTITION clause is only allowed in combination with the INCREMENTAL clause. It is optional for COMPUTE
INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions
through the PARTITION (partition_spec) clause in a COMPUTE INCREMENTAL STATS or DROP
INCREMENTAL STATS statement, you must include all the partitioning columns in the specification, and specify
constant values for all the partition key columns.

DROP STATS removes all statistics from the table, whether created by COMPUTE STATS or COMPUTE
INCREMENTAL STATS.

 | Impala SQL Language Reference | 291

DROP INCREMENTAL STATS only affects incremental statistics for a single partition, specified through the
PARTITION clause. The incremental stats are marked as outdated, so that they are recomputed by the next COMPUTE
INCREMENTAL STATS statement.

Usage notes:

You typically use this statement when the statistics for a table or a partition have become stale due to data files being
added to or removed from the associated HDFS data directories, whether by manual HDFS operations or INSERT,
INSERT OVERWRITE, or LOAD DATA statements, or adding or dropping partitions.

When a table or partition has no associated statistics, Impala treats it as essentially zero-sized when constructing the
execution plan for a query. In particular, the statistics influence the order in which tables are joined in a join query.
To ensure proper query planning and good query performance and scalability, make sure to run COMPUTE STATS or
COMPUTE INCREMENTAL STATS on the table or partition after removing any stale statistics.

Dropping the statistics is not required for an unpartitioned table or a partitioned table covered by the original type of
statistics. A subsequent COMPUTE STATS statement replaces any existing statistics with new ones, for all partitions,
regardless of whether the old ones were outdated. Therefore, this statement was rarely used before the introduction of
incremental statistics.

Dropping the statistics is required for a partitioned table containing incremental statistics, to make a subsequent
COMPUTE INCREMENTAL STATS statement rescan an existing partition. See Table and Column Statistics on page
636 for information about incremental statistics, a new feature available in Impala 2.1.0 and higher.

Statement type: DDL

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, does not need any particular HDFS
permissions to perform this statement. All read and write operations are on the metastore database, not HDFS files
and directories.

Examples:

The following example shows a partitioned table that has associated statistics produced by the COMPUTE
INCREMENTAL STATS statement, and how the situation evolves as statistics are dropped from specific partitions,
then the entire table.

Initially, all table and column statistics are filled in.

show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------
+-----------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+-----------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+-----------------
show column stats item_partitioned;
+------------------+-----------+------------------+--------+----------
+--------------

 | Impala SQL Language Reference | 292

| Column | Type | #Distinct Values | #Nulls | Max Size | Avg
 Size
+------------------+-----------+------------------+--------+----------
+--------------
| i_item_sk | INT | 19443 | -1 | 4 | 4
| i_item_id | STRING | 9025 | -1 | 16 | 16
| i_rec_start_date | TIMESTAMP | 4 | -1 | 16 | 16
| i_rec_end_date | TIMESTAMP | 3 | -1 | 16 | 16
| i_item_desc | STRING | 13330 | -1 | 200 |
 100.302803039
| i_current_price | FLOAT | 2807 | -1 | 4 | 4
| i_wholesale_cost | FLOAT | 2105 | -1 | 4 | 4
| i_brand_id | INT | 965 | -1 | 4 | 4
| i_brand | STRING | 725 | -1 | 22 |
 16.1776008605
| i_class_id | INT | 16 | -1 | 4 | 4
| i_class | STRING | 101 | -1 | 15 |
 7.76749992370
| i_category_id | INT | 10 | -1 | 4 | 4
| i_manufact_id | INT | 1857 | -1 | 4 | 4
| i_manufact | STRING | 1028 | -1 | 15 |
 11.3295001983
| i_size | STRING | 8 | -1 | 11 |
 4.33459997177
| i_formulation | STRING | 12884 | -1 | 20 |
 19.9799995422
| i_color | STRING | 92 | -1 | 10 |
 5.38089990615
| i_units | STRING | 22 | -1 | 7 |
 4.18690013885
| i_container | STRING | 2 | -1 | 7 |
 6.99259996414
| i_manager_id | INT | 105 | -1 | 4 | 4
| i_product_name | STRING | 19094 | -1 | 25 |
 18.0233001708
| i_category | STRING | 10 | 0 | -1 | -1
+------------------+-----------+------------------+--------+----------
+--------------

To remove statistics for particular partitions, use the DROP INCREMENTAL STATS statement. After removing
statistics for two partitions, the table-level statistics reflect that change in the #Rows and Incremental stats
fields. The counts, maximums, and averages of the column-level statistics are unaffected.

Note: (It is possible that the row count might be preserved in future after a DROP INCREMENTAL STATS
statement. Check the resolution of the issue IMPALA-1615.)

drop incremental stats item_partitioned partition (i_category='Sports');
drop incremental stats item_partitioned partition
 (i_category='Electronics');

show table stats item_partitioned
+-------------+-------+--------+----------+--------------+---------
+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+-----------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true

https://issues.apache.org/jira/browse/IMPALA-1615

 | Impala SQL Language Reference | 293

| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+-----------------
show column stats item_partitioned
+------------------+-----------+------------------+--------+----------
+--------------
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg
 Size
+------------------+-----------+------------------+--------+----------
+--------------
| i_item_sk | INT | 19443 | -1 | 4 | 4
| i_item_id | STRING | 9025 | -1 | 16 | 16
| i_rec_start_date | TIMESTAMP | 4 | -1 | 16 | 16
| i_rec_end_date | TIMESTAMP | 3 | -1 | 16 | 16
| i_item_desc | STRING | 13330 | -1 | 200 |
 100.302803039
| i_current_price | FLOAT | 2807 | -1 | 4 | 4
| i_wholesale_cost | FLOAT | 2105 | -1 | 4 | 4
| i_brand_id | INT | 965 | -1 | 4 | 4
| i_brand | STRING | 725 | -1 | 22 |
 16.1776008605
| i_class_id | INT | 16 | -1 | 4 | 4
| i_class | STRING | 101 | -1 | 15 |
 7.76749992370
| i_category_id | INT | 10 | -1 | 4 | 4
| i_manufact_id | INT | 1857 | -1 | 4 | 4
| i_manufact | STRING | 1028 | -1 | 15 |
 11.3295001983
| i_size | STRING | 8 | -1 | 11 |
 4.33459997177
| i_formulation | STRING | 12884 | -1 | 20 |
 19.9799995422
| i_color | STRING | 92 | -1 | 10 |
 5.38089990615
| i_units | STRING | 22 | -1 | 7 |
 4.18690013885
| i_container | STRING | 2 | -1 | 7 |
 6.99259996414
| i_manager_id | INT | 105 | -1 | 4 | 4
| i_product_name | STRING | 19094 | -1 | 25 |
 18.0233001708
| i_category | STRING | 10 | 0 | -1 | -1
+------------------+-----------+------------------+--------+----------
+--------------

To remove all statistics from the table, whether produced by COMPUTE STATS or COMPUTE INCREMENTAL
STATS, use the DROP STATS statement without the INCREMENTAL clause). Now, both table-level and column-
level statistics are reset.

drop stats item_partitioned;

show table stats item_partitioned
+-------------+-------+--------+----------+--------------+---------
+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+------------------
| Books | -1 | 1 | 223.74KB | NOT CACHED | PARQUET | false

 | Impala SQL Language Reference | 294

| Children | -1 | 1 | 230.05KB | NOT CACHED | PARQUET | false
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Home | -1 | 1 | 232.56KB | NOT CACHED | PARQUET | false
| Jewelry | -1 | 1 | 223.72KB | NOT CACHED | PARQUET | false
| Men | -1 | 1 | 231.25KB | NOT CACHED | PARQUET | false
| Music | -1 | 1 | 237.90KB | NOT CACHED | PARQUET | false
| Shoes | -1 | 1 | 234.90KB | NOT CACHED | PARQUET | false
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | -1 | 1 | 226.27KB | NOT CACHED | PARQUET | false
| Total | -1 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+------------------
show column stats item_partitioned
+------------------+-----------+------------------+--------+----------
+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg
 Size |
+------------------+-----------+------------------+--------+----------
+----------+
| i_item_sk | INT | -1 | -1 | 4 | 4
 |
| i_item_id | STRING | -1 | -1 | -1 | -1
 |
| i_rec_start_date | TIMESTAMP | -1 | -1 | 16 | 16
 |
| i_rec_end_date | TIMESTAMP | -1 | -1 | 16 | 16
 |
| i_item_desc | STRING | -1 | -1 | -1 | -1
 |
| i_current_price | FLOAT | -1 | -1 | 4 | 4
 |
| i_wholesale_cost | FLOAT | -1 | -1 | 4 | 4
 |
| i_brand_id | INT | -1 | -1 | 4 | 4
 |
| i_brand | STRING | -1 | -1 | -1 | -1
 |
| i_class_id | INT | -1 | -1 | 4 | 4
 |
| i_class | STRING | -1 | -1 | -1 | -1
 |
| i_category_id | INT | -1 | -1 | 4 | 4
 |
| i_manufact_id | INT | -1 | -1 | 4 | 4
 |
| i_manufact | STRING | -1 | -1 | -1 | -1
 |
| i_size | STRING | -1 | -1 | -1 | -1
 |
| i_formulation | STRING | -1 | -1 | -1 | -1
 |
| i_color | STRING | -1 | -1 | -1 | -1
 |
| i_units | STRING | -1 | -1 | -1 | -1
 |
| i_container | STRING | -1 | -1 | -1 | -1
 |
| i_manager_id | INT | -1 | -1 | 4 | 4
 |
| i_product_name | STRING | -1 | -1 | -1 | -1
 |
| i_category | STRING | 10 | 0 | -1 | -1
 |

 | Impala SQL Language Reference | 295

+------------------+-----------+------------------+--------+----------
+----------+

Related information:

COMPUTE STATS Statement on page 240, SHOW TABLE STATS Statement on page 404, SHOW COLUMN
STATS Statement on page 406, Table and Column Statistics on page 636

DROP TABLE Statement

Removes an Impala table. Also removes the underlying HDFS data files for internal tables, although not for external
tables.

Syntax:

DROP TABLE [IF EXISTS] [db_name.]table_name [PURGE]

IF EXISTS clause:

The optional IF EXISTS clause makes the statement succeed whether or not the table exists. If the table does exist,
it is dropped; if it does not exist, the statement has no effect. This capability is useful in standardized setup scripts
that remove existing schema objects and create new ones. By using some combination of IF EXISTS for the DROP
statements and IF NOT EXISTS clauses for the CREATE statements, the script can run successfully the first time
you run it (when the objects do not exist yet) and subsequent times (when some or all of the objects do already exist).

PURGE clause:

The optional PURGE keyword, available in Impala 2.3 and higher, causes Impala to remove the associated HDFS data
files immediately, rather than going through the HDFS trashcan mechanism. Use this keyword when dropping a table
if it is crucial to remove the data as quickly as possible to free up space, or if there is a problem with the trashcan,
such as the trash cannot being configured or being in a different HDFS encryption zone than the data files.

Statement type: DDL

Usage notes:

By default, Impala removes the associated HDFS directory and data files for the table. If you issue a DROP TABLE
and the data files are not deleted, it might be for the following reasons:

• If the table was created with the EXTERNAL clause, Impala leaves all files and directories untouched. Use external
tables when the data is under the control of other Hadoop components, and Impala is only used to query the data
files from their original locations.

• Impala might leave the data files behind unintentionally, if there is no HDFS location available to hold the HDFS
trashcan for the impala user. See User Account Requirements on page 20 for the procedure to set up the
required HDFS home directory.

Make sure that you are in the correct database before dropping a table, either by issuing a USE statement first or by
using a fully qualified name db_name.table_name.

If you intend to issue a DROP DATABASE statement, first issue DROP TABLE statements to remove all the tables in
that database.

Examples:

create database temporary;
use temporary;
create table unimportant (x int);
create table trivial (s string);
-- Drop a table in the current database.
drop table unimportant;
-- Switch to a different database.
use default;
-- To drop a table in a different database...
drop table trivial;

 | Impala SQL Language Reference | 296

ERROR: AnalysisException: Table does not exist: default.trivial
-- ...use a fully qualified name.
drop table temporary.trivial;

For other tips about managing and reclaiming Impala disk space, see Managing Disk Space for Impala Data on page
81.

Amazon S3 considerations:

The DROP TABLE statement can remove data files from S3 if the associated S3 table is an internal table. In Impala
2.6 and higher, as part of improved support for writing to S3, Impala also removes the associated folder when
dropping an internal table that resides on S3. See Using Impala with the Amazon S3 Filesystem on page 748 for
details about working with S3 tables.

For best compatibility with the S3 write support in Impala 2.6 and higher:

• Use native Hadoop techniques to create data files in S3 for querying through Impala.
• Use the PURGE clause of DROP TABLE when dropping internal (managed) tables.

By default, when you drop an internal (managed) table, the data files are moved to the HDFS trashcan. This operation
is expensive for tables that reside on the Amazon S3 filesystem. Therefore, for S3 tables, prefer to use DROP TABLE
table_name PURGE rather than the default DROP TABLE statement. The PURGE clause makes Impala delete the
data files immediately, skipping the HDFS trashcan. For the PURGE clause to work effectively, you must originally
create the data files on S3 using one of the tools from the Hadoop ecosystem, such as hadoop fs -cp, or INSERT
in Impala or Hive.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 748 for details about reading and writing S3 data with Impala.

Cancellation: Cannot be cancelled.

HDFS permissions:

For an internal table, the user ID that the impalad daemon runs under, typically the impala user, must have write
permission for all the files and directories that make up the table.

For an external table, dropping the table only involves changes to metadata in the metastore database. Because Impala
does not remove any HDFS files or directories when external tables are dropped, no particular permissions are needed
for the associated HDFS files or directories.

Kudu considerations:

Kudu tables can be managed or external, the same as with HDFS-based tables. For a managed table, the underlying
Kudu table and its data are removed by DROP TABLE. For an external table, the underlying Kudu table and its data
remain after a DROP TABLE.

Related information:

Overview of Impala Tables on page 214, ALTER TABLE Statement on page 225, CREATE TABLE Statement on
page 256, Partitioning for Impala Tables on page 681, Internal Tables on page 215, External Tables on page
215

DROP VIEW Statement

Removes the specified view, which was originally created by the CREATE VIEW statement. Because a view is
purely a logical construct (an alias for a query) with no physical data behind it, DROP VIEW only involves changes to
metadata in the metastore database, not any data files in HDFS.

Syntax:

DROP VIEW [IF EXISTS] [db_name.]view_name

 | Impala SQL Language Reference | 297

Statement type: DDL

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

The following example creates a series of views and then drops them. These examples illustrate how views are
associated with a particular database, and both the view definitions and the view names for CREATE VIEW and
DROP VIEW can refer to a view in the current database or a fully qualified view name.

-- Create and drop a view in the current database.
CREATE VIEW few_rows_from_t1 AS SELECT * FROM t1 LIMIT 10;
DROP VIEW few_rows_from_t1;

-- Create and drop a view referencing a table in a different database.
CREATE VIEW table_from_other_db AS SELECT x FROM db1.foo WHERE x IS NOT
 NULL;
DROP VIEW table_from_other_db;

USE db1;
-- Create a view in a different database.
CREATE VIEW db2.v1 AS SELECT * FROM db2.foo;
-- Switch into the other database and drop the view.
USE db2;
DROP VIEW v1;

USE db1;
-- Create a view in a different database.
CREATE VIEW db2.v1 AS SELECT * FROM db2.foo;
-- Drop a view in the other database.
DROP VIEW db2.v1;

Related information:

Overview of Impala Views on page 219, CREATE VIEW Statement on page 271, ALTER VIEW Statement on
page 239

EXPLAIN Statement

Returns the execution plan for a statement, showing the low-level mechanisms that Impala will use to read the data,
divide the work among nodes in the cluster, and transmit intermediate and final results across the network. Use
explain followed by a complete SELECT query. For example:

Syntax:

EXPLAIN { select_query | ctas_stmt | insert_stmt }

The select_query is a SELECT statement, optionally prefixed by a WITH clause. See SELECT Statement on page
322 for details.

The insert_stmt is an INSERT statement that inserts into or overwrites an existing table. It can use either the
INSERT ... SELECT or INSERT ... VALUES syntax. See INSERT Statement on page 301 for details.

The ctas_stmt is a CREATE TABLE statement using the AS SELECT clause, typically abbreviated as a “CTAS”
operation. See CREATE TABLE Statement on page 256 for details.

Usage notes:

You can interpret the output to judge whether the query is performing efficiently, and adjust the query and/or the
schema if not. For example, you might change the tests in the WHERE clause, add hints to make join operations more

 | Impala SQL Language Reference | 298

efficient, introduce subqueries, change the order of tables in a join, add or change partitioning for a table, collect
column statistics and/or table statistics in Hive, or any other performance tuning steps.

The EXPLAIN output reminds you if table or column statistics are missing from any table involved in the query.
These statistics are important for optimizing queries involving large tables or multi-table joins. See COMPUTE
STATS Statement on page 240 for how to gather statistics, and Table and Column Statistics on page 636 for how
to use this information for query tuning.

Read the EXPLAIN plan from bottom to top:

• The last part of the plan shows the low-level details such as the expected amount of data that will be read, where
you can judge the effectiveness of your partitioning strategy and estimate how long it will take to scan a table
based on total data size and the size of the cluster.

• As you work your way up, next you see the operations that will be parallelized and performed on each Impala
node.

• At the higher levels, you see how data flows when intermediate result sets are combined and transmitted from one
node to another.

• See EXPLAIN_LEVEL Query Option on page 366 for details about the EXPLAIN_LEVEL query option, which
lets you customize how much detail to show in the EXPLAIN plan depending on whether you are doing high-level
or low-level tuning, dealing with logical or physical aspects of the query.

If you come from a traditional database background and are not familiar with data warehousing, keep in mind that
Impala is optimized for full table scans across very large tables. The structure and distribution of this data is typically
not suitable for the kind of indexing and single-row lookups that are common in OLTP environments. Seeing a query
scan entirely through a large table is common, not necessarily an indication of an inefficient query. Of course, if you
can reduce the volume of scanned data by orders of magnitude, for example by using a query that affects only certain
partitions within a partitioned table, then you might be able to optimize a query so that it executes in seconds rather
than minutes.

For more information and examples to help you interpret EXPLAIN output, see Using the EXPLAIN Plan for
Performance Tuning on page 663.

Extended EXPLAIN output:

For performance tuning of complex queries, and capacity planning (such as using the admission control and resource
management features), you can enable more detailed and informative output for the EXPLAIN statement. In the
impala-shell interpreter, issue the command SET EXPLAIN_LEVEL=level, where level is an integer from 0
to 3 or corresponding mnemonic values minimal, standard, extended, or verbose.

When extended EXPLAIN output is enabled, EXPLAIN statements print information about estimated memory
requirements, minimum number of virtual cores, and so on.

See EXPLAIN_LEVEL Query Option on page 366 for details and examples.

Examples:

This example shows how the standard EXPLAIN output moves from the lowest (physical) level to the higher
(logical) levels. The query begins by scanning a certain amount of data; each node performs an aggregation operation
(evaluating COUNT(*)) on some subset of data that is local to that node; the intermediate results are transmitted back
to the coordinator node (labelled here as the EXCHANGE node); lastly, the intermediate results are summed to display
the final result.

[impalad-host:21000] > explain select count(*) from customer_address;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=42.00MB VCores=1 |
| |
| 03:AGGREGATE [MERGE FINALIZE] |
| | output: sum(count(*)) |
| | |
| 02:EXCHANGE [PARTITION=UNPARTITIONED] |

 | Impala SQL Language Reference | 299

| | |
| 01:AGGREGATE |
| | output: count(*) |
| | |
| 00:SCAN HDFS [default.customer_address] |
| partitions=1/1 size=5.25MB |
+--+

These examples show how the extended EXPLAIN output becomes more accurate and informative as statistics are
gathered by the COMPUTE STATS statement. Initially, much of the information about data size and distribution
is marked “unavailable”. Impala can determine the raw data size, but not the number of rows or number of distinct
values for each column without additional analysis. The COMPUTE STATS statement performs this analysis, so a
subsequent EXPLAIN statement has additional information to use in deciding how to optimize the distributed query.

[localhost:21000] > set explain_level=extended;
EXPLAIN_LEVEL set to extended
[localhost:21000] > explain select x from t1;
[localhost:21000] > explain select x from t1;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=32.00MB VCores=1 |
| |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
	hosts=1 per-host-mem=unavailable
	tuple-ids=0 row-size=4B cardinality=unavailable
00:SCAN HDFS [default.t2, PARTITION=RANDOM]	
partitions=1/1 size=36B	
table stats: unavailable	
column stats: unavailable	
hosts=1 per-host-mem=32.00MB	
tuple-ids=0 row-size=4B cardinality=unavailable	
+--+

[localhost:21000] > compute stats t1;
+---+
| summary |
+---+
| Updated 1 partition(s) and 1 column(s). |
+---+
[localhost:21000] > explain select x from t1;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=64.00MB VCores=1 |
| |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
	hosts=1 per-host-mem=unavailable
	tuple-ids=0 row-size=4B cardinality=0
00:SCAN HDFS [default.t1, PARTITION=RANDOM]	
partitions=1/1 size=36B	
table stats: 0 rows total	
column stats: all	
hosts=1 per-host-mem=64.00MB	
tuple-ids=0 row-size=4B cardinality=0	
+--+

Security considerations:

 | Impala SQL Language Reference | 300

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute
permissions for all applicable directories in all source tables for the query that is being explained. (A SELECT
operation could read files from multiple different HDFS directories if the source table is partitioned.)

Kudu considerations:

The EXPLAIN statement displays equivalent plan information for queries against Kudu tables as for queries against
HDFS-based tables.

To see which predicates Impala can “push down” to Kudu for efficient evaluation, without transmitting unnecessary
rows back to Impala, look for the kudu predicates item in the scan phase of the query. The label kudu
predicates indicates a condition that can be evaluated efficiently on the Kudu side. The label predicates in a
SCAN KUDU node indicates a condition that is evaluated by Impala. For example, in a table with primary key column
X and non-primary key column Y, you can see that some operators in the WHERE clause are evaluated immediately by
Kudu and others are evaluated later by Impala:

EXPLAIN SELECT x,y from kudu_table WHERE
 x = 1 AND y NOT IN (2,3) AND z = 1
 AND a IS NOT NULL AND b > 0 AND length(s) > 5;
+----------------
| Explain String
+----------------
...
| 00:SCAN KUDU [kudu_table]
| predicates: y NOT IN (2, 3), length(s) > 5
| kudu predicates: a IS NOT NULL, b > 0, x = 1, z = 1

Only binary predicates, IS NULL and IS NOT NULL (in Impala 2.9 and higher), and IN predicates containing
literal values that exactly match the types in the Kudu table, and do not require any casting, can be pushed to Kudu.

Related information:

SELECT Statement on page 322, INSERT Statement on page 301, CREATE TABLE Statement on page 256,
Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles on page 662

GRANT Statement (Impala 2.0 or higher only)

The GRANT statement grants roles or privileges on specified objects to groups. Only Sentry administrative users can
grant roles to a group.

Syntax:

GRANT ROLE role_name TO GROUP group_name

GRANT privilege ON object_type object_name
 TO [ROLE] roleName
 [WITH GRANT OPTION]

privilege ::= SELECT | SELECT(column_name) | INSERT | ALL
object_type ::= TABLE | DATABASE | SERVER | URI

Typically, the object name is an identifier. For URIs, it is a string literal.

Required privileges:

 | Impala SQL Language Reference | 301

Only administrative users (initially, a predefined set of users specified in the Sentry service configuration file) can use
this statement.

The WITH GRANT OPTION clause allows members of the specified role to issue GRANT and REVOKE statements
for those same privileges Hence, if a role has the ALL privilege on a database and the WITH GRANT OPTION set,
users granted that role can execute GRANT/REVOKE statements only for that database or child tables of the database.
This means a user could revoke the privileges of the user that provided them the GRANT OPTION.

Impala does not currently support revoking only the WITH GRANT OPTION from a privilege previously granted to
a role. To remove the WITH GRANT OPTION, revoke the privilege and grant it again without the WITH GRANT
OPTION flag.

The ability to grant or revoke SELECT privilege on specific columns is available in Impala 2.3 and higher. See the
documentation for Apache Sentry for details.

Compatibility:

• The Impala GRANT and REVOKE statements are available in Impala 2.0 and later.
• In Impala 1.4 and later, Impala can make use of any roles and privileges specified by the GRANT and REVOKE

statements in Hive, when your system is configured to use the Sentry service instead of the file-based policy
mechanism.

• The Impala GRANT and REVOKE statements for privileges do not require the ROLE keyword to be repeated before
each role name, unlike the equivalent Hive statements.

• Currently, each Impala GRANT or REVOKE statement can only grant or revoke a single privilege to or from a
single role.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Kudu considerations:

Access to Kudu tables must be granted to and revoked from roles as usual. Only users with ALL privileges on
SERVER can create external Kudu tables. Currently, access to a Kudu table is “all or nothing”: enforced at the table
level rather than the column level, and applying to all SQL operations rather than individual statements such as
INSERT. Because non-SQL APIs can access Kudu data without going through Sentry authorization, currently the
Sentry support is considered preliminary and subject to change.

Related information:

Enabling Sentry Authorization for Impala on page 87, REVOKE Statement (Impala 2.0 or higher only) on page
321, CREATE ROLE Statement (Impala 2.0 or higher only) on page 256, DROP ROLE Statement (Impala 2.0
or higher only) on page 290, SHOW Statement on page 394

INSERT Statement

Impala supports inserting into tables and partitions that you create with the Impala CREATE TABLE statement, or
pre-defined tables and partitions created through Hive.

Syntax:

[with_clause]
INSERT { INTO | OVERWRITE } [TABLE] table_name
 [(column_list)]
 [PARTITION (partition_clause)]
{
 [hint_clause] select_statement
 | VALUES (value [, value ...]) [, (value [, value ...]) ...]
}

partition_clause ::= col_name [= constant] [, col_name [= constant] ...]

 | Impala SQL Language Reference | 302

hint_clause ::=
 hint_with_dashes |
 hint_with_cstyle_delimiters |
 hint_with_brackets

hint_with_dashes ::= -- +SHUFFLE | -- +NOSHUFFLE -- +CLUSTERED

hint_with_cstyle_comments ::= /* +SHUFFLE */ | /* +NOSHUFFLE */ | /*
 +CLUSTERED */

hint_with_brackets ::= [SHUFFLE] | [NOSHUFFLE]
 (With this hint format, the square brackets are part of the syntax.)

Note: The square bracket style of hint is now deprecated and might be removed in a future release. For that reason,
any newly added hints are not available with the square bracket syntax.

Appending or replacing (INTO and OVERWRITE clauses):

The INSERT INTO syntax appends data to a table. The existing data files are left as-is, and the inserted data is put
into one or more new data files.

The INSERT OVERWRITE syntax replaces the data in a table. Currently, the overwritten data files are deleted
immediately; they do not go through the HDFS trash mechanism.

Complex type considerations:

The INSERT statement currently does not support writing data files containing complex types (ARRAY, STRUCT,
and MAP). To prepare Parquet data for such tables, you generate the data files outside Impala and then use LOAD
DATA or CREATE EXTERNAL TABLE to associate those data files with the table. Currently, such tables must use
the Parquet file format. See Complex Types (Impala 2.3 or higher only) on page 152 for details about working with
complex types.

Kudu considerations:

Currently, the INSERT OVERWRITE syntax cannot be used with Kudu tables.

Kudu tables require a unique primary key for each row. If an INSERT statement attempts to insert a row with the
same values for the primary key columns as an existing row, that row is discarded and the insert operation continues.
When rows are discarded due to duplicate primary keys, the statement finishes with a warning, not an error. (This is
a change from early releases of Kudu where the default was to return in error in such cases, and the syntax INSERT
IGNORE was required to make the statement succeed. The IGNORE clause is no longer part of the INSERT syntax.)

For situations where you prefer to replace rows with duplicate primary key values, rather than discarding the new
data, you can use the UPSERT statement instead of INSERT. UPSERT inserts rows that are entirely new, and for
rows that match an existing primary key in the table, the non-primary-key columns are updated to reflect the values in
the “upserted” data.

If you really want to store new rows, not replace existing ones, but cannot do so because of the primary key
uniqueness constraint, consider recreating the table with additional columns included in the primary key.

See Using Impala to Query Kudu Tables on page 724 for more details about using Impala with Kudu.

Usage notes:

Impala currently supports:

• Copy data from another table using SELECT query. In Impala 1.2.1 and higher, you can combine CREATE
TABLE and INSERT operations into a single step with the CREATE TABLE AS SELECT syntax, which
bypasses the actual INSERT keyword.

• An optional WITH clause before the INSERT keyword, to define a subquery referenced in the SELECT portion.
• Create one or more new rows using constant expressions through VALUES clause. (The VALUES clause was

added in Impala 1.0.1.)
• By default, the first column of each newly inserted row goes into the first column of the table, the second column

into the second column, and so on.

 | Impala SQL Language Reference | 303

You can also specify the columns to be inserted, an arbitrarily ordered subset of the columns in the destination
table, by specifying a column list immediately after the name of the destination table. This feature lets you adjust
the inserted columns to match the layout of a SELECT statement, rather than the other way around. (This feature
was added in Impala 1.1.)

The number of columns mentioned in the column list (known as the “column permutation”) must match the
number of columns in the SELECT list or the VALUES tuples. The order of columns in the column permutation
can be different than in the underlying table, and the columns of each input row are reordered to match. If the
number of columns in the column permutation is less than in the destination table, all unmentioned columns are
set to NULL.

• For a partitioned table, the optional PARTITION clause identifies which partition or partitions the new values go
into. If a partition key column is given a constant value such as PARTITION (year=2012) or PARTITION
(year=2012, month=2), all the inserted rows use those same values for those partition key columns and
you omit any corresponding columns in the source table from the SELECT list. This form is known as “static
partitioning”.

If a partition key column is mentioned but not assigned a value, such as in PARTITION (year, region)
(both columns unassigned) or PARTITION(year, region='CA') (year column unassigned), the
unassigned columns are filled in with the final columns of the SELECT list. In this case, the number of columns
in the SELECT list must equal the number of columns in the column permutation plus the number of partition key
columns not assigned a constant value. This form is known as “dynamic partitioning”.

See Static and Dynamic Partitioning Clauses on page 682 for examples and performance characteristics of
static and dynamic partitioned inserts.

• An optional hint clause immediately before the SELECT keyword, to fine-tune the behavior when doing an
INSERT ... SELECT operation into partitioned Parquet tables. The hint keywords are [SHUFFLE] and
[NOSHUFFLE], including the square brackets. Inserting into partitioned Parquet tables can be a resource-
intensive operation because it potentially involves many files being written to HDFS simultaneously, and separate
large memory buffers being allocated to buffer the data for each partition. For usage details, see Loading Data into
Parquet Tables on page 701.

Note:

• Insert commands that partition or add files result in changes to Hive metadata. Because Impala uses Hive
metadata, such changes may necessitate a metadata refresh. For more information, see the REFRESH function.

• Currently, Impala can only insert data into tables that use the text and Parquet formats. For other file formats,
insert the data using Hive and use Impala to query it.

• As an alternative to the INSERT statement, if you have existing data files elsewhere in HDFS, the LOAD DATA
statement can move those files into a table. This statement works with tables of any file format.

Statement type: DML (but still affected by SYNC_DDL query option)

Usage notes:

When you insert the results of an expression, particularly of a built-in function call, into a small numeric column such
as INT, SMALLINT, TINYINT, or FLOAT, you might need to use a CAST() expression to coerce values into the
appropriate type. Impala does not automatically convert from a larger type to a smaller one. For example, to insert
cosine values into a FLOAT column, write CAST(COS(angle) AS FLOAT) in the INSERT statement to make
the conversion explicit.

File format considerations:

Because Impala can read certain file formats that it cannot write, the INSERT statement does not work for all kinds of
Impala tables. See How Impala Works with Hadoop File Formats on page 690 for details about what file formats
are supported by the INSERT statement.

Any INSERT statement for a Parquet table requires enough free space in the HDFS filesystem to write one block.
Because Parquet data files use a block size of 1 GB by default, an INSERT might fail (even for a very small amount
of data) if your HDFS is running low on space.

 | Impala SQL Language Reference | 304

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 394 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Examples:

The following example sets up new tables with the same definition as the TAB1 table from the Tutorial section, using
different file formats, and demonstrates inserting data into the tables created with the STORED AS TEXTFILE and
STORED AS PARQUET clauses:

CREATE DATABASE IF NOT EXISTS file_formats;
USE file_formats;

DROP TABLE IF EXISTS text_table;
CREATE TABLE text_table
(id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP)
STORED AS TEXTFILE;

DROP TABLE IF EXISTS parquet_table;
CREATE TABLE parquet_table
(id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP)
STORED AS PARQUET;

With the INSERT INTO TABLE syntax, each new set of inserted rows is appended to any existing data in the
table. This is how you would record small amounts of data that arrive continuously, or ingest new batches of data
alongside the existing data. For example, after running 2 INSERT INTO TABLE statements with 5 rows each, the
table contains 10 rows total:

[localhost:21000] > insert into table text_table select * from default.tab1;
Inserted 5 rows in 0.41s

[localhost:21000] > insert into table text_table select * from default.tab1;
Inserted 5 rows in 0.46s

[localhost:21000] > select count(*) from text_table;
+----------+
| count(*) |
+----------+
| 10 |
+----------+
Returned 1 row(s) in 0.26s

With the INSERT OVERWRITE TABLE syntax, each new set of inserted rows replaces any existing data in the
table. This is how you load data to query in a data warehousing scenario where you analyze just the data for a
particular day, quarter, and so on, discarding the previous data each time. You might keep the entire set of data in
one raw table, and transfer and transform certain rows into a more compact and efficient form to perform intensive
analysis on that subset.

For example, here we insert 5 rows into a table using the INSERT INTO clause, then replace the data by inserting 3
rows with the INSERT OVERWRITE clause. Afterward, the table only contains the 3 rows from the final INSERT
statement.

[localhost:21000] > insert into table parquet_table select * from
 default.tab1;
Inserted 5 rows in 0.35s

 | Impala SQL Language Reference | 305

[localhost:21000] > insert overwrite table parquet_table select * from
 default.tab1 limit 3;
Inserted 3 rows in 0.43s
[localhost:21000] > select count(*) from parquet_table;
+----------+
| count(*) |
+----------+
| 3 |
+----------+
Returned 1 row(s) in 0.43s

The VALUES clause lets you insert one or more rows by specifying constant values for all the columns. The number,
types, and order of the expressions must match the table definition.

Note: The INSERT ... VALUES technique is not suitable for loading large quantities of data into HDFS-
based tables, because the insert operations cannot be parallelized, and each one produces a separate data file. Use
it for setting up small dimension tables or tiny amounts of data for experimenting with SQL syntax, or with HBase
tables. Do not use it for large ETL jobs or benchmark tests for load operations. Do not run scripts with thousands
of INSERT ... VALUES statements that insert a single row each time. If you do run INSERT ... VALUES
operations to load data into a staging table as one stage in an ETL pipeline, include multiple row values if possible
within each VALUES clause, and use a separate database to make cleanup easier if the operation does produce many
tiny files.

The following example shows how to insert one row or multiple rows, with expressions of different types, using
literal values, expressions, and function return values:

create table val_test_1 (c1 int, c2 float, c3 string, c4 boolean, c5
 timestamp);
insert into val_test_1 values (100, 99.9/10, 'abc', true, now());
create table val_test_2 (id int, token string);
insert overwrite val_test_2 values (1, 'a'), (2, 'b'), (-1,'xyzzy');

These examples show the type of “not implemented” error that you see when attempting to insert data into a table
with a file format that Impala currently does not write to:

DROP TABLE IF EXISTS sequence_table;
CREATE TABLE sequence_table
(id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP)
STORED AS SEQUENCEFILE;

DROP TABLE IF EXISTS rc_table;
CREATE TABLE rc_table
(id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP)
STORED AS RCFILE;

[localhost:21000] > insert into table rc_table select * from default.tab1;
Remote error
Backend 0:RC_FILE not implemented.

[localhost:21000] > insert into table sequence_table select * from
 default.tab1;
Remote error
Backend 0:SEQUENCE_FILE not implemented.

Inserting data into partitioned tables requires slightly different syntax that divides the partitioning columns from the
others:

create table t1 (i int) partitioned by (x int, y string);
-- Select an INT column from another table.

 | Impala SQL Language Reference | 306

-- All inserted rows will have the same x and y values, as specified in the
 INSERT statement.
-- This technique of specifying all the partition key values is known as
 static partitioning.
insert into t1 partition(x=10, y='a') select c1 from some_other_table;
-- Select two INT columns from another table.
-- All inserted rows will have the same y value, as specified in the INSERT
 statement.
-- Values from c2 go into t1.x.
-- Any partitioning columns whose value is not specified are filled in
-- from the columns specified last in the SELECT list.
-- This technique of omitting some partition key values is known as dynamic
 partitioning.
insert into t1 partition(x, y='b') select c1, c2 from some_other_table;
-- Select an INT and a STRING column from another table.
-- All inserted rows will have the same x value, as specified in the INSERT
 statement.
-- Values from c3 go into t1.y.
insert into t1 partition(x=20, y) select c1, c3 from some_other_table;

The following examples show how you can copy the data in all the columns from one table to another, copy the data
from only some columns, or specify the columns in the select list in a different order than they actually appear in the
table:

-- Start with 2 identical tables.
create table t1 (c1 int, c2 int);
create table t2 like t1;

-- If there is no () part after the destination table name,
-- all columns must be specified, either as * or by name.
insert into t2 select * from t1;
insert into t2 select c1, c2 from t1;

-- With the () notation following the destination table name,
-- you can omit columns (all values for that column are NULL
-- in the destination table), and/or reorder the values
-- selected from the source table. This is the "column permutation" feature.
insert into t2 (c1) select c1 from t1;
insert into t2 (c2, c1) select c1, c2 from t1;

-- The column names can be entirely different in the source and destination
 tables.
-- You can copy any columns, not just the corresponding ones, from the
 source table.
-- But the number and type of selected columns must match the columns
 mentioned in the () part.
alter table t2 replace columns (x int, y int);
insert into t2 (y) select c1 from t1;

-- For partitioned tables, all the partitioning columns must be mentioned in
 the () column list
-- or a PARTITION clause; these columns cannot be defaulted to NULL.
create table pt1 (x int, y int) partitioned by (z int);
-- The values from c1 are copied into the column x in the new table,
-- all in the same partition based on a constant value for z.
-- The values of y in the new table are all NULL.
insert into pt1 (x) partition (z=5) select c1 from t1;
-- Again we omit the values for column y so they are all NULL.
-- The inserted x values can go into different partitions, based on
-- the different values inserted into the partitioning column z.
insert into pt1 (x,z) select x, z from t2;

 | Impala SQL Language Reference | 307

SELECT * for a partitioned table requires that all partition key columns in the source table be declared as the last
columns in the CREATE TABLE statement. You still include a PARTITION BY clause listing all the partition key
columns. These partition columns are automatically mapped to the last columns from the SELECT * list.

create table source (x int, y int, year int, month int, day int);
create table destination (x int, y int) partitioned by (year int, month int,
 day int);
...load some data into the unpartitioned source table...
-- Insert a single partition of data.
-- The SELECT * means you cannot specify partition (year=2014, month, day).
insert overwrite destination partition (year, month, day) select * from
 source where year=2014;
-- Insert the data for all year/month/day combinations.
insert overwrite destination partition (year, month, day) select * from
 source;

-- If one of the partition columns is omitted from the source table,
-- then you can specify a specific value for that column in the PARTITION
 clause.
-- Here the source table holds only data from 2014, and so does not include
 a year column.
create table source_2014 (x int, y int, month, day);
...load some data into the unpartitioned source_2014 table...
insert overwrite destination partition (year=2014, month, day) select * from
 source_2014;

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement,
any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation
potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data
being stored in sorted order is impractical.

Concurrency considerations: Each INSERT operation creates new data files with unique names, so you can run
multiple INSERT INTO statements simultaneously without filename conflicts. While data is being inserted into an
Impala table, the data is staged temporarily in a subdirectory inside the data directory; during this period, you cannot
issue queries against that table in Hive. If an INSERT operation fails, the temporary data file and the subdirectory
could be left behind in the data directory. If so, remove the relevant subdirectory and any data files it contains
manually, by issuing an hdfs dfs -rm -r command, specifying the full path of the work subdirectory, whose
name ends in _dir.

VALUES Clause

The VALUES clause is a general-purpose way to specify the columns of one or more rows, typically within an
INSERT statement.

Note: The INSERT ... VALUES technique is not suitable for loading large quantities of data into HDFS-
based tables, because the insert operations cannot be parallelized, and each one produces a separate data file. Use
it for setting up small dimension tables or tiny amounts of data for experimenting with SQL syntax, or with HBase
tables. Do not use it for large ETL jobs or benchmark tests for load operations. Do not run scripts with thousands
of INSERT ... VALUES statements that insert a single row each time. If you do run INSERT ... VALUES
operations to load data into a staging table as one stage in an ETL pipeline, include multiple row values if possible
within each VALUES clause, and use a separate database to make cleanup easier if the operation does produce many
tiny files.

The following examples illustrate:

• How to insert a single row using a VALUES clause.
• How to insert multiple rows using a VALUES clause.
• How the row or rows from a VALUES clause can be appended to a table through INSERT INTO, or replace the

contents of the table through INSERT OVERWRITE.
• How the entries in a VALUES clause can be literals, function results, or any other kind of expression. See Literals

on page 183 for the notation to use for literal values, especially String Literals on page 184 for quoting

 | Impala SQL Language Reference | 308

and escaping conventions for strings. See SQL Operators on page 187 and Impala Built-In Functions on page
418 for other things you can include in expressions with the VALUES clause.

[localhost:21000] > describe val_example;
Query: describe val_example
Query finished, fetching results ...
+-------+---------+---------+
| name | type | comment |
+-------+---------+---------+
id	int	
col_1	boolean	
col_2	double	
+-------+---------+---------+

[localhost:21000] > insert into val_example values (1,true,100.0);
Inserted 1 rows in 0.30s
[localhost:21000] > select * from val_example;
+----+-------+-------+
| id | col_1 | col_2 |
+----+-------+-------+
| 1 | true | 100 |
+----+-------+-------+

[localhost:21000] > insert overwrite val_example values (10,false,pow(2,5)),
 (50,true,10/3);
Inserted 2 rows in 0.16s
[localhost:21000] > select * from val_example;
+----+-------+-------------------+
| id | col_1 | col_2 |
+----+-------+-------------------+
| 10 | false | 32 |
| 50 | true | 3.333333333333333 |
+----+-------+-------------------+

When used in an INSERT statement, the Impala VALUES clause can specify some or all of the columns in the
destination table, and the columns can be specified in a different order than they actually appear in the table. To
specify a different set or order of columns than in the table, use the syntax:

INSERT INTO destination
 (col_x, col_y, col_z)
 VALUES
 (val_x, val_y, val_z);

Any columns in the table that are not listed in the INSERT statement are set to NULL.

To use a VALUES clause like a table in other statements, wrap it in parentheses and use AS clauses to specify aliases
for the entire object and any columns you need to refer to:

[localhost:21000] > select * from (values(4,5,6),(7,8,9)) as t;
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 4 | 5 | 6 |
| 7 | 8 | 9 |
+---+---+---+
[localhost:21000] > select * from (values(1 as c1, true as c2, 'abc' as c3),
(100,false,'xyz')) as t;
+-----+-------+-----+
| c1 | c2 | c3 |
+-----+-------+-----+
| 1 | true | abc |
| 100 | false | xyz |

 | Impala SQL Language Reference | 309

+-----+-------+-----+

For example, you might use a tiny table constructed like this from constant literals or function return values as part of
a longer statement involving joins or UNION ALL.

HDFS considerations:

Impala physically writes all inserted files under the ownership of its default user, typically impala. Therefore, this
user must have HDFS write permission in the corresponding table directory.

The permission requirement is independent of the authorization performed by the Sentry framework. (If the connected
user is not authorized to insert into a table, Sentry blocks that operation immediately, regardless of the privileges
available to the impala user.) Files created by Impala are not owned by and do not inherit permissions from the
connected user.

The number of data files produced by an INSERT statement depends on the size of the cluster, the number of data
blocks that are processed, the partition key columns in a partitioned table, and the mechanism Impala uses for
dividing the work in parallel. Do not assume that an INSERT statement will produce some particular number of
output files. In case of performance issues with data written by Impala, check that the output files do not suffer from
issues such as many tiny files or many tiny partitions. (In the Hadoop context, even files or partitions of a few tens of
megabytes are considered “tiny”.)

The INSERT statement has always left behind a hidden work directory inside the data directory of the table.
Formerly, this hidden work directory was named .impala_insert_staging . In Impala 2.0.1 and later, this
directory name is changed to _impala_insert_staging . (While HDFS tools are expected to treat names
beginning either with underscore and dot as hidden, in practice names beginning with an underscore are more widely
supported.) If you have any scripts, cleanup jobs, and so on that rely on the name of this work directory, adjust them
to use the new name.

HBase considerations:

You can use the INSERT statement with HBase tables as follows:

• You can insert a single row or a small set of rows into an HBase table with the INSERT ... VALUES syntax.
This is a good use case for HBase tables with Impala, because HBase tables are not subject to the same kind of
fragmentation from many small insert operations as HDFS tables are.

• You can insert any number of rows at once into an HBase table using the INSERT ... SELECT syntax.
• If more than one inserted row has the same value for the HBase key column, only the last inserted row with that

value is visible to Impala queries. You can take advantage of this fact with INSERT ... VALUES statements to
effectively update rows one at a time, by inserting new rows with the same key values as existing rows. Be aware
that after an INSERT ... SELECT operation copying from an HDFS table, the HBase table might contain
fewer rows than were inserted, if the key column in the source table contained duplicate values.

• You cannot INSERT OVERWRITE into an HBase table. New rows are always appended.
• When you create an Impala or Hive table that maps to an HBase table, the column order you specify with the

INSERT statement might be different than the order you declare with the CREATE TABLE statement. Behind
the scenes, HBase arranges the columns based on how they are divided into column families. This might cause a
mismatch during insert operations, especially if you use the syntax INSERT INTO hbase_table SELECT
* FROM hdfs_table. Before inserting data, verify the column order by issuing a DESCRIBE statement for
the table, and adjust the order of the select list in the INSERT statement.

See Using Impala to Query HBase Tables on page 738 for more details about using Impala with HBase.

Amazon S3 considerations:

In Impala 2.6 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT)
can write data into a table or partition that resides in the Amazon Simple Storage Service (S3). The syntax of the
DML statements is the same as for any other tables, because the S3 location for tables and partitions is specified by an
s3a:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data into
S3 using the normal S3 transfer mechanisms instead of Impala DML statements, issue a REFRESH statement for the
table before using Impala to query the S3 data.

 | Impala SQL Language Reference | 310

Because of differences between S3 and traditional filesystems, DML operations for S3 tables can take longer
than for tables on HDFS. For example, both the LOAD DATA statement and the final stage of the INSERT and
CREATE TABLE AS SELECT statements involve moving files from one directory to another. (In the case of
INSERT and CREATE TABLE AS SELECT, the files are moved from a temporary staging directory to the final
destination directory.) Because S3 does not support a “rename” operation for existing objects, in these cases Impala
actually copies the data files from one location to another and then removes the original files. In Impala 2.6, the
S3_SKIP_INSERT_STAGING query option provides a way to speed up INSERT statements for S3 tables and
partitions, with the tradeoff that a problem during statement execution could leave data in an inconsistent state. It does
not apply to INSERT OVERWRITE or LOAD DATA statements. See S3_SKIP_INSERT_STAGING Query Option
(Impala 2.6 or higher only) on page 392 for details.

See Using Impala with the Amazon S3 Filesystem on page 748 for details about reading and writing S3 data with
Impala.

ADLS considerations:

In Impala 2.9 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT)
can write data into a table or partition that resides in the Azure Data Lake Store (ADLS). The syntax of the DML
statements is the same as for any other tables, because the ADLS location for tables and partitions is specified by an
adl:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data into
ADLS using the normal ADLS transfer mechanisms instead of Impala DML statements, issue a REFRESH statement
for the table before using Impala to query the ADLS data.

See Using Impala with the Azure Data Lake Store (ADLS) on page 756 for details about reading and writing ADLS
data with Impala.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Cancellation: Can be cancelled. To cancel this statement, use Ctrl-C from the impala-shell interpreter, the
Cancel button from the Watch page in Hue, or Cancel from the list of in-flight queries (for a particular node) on the
Queries tab in the Impala web UI (port 25000).

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permission for
the files in the source directory of an INSERT ... SELECT operation, and write permission for all affected
directories in the destination table. (An INSERT operation could write files to multiple different HDFS directories if
the destination table is partitioned.) This user must also have write permission to create a temporary work directory
in the top-level HDFS directory of the destination table. An INSERT OVERWRITE operation does not require write
permission on the original data files in the table, only on the table directories themselves.

Restrictions:

For INSERT operations into CHAR or VARCHAR columns, you must cast all STRING literals or expressions returning
STRING to to a CHAR or VARCHAR type with the appropriate length.

Related startup options:

By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those
subdirectories are assigned default HDFS permissions for the impala user. To make each subdirectory have the
same permissions as its parent directory in HDFS, specify the --insert_inherit_permissions startup
option for the impalad daemon.

INVALIDATE METADATA Statement

Marks the metadata for one or all tables as stale. Required after a table is created through the Hive shell, before
the table is available for Impala queries. The next time the current Impala node performs a query against a table
whose metadata is invalidated, Impala reloads the associated metadata before the query proceeds. This is a relatively
expensive operation compared to the incremental metadata update done by the REFRESH statement, so in the

 | Impala SQL Language Reference | 311

common scenario of adding new data files to an existing table, prefer REFRESH rather than INVALIDATE
METADATA. If you are not familiar with the way Impala uses metadata and how it shares the same metastore database
as Hive, see Overview of Impala Metadata and the Metastore on page 18 for background information.

Syntax:

INVALIDATE METADATA [[db_name.]table_name]

By default, the cached metadata for all tables is flushed. If you specify a table name, only the metadata for that one
table is flushed. Even for a single table, INVALIDATE METADATA is more expensive than REFRESH, so prefer
REFRESH in the common case where you add new data files for an existing table.

Internal details:

To accurately respond to queries, Impala must have current metadata about those databases and tables that clients
query directly. Therefore, if some other entity modifies information used by Impala in the metastore that Impala and
Hive share, the information cached by Impala must be updated. However, this does not mean that all metadata updates
require an Impala update.

Note:

In Impala 1.2.4 and higher, you can specify a table name with INVALIDATE METADATA after the table is created
in Hive, allowing you to make individual tables visible to Impala without doing a full reload of the catalog metadata.
Impala 1.2.4 also includes other changes to make the metadata broadcast mechanism faster and more responsive,
especially during Impala startup. See New Features in Impala 1.2.4 on page 799 for details.

In Impala 1.2 and higher, a dedicated daemon (catalogd) broadcasts DDL changes made through Impala to all
Impala nodes. Formerly, after you created a database or table while connected to one Impala node, you needed to
issue an INVALIDATE METADATA statement on another Impala node before accessing the new database or table
from the other node. Now, newly created or altered objects are picked up automatically by all Impala nodes. You
must still use the INVALIDATE METADATA technique after creating or altering objects through Hive. See The
Impala Catalog Service on page 15 for more information on the catalog service.

The INVALIDATE METADATA statement is new in Impala 1.1 and higher, and takes over some of the use cases of
the Impala 1.0 REFRESH statement. Because REFRESH now requires a table name parameter, to flush the metadata
for all tables at once, use the INVALIDATE METADATA statement.

Because REFRESH table_name only works for tables that the current Impala node is already aware of, when you
create a new table in the Hive shell, enter INVALIDATE METADATA new_table before you can see the new
table in impala-shell. Once the table is known by Impala, you can issue REFRESH table_name after you add
data files for that table.

INVALIDATE METADATA and REFRESH are counterparts: INVALIDATE METADATA waits to reload the
metadata when needed for a subsequent query, but reloads all the metadata for the table, which can be an expensive
operation, especially for large tables with many partitions. REFRESH reloads the metadata immediately, but
only loads the block location data for newly added data files, making it a less expensive operation overall. If data
was altered in some more extensive way, such as being reorganized by the HDFS balancer, use INVALIDATE
METADATA to avoid a performance penalty from reduced local reads. If you used Impala version 1.0, the
INVALIDATE METADATA statement works just like the Impala 1.0 REFRESH statement did, while the Impala 1.1
REFRESH is optimized for the common use case of adding new data files to an existing table, thus the table name
argument is now required.

Usage notes:

A metadata update for an impalad instance is required if:

• A metadata change occurs.
• and the change is made from another impalad instance in your cluster, or through Hive.
• and the change is made to a metastore database to which clients such as the Impala shell or ODBC directly

connect.

 | Impala SQL Language Reference | 312

A metadata update for an Impala node is not required when you issue queries from the same Impala node where you
ran ALTER TABLE, INSERT, or other table-modifying statement.

Database and table metadata is typically modified by:

• Hive - via ALTER, CREATE, DROP or INSERT operations.
• Impalad - via CREATE TABLE, ALTER TABLE, and INSERT operations.

INVALIDATE METADATA causes the metadata for that table to be marked as stale, and reloaded the next time the
table is referenced. For a huge table, that process could take a noticeable amount of time; thus you might prefer to
use REFRESH where practical, to avoid an unpredictable delay later, for example if the next reference to the table is
during a benchmark test.

Examples:

The following example shows how you might use the INVALIDATE METADATA statement after creating new tables
(such as SequenceFile or HBase tables) through the Hive shell. Before the INVALIDATE METADATA statement
was issued, Impala would give a “table not found” error if you tried to refer to those table names. The DESCRIBE
statements cause the latest metadata to be immediately loaded for the tables, avoiding a delay the next time those
tables are queried.

[impalad-host:21000] > invalidate metadata;
[impalad-host:21000] > describe t1;
...
[impalad-host:21000] > describe t2;
...

For more examples of using REFRESH and INVALIDATE METADATA with a combination of Impala and Hive
operations, see Switching Back and Forth Between Impala and Hive on page 50.

If you need to ensure that the metadata is up-to-date when you start an impala-shell session, run impala-
shell with the -r or --refresh_after_connect command-line option. Because this operation adds a delay
to the next query against each table, potentially expensive for large tables with many partitions, try to avoid using this
option for day-to-day operations in a production environment.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have execute permissions
for all the relevant directories holding table data. (A table could have data spread across multiple directories, or in
unexpected paths, if it uses partitioning or specifies a LOCATION attribute for individual partitions or the entire
table.) Issues with permissions might not cause an immediate error for this statement, but subsequent statements such
as SELECT or SHOW TABLE STATS could fail.

HDFS considerations:

By default, the INVALIDATE METADATA command checks HDFS permissions of the underlying data files and
directories, caching this information so that a statement can be cancelled immediately if for example the impala
user does not have permission to write to the data directory for the table. (This checking does not apply if you have
set the catalogd configuration option --load_catalog_in_background=false.) Impala reports any lack
of write permissions as an INFO message in the log file, in case that represents an oversight. If you change HDFS
permissions to make data readable or writeable by the Impala user, issue another INVALIDATE METADATA to make
Impala aware of the change.

Usage notes:

This example illustrates creating a new database and new table in Hive, then doing an INVALIDATE METADATA
statement in Impala using the fully qualified table name, after which both the new table and the new database are
visible to Impala. The ability to specify INVALIDATE METADATA table_name for a table created in Hive is a
new capability in Impala 1.2.4. In earlier releases, that statement would have returned an error indicating an unknown
table, requiring you to do INVALIDATE METADATA with no table name, a more expensive operation that reloaded
metadata for all tables and databases.

$ hive

 | Impala SQL Language Reference | 313

hive> create database new_db_from_hive;
OK
Time taken: 4.118 seconds
hive> create table new_db_from_hive.new_table_from_hive (x int);
OK
Time taken: 0.618 seconds
hive> quit;
$ impala-shell
[localhost:21000] > show databases like 'new*';
[localhost:21000] > refresh new_db_from_hive.new_table_from_hive;
ERROR: AnalysisException: Database does not exist: new_db_from_hive
[localhost:21000] > invalidate metadata
 new_db_from_hive.new_table_from_hive;
[localhost:21000] > show databases like 'new*';
+--------------------+
| name |
+--------------------+
| new_db_from_hive |
+--------------------+
[localhost:21000] > show tables in new_db_from_hive;
+---------------------+
| name |
+---------------------+
| new_table_from_hive |
+---------------------+

Amazon S3 considerations:

The REFRESH and INVALIDATE METADATA statements also cache metadata for tables where the data resides in
the Amazon Simple Storage Service (S3). In particular, issue a REFRESH for a table after adding or removing files in
the associated S3 data directory. See Using Impala with the Amazon S3 Filesystem on page 748 for details about
working with S3 tables.

Cancellation: Cannot be cancelled.

Kudu considerations:

Much of the metadata for Kudu tables is handled by the underlying storage layer. Kudu tables have less reliance
on the metastore database, and require less metadata caching on the Impala side. For example, information about
partitions in Kudu tables is managed by Kudu, and Impala does not cache any block locality metadata for Kudu
tables.

The REFRESH and INVALIDATE METADATA statements are needed less frequently for Kudu tables than for
HDFS-backed tables. Neither statement is needed when data is added to, removed, or updated in a Kudu table, even if
the changes are made directly to Kudu through a client program using the Kudu API. Run REFRESH table_name
or INVALIDATE METADATA table_name for a Kudu table only after making a change to the Kudu table
schema, such as adding or dropping a column, by a mechanism other than Impala.

Related information:

Overview of Impala Metadata and the Metastore on page 18, REFRESH Statement on page 317

LOAD DATA Statement

The LOAD DATA statement streamlines the ETL process for an internal Impala table by moving a data file or all the
data files in a directory from an HDFS location into the Impala data directory for that table.

Syntax:

LOAD DATA INPATH 'hdfs_file_or_directory_path' [OVERWRITE] INTO
 TABLE tablename
 [PARTITION (partcol1=val1, partcol2=val2 ...)]

 | Impala SQL Language Reference | 314

When the LOAD DATA statement operates on a partitioned table, it always operates on one partition at a time. Specify
the PARTITION clauses and list all the partition key columns, with a constant value specified for each.

Statement type: DML (but still affected by SYNC_DDL query option)

Usage notes:

• The loaded data files are moved, not copied, into the Impala data directory.
• You can specify the HDFS path of a single file to be moved, or the HDFS path of a directory to move all the files

inside that directory. You cannot specify any sort of wildcard to take only some of the files from a directory.
When loading a directory full of data files, keep all the data files at the top level, with no nested directories
underneath.

• Currently, the Impala LOAD DATA statement only imports files from HDFS, not from the local filesystem. It does
not support the LOCAL keyword of the Hive LOAD DATA statement. You must specify a path, not an hdfs://
URI.

• In the interest of speed, only limited error checking is done. If the loaded files have the wrong file format,
different columns than the destination table, or other kind of mismatch, Impala does not raise any error for the
LOAD DATA statement. Querying the table afterward could produce a runtime error or unexpected results.
Currently, the only checking the LOAD DATA statement does is to avoid mixing together uncompressed and LZO-
compressed text files in the same table.

• When you specify an HDFS directory name as the LOAD DATA argument, any hidden files in that directory (files
whose names start with a .) are not moved to the Impala data directory.

• The operation fails if the source directory contains any non-hidden directories. Prior to Impala 2.5 if the source
directory contained any subdirectory, even a hidden one such as _impala_insert_staging, the LOAD
DATA statement would fail. In Impala 2.5 and higher, LOAD DATA ignores hidden subdirectories in the source
directory, and only fails if any of the subdirectories are non-hidden.

• The loaded data files retain their original names in the new location, unless a name conflicts with an existing
data file, in which case the name of the new file is modified slightly to be unique. (The name-mangling is a slight
difference from the Hive LOAD DATA statement, which replaces identically named files.)

• By providing an easy way to transport files from known locations in HDFS into the Impala data directory
structure, the LOAD DATA statement lets you avoid memorizing the locations and layout of HDFS directory tree
containing the Impala databases and tables. (For a quick way to check the location of the data files for an Impala
table, issue the statement DESCRIBE FORMATTED table_name.)

• The PARTITION clause is especially convenient for ingesting new data for a partitioned table. As you receive
new data for a time period, geographic region, or other division that corresponds to one or more partitioning
columns, you can load that data straight into the appropriate Impala data directory, which might be nested several
levels down if the table is partitioned by multiple columns. When the table is partitioned, you must specify
constant values for all the partitioning columns.

Complex type considerations:

Because Impala currently cannot create Parquet data files containing complex types (ARRAY, STRUCT, and MAP),
the LOAD DATA statement is especially important when working with tables containing complex type columns.
You create the Parquet data files outside Impala, then use either LOAD DATA, an external table, or HDFS-level file
operations followed by REFRESH to associate the data files with the corresponding table. See Complex Types (Impala
2.3 or higher only) on page 152 for details about using complex types.

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 394 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Examples:

 | Impala SQL Language Reference | 315

First, we use a trivial Python script to write different numbers of strings (one per line) into files stored in the
doc_demo HDFS user account. (Substitute the path for your own HDFS user account when doing hdfs dfs
operations like these.)

$ random_strings.py 1000 | hdfs dfs -put - /user/doc_demo/
thousand_strings.txt
$ random_strings.py 100 | hdfs dfs -put - /user/doc_demo/hundred_strings.txt
$ random_strings.py 10 | hdfs dfs -put - /user/doc_demo/ten_strings.txt

Next, we create a table and load an initial set of data into it. Remember, unless you specify a STORED AS clause,
Impala tables default to TEXTFILE format with Ctrl-A (hex 01) as the field delimiter. This example uses a single-
column table, so the delimiter is not significant. For large-scale ETL jobs, you would typically use binary format data
files such as Parquet or Avro, and load them into Impala tables that use the corresponding file format.

[localhost:21000] > create table t1 (s string);
[localhost:21000] > load data inpath '/user/doc_demo/thousand_strings.txt'
 into table t1;
Query finished, fetching results ...
+--+
| summary |
+--+
| Loaded 1 file(s). Total files in destination location: 1 |
+--+
Returned 1 row(s) in 0.61s
[kilo2-202-961.cs1cloud.internal:21000] > select count(*) from t1;
Query finished, fetching results ...
+------+
| _c0 |
+------+
| 1000 |
+------+
Returned 1 row(s) in 0.67s
[localhost:21000] > load data inpath '/user/doc_demo/thousand_strings.txt'
 into table t1;
ERROR: AnalysisException: INPATH location '/user/doc_demo/
thousand_strings.txt' does not exist.

As indicated by the message at the end of the previous example, the data file was moved from its original location.
The following example illustrates how the data file was moved into the Impala data directory for the destination table,
keeping its original filename:

$ hdfs dfs -ls /user/hive/warehouse/load_data_testing.db/t1
Found 1 items
-rw-r--r-- 1 doc_demo doc_demo 13926 2013-06-26 15:40 /user/hive/
warehouse/load_data_testing.db/t1/thousand_strings.txt

The following example demonstrates the difference between the INTO TABLE and OVERWRITE TABLE clauses.
The table already contains 1000 rows. After issuing the LOAD DATA statement with the INTO TABLE clause, the
table contains 100 more rows, for a total of 1100. After issuing the LOAD DATA statement with the OVERWRITE
INTO TABLE clause, the former contents are gone, and now the table only contains the 10 rows from the just-loaded
data file.

[localhost:21000] > load data inpath '/user/doc_demo/hundred_strings.txt'
 into table t1;
Query finished, fetching results ...
+--+
| summary |
+--+
| Loaded 1 file(s). Total files in destination location: 2 |
+--+
Returned 1 row(s) in 0.24s

 | Impala SQL Language Reference | 316

[localhost:21000] > select count(*) from t1;
Query finished, fetching results ...
+------+
| _c0 |
+------+
| 1100 |
+------+
Returned 1 row(s) in 0.55s
[localhost:21000] > load data inpath '/user/doc_demo/ten_strings.txt'
 overwrite into table t1;
Query finished, fetching results ...
+--+
| summary |
+--+
| Loaded 1 file(s). Total files in destination location: 1 |
+--+
Returned 1 row(s) in 0.26s
[localhost:21000] > select count(*) from t1;
Query finished, fetching results ...
+-----+
| _c0 |
+-----+
| 10 |
+-----+
Returned 1 row(s) in 0.62s

Amazon S3 considerations:

In Impala 2.6 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT)
can write data into a table or partition that resides in the Amazon Simple Storage Service (S3). The syntax of the
DML statements is the same as for any other tables, because the S3 location for tables and partitions is specified by an
s3a:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data into
S3 using the normal S3 transfer mechanisms instead of Impala DML statements, issue a REFRESH statement for the
table before using Impala to query the S3 data.

Because of differences between S3 and traditional filesystems, DML operations for S3 tables can take longer
than for tables on HDFS. For example, both the LOAD DATA statement and the final stage of the INSERT and
CREATE TABLE AS SELECT statements involve moving files from one directory to another. (In the case of
INSERT and CREATE TABLE AS SELECT, the files are moved from a temporary staging directory to the final
destination directory.) Because S3 does not support a “rename” operation for existing objects, in these cases Impala
actually copies the data files from one location to another and then removes the original files. In Impala 2.6, the
S3_SKIP_INSERT_STAGING query option provides a way to speed up INSERT statements for S3 tables and
partitions, with the tradeoff that a problem during statement execution could leave data in an inconsistent state. It does
not apply to INSERT OVERWRITE or LOAD DATA statements. See S3_SKIP_INSERT_STAGING Query Option
(Impala 2.6 or higher only) on page 392 for details.

See Using Impala with the Amazon S3 Filesystem on page 748 for details about reading and writing S3 data with
Impala.

ADLS considerations:

In Impala 2.9 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT)
can write data into a table or partition that resides in the Azure Data Lake Store (ADLS). The syntax of the DML
statements is the same as for any other tables, because the ADLS location for tables and partitions is specified by an
adl:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data into
ADLS using the normal ADLS transfer mechanisms instead of Impala DML statements, issue a REFRESH statement
for the table before using Impala to query the ADLS data.

See Using Impala with the Azure Data Lake Store (ADLS) on page 756 for details about reading and writing ADLS
data with Impala.

Cancellation: Cannot be cancelled.

 | Impala SQL Language Reference | 317

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and write permissions
for the files in the source directory, and write permission for the destination directory.

Kudu considerations:

The LOAD DATA statement cannot be used with Kudu tables.

HBase considerations:

The LOAD DATA statement cannot be used with HBase tables.

Related information:

The LOAD DATA statement is an alternative to the INSERT statement. Use LOAD DATA when you have the data
files in HDFS but outside of any Impala table.

The LOAD DATA statement is also an alternative to the CREATE EXTERNAL TABLE statement. Use LOAD DATA
when it is appropriate to move the data files under Impala control rather than querying them from their original
location. See External Tables on page 215 for information about working with external tables.

REFRESH Statement

To accurately respond to queries, the Impala node that acts as the coordinator (the node to which you are connected
through impala-shell, JDBC, or ODBC) must have current metadata about those databases and tables that are
referenced in Impala queries. If you are not familiar with the way Impala uses metadata and how it shares the same
metastore database as Hive, see Overview of Impala Metadata and the Metastore on page 18 for background
information.

Syntax:

REFRESH [db_name.]table_name [PARTITION (key_col1=val1
 [, key_col2=val2...])]
REFRESH FUNCTIONS db_name

Usage notes:

Use the REFRESH statement to load the latest metastore metadata and block location data for a particular table in
these scenarios:

• After loading new data files into the HDFS data directory for the table. (Once you have set up an ETL pipeline
to bring data into Impala on a regular basis, this is typically the most frequent reason why metadata needs to be
refreshed.)

• After issuing ALTER TABLE, INSERT, LOAD DATA, or other table-modifying SQL statement in Hive.

Note:

In Impala 2.3 and higher, the syntax ALTER TABLE table_name RECOVER PARTITIONS is a faster
alternative to REFRESH when the only change to the table data is the addition of new partition directories through
Hive or manual HDFS operations. See ALTER TABLE Statement on page 225 for details.

You only need to issue the REFRESH statement on the node to which you connect to issue queries. The coordinator
node divides the work among all the Impala nodes in a cluster, and sends read requests for the correct HDFS blocks
without relying on the metadata on the other nodes.

REFRESH reloads the metadata for the table from the metastore database, and does an incremental reload of the low-
level block location data to account for any new data files added to the HDFS data directory for the table. It is a low-
overhead, single-table operation, specifically tuned for the common scenario where new data files are added to HDFS.

Only the metadata for the specified table is flushed. The table must already exist and be known to Impala, either
because the CREATE TABLE statement was run in Impala rather than Hive, or because a previous INVALIDATE
METADATA statement caused Impala to reload its entire metadata catalog.

Note:

 | Impala SQL Language Reference | 318

The catalog service broadcasts any changed metadata as a result of Impala ALTER TABLE, INSERT and LOAD
DATA statements to all Impala nodes. Thus, the REFRESH statement is only required if you load data through Hive or
by manipulating data files in HDFS directly. See The Impala Catalog Service on page 15 for more information on
the catalog service.

Another way to avoid inconsistency across nodes is to enable the SYNC_DDL query option before performing a DDL
statement or an INSERT or LOAD DATA.

The table name is a required parameter. To flush the metadata for all tables, use the INVALIDATE METADATA
command.

Because REFRESH table_name only works for tables that the current Impala node is already aware of, when you
create a new table in the Hive shell, enter INVALIDATE METADATA new_table before you can see the new
table in impala-shell. Once the table is known by Impala, you can issue REFRESH table_name after you add
data files for that table.

INVALIDATE METADATA and REFRESH are counterparts: INVALIDATE METADATA waits to reload the
metadata when needed for a subsequent query, but reloads all the metadata for the table, which can be an expensive
operation, especially for large tables with many partitions. REFRESH reloads the metadata immediately, but
only loads the block location data for newly added data files, making it a less expensive operation overall. If data
was altered in some more extensive way, such as being reorganized by the HDFS balancer, use INVALIDATE
METADATA to avoid a performance penalty from reduced local reads. If you used Impala version 1.0, the
INVALIDATE METADATA statement works just like the Impala 1.0 REFRESH statement did, while the Impala 1.1
REFRESH is optimized for the common use case of adding new data files to an existing table, thus the table name
argument is now required.

A metadata update for an impalad instance is required if:

• A metadata change occurs.
• and the change is made through Hive.
• and the change is made to a metastore database to which clients such as the Impala shell or ODBC directly

connect.

A metadata update for an Impala node is not required after you run ALTER TABLE, INSERT, or other table-
modifying statement in Impala rather than Hive. Impala handles the metadata synchronization automatically through
the catalog service.

Database and table metadata is typically modified by:

• Hive - through ALTER, CREATE, DROP or INSERT operations.
• Impalad - through CREATE TABLE, ALTER TABLE, and INSERT operations. Such changes are propagated to

all Impala nodes by the Impala catalog service.

REFRESH causes the metadata for that table to be immediately reloaded. For a huge table, that process could take a
noticeable amount of time; but doing the refresh up front avoids an unpredictable delay later, for example if the next
reference to the table is during a benchmark test.

Refreshing a single partition:

In Impala 2.7 and higher, the REFRESH statement can apply to a single partition at a time, rather than the whole table.
Include the optional PARTITION (partition_spec) clause and specify values for each of the partition key
columns.

The following examples show how to make Impala aware of data added to a single partition, after data is loaded into a
partition's data directory using some mechanism outside Impala, such as Hive or Spark. The partition can be one that
Impala created and is already aware of, or a new partition created through Hive.

impala> create table p (x int) partitioned by (y int);
impala> insert into p (x,y) values (1,2), (2,2), (2,1);
impala> show partitions p;
+-------+-------+--------+------+...
| y | #Rows | #Files | Size |...

 | Impala SQL Language Reference | 319

+-------+-------+--------+------+...
| 1 | -1 | 1 | 2B |...
| 2 | -1 | 1 | 4B |...
| Total | -1 | 2 | 6B |...
+-------+-------+--------+------+...

-- ... Data is inserted into one of the partitions by some external
 mechanism ...
beeline> insert into p partition (y = 1) values(1000);

impala> refresh p partition (y=1);
impala> select x from p where y=1;
+------+
| x |
+------+
| 2 | <- Original data created by Impala
| 1000 | <- Additional data inserted through Beeline
+------+

The same applies for tables with more than one partition key column. The PARTITION clause of the REFRESH
statement must include all the partition key columns.

impala> create table p2 (x int) partitioned by (y int, z int);
impala> insert into p2 (x,y,z) values (0,0,0), (1,2,3), (2,2,3);
impala> show partitions p2;
+-------+---+-------+--------+------+...
| y | z | #Rows | #Files | Size |...
+-------+---+-------+--------+------+...
| 0 | 0 | -1 | 1 | 2B |...
| 2 | 3 | -1 | 1 | 4B |...
| Total | | -1 | 2 | 6B |...
+-------+---+-------+--------+------+...

-- ... Data is inserted into one of the partitions by some external
 mechanism ...
beeline> insert into p2 partition (y = 2, z = 3) values(1000);

impala> refresh p2 partition (y=2, z=3);
impala> select x from p where y=2 and z = 3;
+------+
| x |
+------+
| 1 | <- Original data created by Impala
| 2 | <- Original data created by Impala
| 1000 | <- Additional data inserted through Beeline
+------+

The following examples show how specifying a nonexistent partition does not cause any error, and the order of the
partition key columns does not have to match the column order in the table. The partition spec must include all the
partition key columns; specifying an incomplete set of columns does cause an error.

-- Partition doesn't exist.
refresh p2 partition (y=0, z=3);
refresh p2 partition (y=0, z=-1)
-- Key columns specified in a different order than the table definition.
refresh p2 partition (z=1, y=0)
-- Incomplete partition spec causes an error.
refresh p2 partition (y=0)

 | Impala SQL Language Reference | 320

ERROR: AnalysisException: Items in partition spec must exactly match the
 partition columns in the table definition: default.p2 (1 vs 2)

If you connect to different Impala nodes within an impala-shell session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes. See SYNC_DDL Query Option on page 394 for details.

Examples:

The following example shows how you might use the REFRESH statement after manually adding new HDFS data
files to the Impala data directory for a table:

[impalad-host:21000] > refresh t1;
[impalad-host:21000] > refresh t2;
[impalad-host:21000] > select * from t1;
...
[impalad-host:21000] > select * from t2;
...

For more examples of using REFRESH and INVALIDATE METADATA with a combination of Impala and Hive
operations, see Switching Back and Forth Between Impala and Hive on page 50.

Related impala-shell options:

The impala-shell option -r issues an INVALIDATE METADATA statement when starting up the shell,
effectively performing a REFRESH of all tables. Due to the expense of reloading the metadata for all tables, the
impala-shell -r option is not recommended for day-to-day use in a production environment. (This option was
mainly intended as a workaround for synchronization issues in very old Impala versions.)

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have execute permissions
for all the relevant directories holding table data. (A table could have data spread across multiple directories, or in
unexpected paths, if it uses partitioning or specifies a LOCATION attribute for individual partitions or the entire
table.) Issues with permissions might not cause an immediate error for this statement, but subsequent statements such
as SELECT or SHOW TABLE STATS could fail.

All HDFS and Sentry permissions and privileges are the same whether you refresh the entire table or a single
partition.

HDFS considerations:

The REFRESH command checks HDFS permissions of the underlying data files and directories, caching this
information so that a statement can be cancelled immediately if for example the impala user does not have
permission to write to the data directory for the table. Impala reports any lack of write permissions as an INFO
message in the log file, in case that represents an oversight. If you change HDFS permissions to make data readable or
writeable by the Impala user, issue another REFRESH to make Impala aware of the change.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Amazon S3 considerations:

The REFRESH and INVALIDATE METADATA statements also cache metadata for tables where the data resides in
the Amazon Simple Storage Service (S3). In particular, issue a REFRESH for a table after adding or removing files in
the associated S3 data directory. See Using Impala with the Amazon S3 Filesystem on page 748 for details about
working with S3 tables.

Cancellation: Cannot be cancelled.

 | Impala SQL Language Reference | 321

Kudu considerations:

Much of the metadata for Kudu tables is handled by the underlying storage layer. Kudu tables have less reliance
on the metastore database, and require less metadata caching on the Impala side. For example, information about
partitions in Kudu tables is managed by Kudu, and Impala does not cache any block locality metadata for Kudu
tables.

The REFRESH and INVALIDATE METADATA statements are needed less frequently for Kudu tables than for
HDFS-backed tables. Neither statement is needed when data is added to, removed, or updated in a Kudu table, even if
the changes are made directly to Kudu through a client program using the Kudu API. Run REFRESH table_name
or INVALIDATE METADATA table_name for a Kudu table only after making a change to the Kudu table
schema, such as adding or dropping a column, by a mechanism other than Impala.

UDF considerations:

In Impala 2.9 and higher, you can refresh the user-defined functions (UDFs) that Impala recognizes, at the database
level, by running the REFRESH FUNCTIONS statement with the database name as an argument. Java-based UDFs
can be added to the metastore database through Hive CREATE FUNCTION statements, and made visible to Impala
by subsequently running REFRESH FUNCTIONS. For example:

CREATE DATABASE shared_udfs;
USE shared_udfs;
...use CREATE FUNCTION statements in Hive to create some Java-based UDFs
 that Impala is not initially aware of...
REFRESH FUNCTIONS shared_udfs;
SELECT udf_created_by_hive(c1) FROM ...

Related information:

Overview of Impala Metadata and the Metastore on page 18, INVALIDATE METADATA Statement on page
310

REVOKE Statement (Impala 2.0 or higher only)

The REVOKE statement revokes roles or privileges on a specified object from groups. Only Sentry administrative
users can revoke the role from a group. The revocation has a cascading effect. For example, revoking the ALL
privilege on a database also revokes the same privilege for all the tables in that database.

Syntax:

REVOKE ROLE role_name FROM GROUP group_name

REVOKE privilege ON object_type object_name
 FROM [ROLE] role_name

privilege ::= SELECT | SELECT(column_name) | INSERT | ALL
object_type ::= TABLE | DATABASE | SERVER | URI

Typically, the object name is an identifier. For URIs, it is a string literal.

The ability to grant or revoke SELECT privilege on specific columns is available in Impala 2.3 and higher. See the
documentation for Apache Sentry for details.

Required privileges:

Only administrative users (those with ALL privileges on the server, defined in the Sentry policy file) can use this
statement.

Compatibility:

• The Impala GRANT and REVOKE statements are available in Impala 2.0 and higher.

 | Impala SQL Language Reference | 322

• In Impala 1.4 and higher, Impala makes use of any roles and privileges specified by the GRANT and REVOKE
statements in Hive, when your system is configured to use the Sentry service instead of the file-based policy
mechanism.

• The Impala GRANT and REVOKE statements do not require the ROLE keyword to be repeated before each role
name, unlike the equivalent Hive statements.

• Currently, each Impala GRANT or REVOKE statement can only grant or revoke a single privilege to or from a
single role.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Kudu considerations:

Access to Kudu tables must be granted to and revoked from roles as usual. Only users with ALL privileges on
SERVER can create external Kudu tables. Currently, access to a Kudu table is “all or nothing”: enforced at the table
level rather than the column level, and applying to all SQL operations rather than individual statements such as
INSERT. Because non-SQL APIs can access Kudu data without going through Sentry authorization, currently the
Sentry support is considered preliminary and subject to change.

Related information:

Enabling Sentry Authorization for Impala on page 87, GRANT Statement (Impala 2.0 or higher only) on page
300 CREATE ROLE Statement (Impala 2.0 or higher only) on page 256, DROP ROLE Statement (Impala 2.0 or
higher only) on page 290, SHOW Statement on page 394

SELECT Statement

The SELECT statement performs queries, retrieving data from one or more tables and producing result sets consisting
of rows and columns.

The Impala INSERT statement also typically ends with a SELECT statement, to define data to copy from one table to
another.

Syntax:

[WITH name AS (select_expression) [, ...]]
SELECT
 [ALL | DISTINCT]
 [STRAIGHT_JOIN]
 expression [, expression ...]
FROM table_reference [, table_reference ...]
[[FULL | [LEFT | RIGHT] INNER | [LEFT | RIGHT] OUTER | [LEFT | RIGHT] SEMI |
 [LEFT | RIGHT] ANTI | CROSS]
 JOIN table_reference
 [ON join_equality_clauses | USING (col1[, col2 ...]] ...
WHERE conditions
GROUP BY { column | expression [, ...] }
HAVING conditions
ORDER BY { column | expression [ASC | DESC] [NULLS FIRST | NULLS LAST]
 [, ...] }
LIMIT expression [OFFSET expression]
[UNION [ALL] select_statement] ...]

table_reference := { table_name | (subquery) }
 [TABLESAMPLE SYSTEM(percentage) [REPEATABLE(seed)]]

Impala SELECT queries support:

• SQL scalar data types: BOOLEAN, TINYINT, SMALLINT, INT, BIGINT, DECIMAL FLOAT, DOUBLE,
TIMESTAMP, STRING, VARCHAR, CHAR.

 | Impala SQL Language Reference | 323

• The complex data types ARRAY, STRUCT, and MAP, are available in Impala 2.3 and higher. Queries involving
these types typically involve special qualified names using dot notation for referring to the complex column fields,
and join clauses for bringing the complex columns into the result set. See Complex Types (Impala 2.3 or higher
only) on page 152 for details.

• An optional WITH clause before the SELECT keyword, to define a subquery whose name or column names can
be referenced from later in the main query. This clause lets you abstract repeated clauses, such as aggregation
functions, that are referenced multiple times in the same query.

• By default, one DISTINCT clause per query. See DISTINCT Operator on page 351 for details. See
APPX_COUNT_DISTINCT Query Option (Impala 2.0 or higher only) on page 359 for a query option to allow
multiple COUNT(DISTINCT) impressions in the same query.

• Subqueries in a FROM clause. In Impala 2.0 and higher, subqueries can also go in the WHERE clause, for example
with the IN(), EXISTS, and NOT EXISTS operators.

• WHERE, GROUP BY, HAVING clauses.
• ORDER BY. Prior to Impala 1.4.0, Impala required that queries using an ORDER BY clause also include a LIMIT

clause. In Impala 1.4.0 and higher, this restriction is lifted; sort operations that would exceed the Impala memory
limit automatically use a temporary disk work area to perform the sort.

• Impala supports a wide variety of JOIN clauses. Left, right, semi, full, and outer joins are supported in all Impala
versions. The CROSS JOIN operator is available in Impala 1.2.2 and higher. During performance tuning, you can
override the reordering of join clauses that Impala does internally by including the keyword STRAIGHT_JOIN
immediately after the SELECT and any DISTINCT or ALL keywords.

See Joins in Impala SELECT Statements on page 324 for details and examples of join queries.
• UNION ALL.
• LIMIT.
• External tables.
• Relational operators such as greater than, less than, or equal to.
• Arithmetic operators such as addition or subtraction.
• Logical/Boolean operators AND, OR, and NOT. Impala does not support the corresponding symbols &&, ||, and !.
• Common SQL built-in functions such as COUNT, SUM, CAST, LIKE, IN, BETWEEN, and COALESCE. Impala

specifically supports built-ins described in Impala Built-In Functions on page 418.
• In Impala 2.9 and higher, an optional TABLESAMPLE clause immediately after a table reference, to specify that

the query only processes a specified percentage of the table data. See TABLESAMPLE Clause on page 344 for
details.

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions .tmp or .copying are not considered part of the Impala table. The suffix matching is case-insensitive,
so for example Impala ignores both .copying and .COPYING suffixes.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See the documentation for your Apache Hadoop distribution for details.

Amazon S3 considerations:

In Impala 2.6 and higher, Impala queries are optimized for files stored in Amazon S3. For Impala tables that use
the file formats Parquet, RCFile, SequenceFile, Avro, and uncompressed text, the setting fs.s3a.block.size
in the core-site.xml configuration file determines how Impala divides the I/O work of reading the data files.
This configuration setting is specified in bytes. By default, this value is 33554432 (32 MB), meaning that Impala
parallelizes S3 read operations on the files as if they were made up of 32 MB blocks. For example, if your S3 queries
primarily access Parquet files written by MapReduce or Hive, increase fs.s3a.block.size to 134217728 (128
MB) to match the row group size of those files. If most S3 queries involve Parquet files written by Impala, increase
fs.s3a.block.size to 268435456 (256 MB) to match the row group size produced by Impala.

Cancellation: Can be cancelled. To cancel this statement, use Ctrl-C from the impala-shell interpreter, the
Cancel button from the Watch page in Hue, or Cancel from the list of in-flight queries (for a particular node) on the
Queries tab in the Impala web UI (port 25000).

 | Impala SQL Language Reference | 324

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permissions for
the files in all applicable directories in all source tables, and read and execute permissions for the relevant data
directories. (A SELECT operation could read files from multiple different HDFS directories if the source table is
partitioned.) If a query attempts to read a data file and is unable to because of an HDFS permission error, the query
halts and does not return any further results.

Related information:

The SELECT syntax is so extensive that it forms its own category of statements: queries. The other major
classifications of SQL statements are data definition language (see DDL Statements on page 223) and data
manipulation language (see DML Statements on page 224).

Because the focus of Impala is on fast queries with interactive response times over huge data sets, query performance
and scalability are important considerations. See Tuning Impala for Performance on page 626 and Scalability
Considerations for Impala on page 672 for details.

Joins in Impala SELECT Statements

A join query is a SELECT statement that combines data from two or more tables, and returns a result set containing
items from some or all of those tables. It is a way to cross-reference and correlate related data that is organized into
multiple tables, typically using identifiers that are repeated in each of the joined tables.

Syntax:

Impala supports a wide variety of JOIN clauses. Left, right, semi, full, and outer joins are supported in all Impala
versions. The CROSS JOIN operator is available in Impala 1.2.2 and higher. During performance tuning, you can
override the reordering of join clauses that Impala does internally by including the keyword STRAIGHT_JOIN
immediately after the SELECT and any DISTINCT or ALL keywords.

SELECT select_list FROM
 table_or_subquery1 [INNER] JOIN table_or_subquery2 |
 table_or_subquery1 {LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]}
 JOIN table_or_subquery2 |
 table_or_subquery1 {LEFT | RIGHT} SEMI JOIN table_or_subquery2 |
 table_or_subquery1 {LEFT | RIGHT} ANTI JOIN table_or_subquery2 |
 [ON col1 = col2 [AND col3 = col4 ...] |
 USING (col1 [, col2 ...])]
 [other_join_clause ...]
[WHERE where_clauses]

SELECT select_list FROM
 table_or_subquery1, table_or_subquery2 [, table_or_subquery3 ...]
 [other_join_clause ...]
WHERE
 col1 = col2 [AND col3 = col4 ...]

SELECT select_list FROM
 table_or_subquery1 CROSS JOIN table_or_subquery2
 [other_join_clause ...]
[WHERE where_clauses]

SQL-92 and SQL-89 Joins:

Queries with the explicit JOIN keywords are known as SQL-92 style joins, referring to the level of the SQL standard
where they were introduced. The corresponding ON or USING clauses clearly show which columns are used as the
join keys in each case:

SELECT t1.c1, t2.c2 FROM t1 JOIN t2
 ON t1.id = t2.id and t1.type_flag = t2.type_flag
 WHERE t1.c1 > 100;

 | Impala SQL Language Reference | 325

SELECT t1.c1, t2.c2 FROM t1 JOIN t2
 USING (id, type_flag)
 WHERE t1.c1 > 100;

The ON clause is a general way to compare columns across the two tables, even if the column names are different.
The USING clause is a shorthand notation for specifying the join columns, when the column names are the same in
both tables. You can code equivalent WHERE clauses that compare the columns, instead of ON or USING clauses, but
that practice is not recommended because mixing the join comparisons with other filtering clauses is typically less
readable and harder to maintain.

Queries with a comma-separated list of tables and subqueries are known as SQL-89 style joins. In these queries,
the equality comparisons between columns of the joined tables go in the WHERE clause alongside other kinds of
comparisons. This syntax is easy to learn, but it is also easy to accidentally remove a WHERE clause needed for the
join to work correctly.

SELECT t1.c1, t2.c2 FROM t1, t2
 WHERE
 t1.id = t2.id AND t1.type_flag = t2.type_flag
 AND t1.c1 > 100;

Self-joins:

Impala can do self-joins, for example to join on two different columns in the same table to represent parent-child
relationships or other tree-structured data. There is no explicit syntax for this; just use the same table name for both
the left-hand and right-hand table, and assign different table aliases to use when referring to the fully qualified column
names:

-- Combine fields from both parent and child rows.
SELECT lhs.id, rhs.parent, lhs.c1, rhs.c2 FROM tree_data lhs, tree_data rhs
 WHERE lhs.id = rhs.parent;

Cartesian joins:

To avoid producing huge result sets by mistake, Impala does not allow Cartesian joins of the form:

SELECT ... FROM t1 JOIN t2;
SELECT ... FROM t1, t2;

If you intend to join the tables based on common values, add ON or WHERE clauses to compare columns across the
tables. If you truly intend to do a Cartesian join, use the CROSS JOIN keyword as the join operator. The CROSS
JOIN form does not use any ON clause, because it produces a result set with all combinations of rows from the left-
hand and right-hand tables. The result set can still be filtered by subsequent WHERE clauses. For example:

SELECT ... FROM t1 CROSS JOIN t2;
SELECT ... FROM t1 CROSS JOIN t2 WHERE tests_on_non_join_columns;

Inner and outer joins:

An inner join is the most common and familiar type: rows in the result set contain the requested columns from the
appropriate tables, for all combinations of rows where the join columns of the tables have identical values. If a
column with the same name occurs in both tables, use a fully qualified name or a column alias to refer to the column
in the select list or other clauses. Impala performs inner joins by default for both SQL-89 and SQL-92 join syntax:

-- The following 3 forms are all equivalent.
SELECT t1.id, c1, c2 FROM t1, t2 WHERE t1.id = t2.id;
SELECT t1.id, c1, c2 FROM t1 JOIN t2 ON t1.id = t2.id;
SELECT t1.id, c1, c2 FROM t1 INNER JOIN t2 ON t1.id = t2.id;

 | Impala SQL Language Reference | 326

An outer join retrieves all rows from the left-hand table, or the right-hand table, or both; wherever there is no
matching data in the table on the other side of the join, the corresponding columns in the result set are set to NULL. To
perform an outer join, include the OUTER keyword in the join operator, along with either LEFT, RIGHT, or FULL:

SELECT * FROM t1 LEFT OUTER JOIN t2 ON t1.id = t2.id;
SELECT * FROM t1 RIGHT OUTER JOIN t2 ON t1.id = t2.id;
SELECT * FROM t1 FULL OUTER JOIN t2 ON t1.id = t2.id;

For outer joins, Impala requires SQL-92 syntax; that is, the JOIN keyword instead of comma-separated table names.
Impala does not support vendor extensions such as (+) or *= notation for doing outer joins with SQL-89 query
syntax.

Equijoins and Non-Equijoins:

By default, Impala requires an equality comparison between the left-hand and right-hand tables, either through ON,
USING, or WHERE clauses. These types of queries are classified broadly as equijoins. Inner, outer, full, and semi joins
can all be equijoins based on the presence of equality tests between columns in the left-hand and right-hand tables.

In Impala 1.2.2 and higher, non-equijoin queries are also possible, with comparisons such as != or < between the join
columns. These kinds of queries require care to avoid producing huge result sets that could exceed resource limits.
Once you have planned a non-equijoin query that produces a result set of acceptable size, you can code the query
using the CROSS JOIN operator, and add the extra comparisons in the WHERE clause:

SELECT * FROM t1 CROSS JOIN t2 WHERE t1.total > t2.maximum_price;

In Impala 2.3 and higher, additional non-equijoin queries are possible due to the addition of nested loop joins. These
queries typically involve SEMI JOIN, ANTI JOIN, or FULL OUTER JOIN clauses. Impala sometimes also uses
nested loop joins internally when evaluating OUTER JOIN queries involving complex type columns. Query phases
involving nested loop joins do not use the spill-to-disk mechanism if they exceed the memory limit. Impala decides
internally when to use each join mechanism; you cannot specify any query hint to choose between the nested loop
join or the original hash join algorithm.

SELECT * FROM t1 LEFT OUTER JOIN t2 ON t1.int_col < t2.int_col;

Semi-joins:

Semi-joins are a relatively rarely used variation. With the left semi-join, only data from the left-hand table is returned,
for rows where there is matching data in the right-hand table, based on comparisons between join columns in ON or
WHERE clauses. Only one instance of each row from the left-hand table is returned, regardless of how many matching
rows exist in the right-hand table. A right semi-join (available in Impala 2.0 and higher) reverses the comparison and
returns data from the right-hand table.

SELECT t1.c1, t1.c2, t1.c2 FROM t1 LEFT SEMI JOIN t2 ON t1.id = t2.id;

Natural joins (not supported):

Impala does not support the NATURAL JOIN operator, again to avoid inconsistent or huge result sets. Natural joins
do away with the ON and USING clauses, and instead automatically join on all columns with the same names in the
left-hand and right-hand tables. This kind of query is not recommended for rapidly evolving data structures such
as are typically used in Hadoop. Thus, Impala does not support the NATURAL JOIN syntax, which can produce
different query results as columns are added to or removed from tables.

If you do have any queries that use NATURAL JOIN, make sure to rewrite them with explicit USING clauses,
because Impala could interpret the NATURAL keyword as a table alias:

-- 'NATURAL' is interpreted as an alias for 't1' and Impala attempts an
 inner join,
-- resulting in an error because inner joins require explicit comparisons
 between columns.
SELECT t1.c1, t2.c2 FROM t1 NATURAL JOIN t2;

 | Impala SQL Language Reference | 327

ERROR: NotImplementedException: Join with 't2' requires at least one
 conjunctive equality predicate.
 To perform a Cartesian product between two tables, use a CROSS JOIN.

-- If you expect the tables to have identically named columns with matching
 values,
-- list the corresponding column names in a USING clause.
SELECT t1.c1, t2.c2 FROM t1 JOIN t2 USING (id, type_flag, name, address);

Anti-joins (Impala 2.0 and higher only):

Impala supports the LEFT ANTI JOIN and RIGHT ANTI JOIN clauses in Impala 2.0 and higher. The LEFT or
RIGHT keyword is required for this kind of join. For LEFT ANTI JOIN, this clause returns those values from the
left-hand table that have no matching value in the right-hand table. RIGHT ANTI JOIN reverses the comparison
and returns values from the right-hand table. You can express this negative relationship either through the ANTI
JOIN clause or through a NOT EXISTS operator with a subquery.

Complex type considerations:

When referring to a column with a complex type (STRUCT, ARRAY, or MAP) in a query, you use join notation
to “unpack” the scalar fields of the struct, the elements of the array, or the key-value pairs of the map. (The join
notation is not required for aggregation operations, such as COUNT() or SUM() for array elements.) Because Impala
recognizes which complex type elements are associated with which row of the result set, you use the same syntax as
for a cross or cartesian join, without an explicit join condition. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about Impala support for complex types.

Usage notes:

You typically use join queries in situations like these:

• When related data arrives from different sources, with each data set physically residing in a separate table. For
example, you might have address data from business records that you cross-check against phone listings or census
data.

Note: Impala can join tables of different file formats, including Impala-managed tables and HBase tables. For
example, you might keep small dimension tables in HBase, for convenience of single-row lookups and updates,
and for the larger fact tables use Parquet or other binary file format optimized for scan operations. Then, you can
issue a join query to cross-reference the fact tables with the dimension tables.

• When data is normalized, a technique for reducing data duplication by dividing it across multiple tables. This kind
of organization is often found in data that comes from traditional relational database systems. For example, instead
of repeating some long string such as a customer name in multiple tables, each table might contain a numeric
customer ID. Queries that need to display the customer name could “join” the table that specifies which customer
ID corresponds to which name.

• When certain columns are rarely needed for queries, so they are moved into separate tables to reduce overhead for
common queries. For example, a biography field might be rarely needed in queries on employee data. Putting
that field in a separate table reduces the amount of I/O for common queries on employee addresses or phone
numbers. Queries that do need the biography column can retrieve it by performing a join with that separate
table.

• In Impala 2.3 or higher, when referring to complex type columns in queries. See Complex Types (Impala 2.3 or
higher only) on page 152 for details.

When comparing columns with the same names in ON or WHERE clauses, use the fully qualified names such as
db_name.table_name, or assign table aliases, column aliases, or both to make the code more compact and
understandable:

select t1.c1 as first_id, t2.c2 as second_id from
 t1 join t2 on first_id = second_id;

select fact.custno, dimension.custno from
 customer_data as fact join customer_address as dimension
 using (custno)

 | Impala SQL Language Reference | 328

Note:

Performance for join queries is a crucial aspect for Impala, because complex join queries are resource-intensive
operations. An efficient join query produces much less network traffic and CPU overhead than an inefficient one. For
best results:

• Make sure that both table and column statistics are available for all the tables involved in a join query, and
especially for the columns referenced in any join conditions. Impala uses the statistics to automatically deduce an
efficient join order. Use SHOW TABLE STATS table_name and SHOW COLUMN STATS table_name
to check if statistics are already present. Issue the COMPUTE STATS table_name for a nonpartitioned table,
or (in Impala 2.1.0 and higher) COMPUTE INCREMENTAL STATS table_name for a partitioned table,
to collect the initial statistics at both the table and column levels, and to keep the statistics up to date after any
substantial INSERT or LOAD DATA operations.

• If table or column statistics are not available, join the largest table first. You can check the existence of statistics
with the SHOW TABLE STATS table_name and SHOW COLUMN STATS table_name statements.

• If table or column statistics are not available, join subsequent tables according to which table has the most
selective filter, based on overall size and WHERE clauses. Joining the table with the most selective filter results in
the fewest number of rows being returned.

For more information and examples of performance for join queries, see Performance Considerations for Join
Queries on page 629.

To control the result set from a join query, include the names of corresponding column names in both tables in an ON
or USING clause, or by coding equality comparisons for those columns in the WHERE clause.

[localhost:21000] > select c_last_name, ca_city from customer join
 customer_address where c_customer_sk = ca_address_sk;
+-------------+-----------------+
| c_last_name | ca_city |
+-------------+-----------------+
Lewis	Fairfield
Moses	Fairview
Hamilton	Pleasant Valley
White	Oak Ridge
Moran	Glendale
...	
Richards	Lakewood
Day	Lebanon
Painter	Oak Hill
Bentley	Greenfield
Jones	Stringtown
+-------------+------------------+
Returned 50000 row(s) in 9.82s

One potential downside of joins is the possibility of excess resource usage in poorly constructed queries. Impala
imposes restrictions on join queries to guard against such issues. To minimize the chance of runaway queries on
large data sets, Impala requires every join query to contain at least one equality predicate between the columns of the
various tables. For example, if T1 contains 1000 rows and T2 contains 1,000,000 rows, a query SELECT columns
FROM t1 JOIN t2 could return up to 1 billion rows (1000 * 1,000,000); Impala requires that the query include a
clause such as ON t1.c1 = t2.c2 or WHERE t1.c1 = t2.c2.

Because even with equality clauses, the result set can still be large, as we saw in the previous example, you might use
a LIMIT clause to return a subset of the results:

[localhost:21000] > select c_last_name, ca_city from customer,
 customer_address where c_customer_sk = ca_address_sk limit 10;
+-------------+-----------------+
| c_last_name | ca_city |
+-------------+-----------------+
| Lewis | Fairfield |
| Moses | Fairview |

 | Impala SQL Language Reference | 329

Hamilton	Pleasant Valley
White	Oak Ridge
Moran	Glendale
Sharp	Lakeview
Wiles	Farmington
Shipman	Union
Gilbert	New Hope
Brunson	Martinsville
+-------------+-----------------+
Returned 10 row(s) in 0.63s

Or you might use additional comparison operators or aggregation functions to condense a large result set into a
smaller set of values:

[localhost:21000] > -- Find the names of customers who live in one
 particular town.
[localhost:21000] > select distinct c_last_name from customer,
 customer_address where
 c_customer_sk = ca_address_sk
 and ca_city = "Green Acres";
+---------------+
| c_last_name |
+---------------+
| Hensley |
| Pearson |
| Mayer |
| Montgomery |
| Ricks |
...
| Barrett |
| Price |
| Hill |
| Hansen |
| Meeks |
+---------------+
Returned 332 row(s) in 0.97s

[localhost:21000] > -- See how many different customers in this town have
 names starting with "A".
[localhost:21000] > select count(distinct c_last_name) from customer,
 customer_address where
 c_customer_sk = ca_address_sk
 and ca_city = "Green Acres"
 and substr(c_last_name,1,1) = "A";
+-----------------------------+
| count(distinct c_last_name) |
+-----------------------------+
| 12 |
+-----------------------------+
Returned 1 row(s) in 1.00s

Because a join query can involve reading large amounts of data from disk, sending large amounts of data across
the network, and loading large amounts of data into memory to do the comparisons and filtering, you might do
benchmarking, performance analysis, and query tuning to find the most efficient join queries for your data set,
hardware capacity, network configuration, and cluster workload.

The two categories of joins in Impala are known as partitioned joins and broadcast joins. If inaccurate table
or column statistics, or some quirk of the data distribution, causes Impala to choose the wrong mechanism for
a particular join, consider using query hints as a temporary workaround. For details, see Query Hints in Impala
SELECT Statements on page 352.

Handling NULLs in Join Columns:

 | Impala SQL Language Reference | 330

By default, join key columns do not match if either one contains a NULL value. To treat such columns as equal if
both contain NULL, you can use an expression such as A = B OR (A IS NULL AND B IS NULL). In Impala
2.5 and higher, the <=> operator (shorthand for IS NOT DISTINCT FROM) performs the same comparison in a
concise and efficient form. The <=> operator is more efficient in for comparing join keys in a NULL-safe manner,
because the operator can use a hash join while the OR expression cannot.

Examples:

The following examples refer to these simple tables containing small sets of integers:

[localhost:21000] > create table t1 (x int);
[localhost:21000] > insert into t1 values (1), (2), (3), (4), (5), (6);

[localhost:21000] > create table t2 (y int);
[localhost:21000] > insert into t2 values (2), (4), (6);

[localhost:21000] > create table t3 (z int);
[localhost:21000] > insert into t3 values (1), (3), (5);

The following example demonstrates an anti-join, returning the values from T1 that do not exist in T2 (in this case,
the odd numbers 1, 3, and 5):

[localhost:21000] > select x from t1 left anti join t2 on (t1.x = t2.y);
+---+
| x |
+---+
| 1 |
| 3 |
| 5 |
+---+

Related information:

See these tutorials for examples of different kinds of joins:

• Cross Joins and Cartesian Products with the CROSS JOIN Operator on page 50

ORDER BY Clause

The familiar ORDER BY clause of a SELECT statement sorts the result set based on the values from one or more
columns.

For distributed queries, this is a relatively expensive operation, because the entire result set must be produced and
transferred to one node before the sorting can happen. This can require more memory capacity than a query without
ORDER BY. Even if the query takes approximately the same time to finish with or without the ORDER BY clause,
subjectively it can appear slower because no results are available until all processing is finished, rather than results
coming back gradually as rows matching the WHERE clause are found. Therefore, if you only need the first N
results from the sorted result set, also include the LIMIT clause, which reduces network overhead and the memory
requirement on the coordinator node.

Note:

In Impala 1.4.0 and higher, the LIMIT clause is now optional (rather than required) for queries that use the ORDER
BY clause. Impala automatically uses a temporary disk work area to perform the sort if the sort operation would
otherwise exceed the Impala memory limit for a particular DataNode.

Syntax:

The full syntax for the ORDER BY clause is:

ORDER BY col_ref [, col_ref ...] [ASC | DESC] [NULLS FIRST | NULLS LAST]

col_ref ::= column_name | integer_literal

 | Impala SQL Language Reference | 331

Although the most common usage is ORDER BY column_name, you can also specify ORDER BY 1 to sort by the
first column of the result set, ORDER BY 2 to sort by the second column, and so on. The number must be a numeric
literal, not some other kind of constant expression. (If the argument is some other expression, even a STRING value,
the query succeeds but the order of results is undefined.)

ORDER BY column_number can only be used when the query explicitly lists the columns in the SELECT list, not
with SELECT * queries.

Ascending and descending sorts:

The default sort order (the same as using the ASC keyword) puts the smallest values at the start of the result set, and
the largest values at the end. Specifying the DESC keyword reverses that order.

Sort order for NULL values:

See NULL on page 186 for details about how NULL values are positioned in the sorted result set, and how to use
the NULLS FIRST and NULLS LAST clauses. (The sort position for NULL values in ORDER BY ... DESC
queries is changed in Impala 1.2.1 and higher to be more standards-compliant, and the NULLS FIRST and NULLS
LAST keywords are new in Impala 1.2.1.)

Prior to Impala 1.4.0, Impala required any query including an ORDER BY clause to also use a LIMIT clause. In
Impala 1.4.0 and higher, the LIMIT clause is optional for ORDER BY queries. In cases where sorting a huge result
set requires enough memory to exceed the Impala memory limit for a particular node, Impala automatically uses a
temporary disk work area to perform the sort operation.

Complex type considerations:

In Impala 2.3 and higher, the complex data types STRUCT, ARRAY, and MAP are available. These columns cannot
be referenced directly in the ORDER BY clause. When you query a complex type column, you use join notation
to “unpack” the elements of the complex type, and within the join query you can include an ORDER BY clause to
control the order in the result set of the scalar elements from the complex type. See Complex Types (Impala 2.3 or
higher only) on page 152 for details about Impala support for complex types.

The following query shows how a complex type column cannot be directly used in an ORDER BY clause:

CREATE TABLE games (id BIGINT, score ARRAY <BIGINT>) STORED AS PARQUET;
...use LOAD DATA to load externally created Parquet files into the table...
SELECT id FROM games ORDER BY score DESC;
ERROR: AnalysisException: ORDER BY expression 'score' with complex type
 'ARRAY<BIGINT>' is not supported.

Examples:

The following query retrieves the user ID and score, only for scores greater than one million, with the highest scores
for each user listed first. Because the individual array elements are now represented as separate rows in the result
set, they can be used in the ORDER BY clause, referenced using the ITEM pseudocolumn that represents each array
element.

SELECT id, item FROM games, games.score
 WHERE item > 1000000
ORDER BY id, item desc;

The following queries use similar ORDER BY techniques with variations of the GAMES table, where the complex type
is an ARRAY containing STRUCT or MAP elements to represent additional details about each game that was played.
For an array of structures, the fields of the structure are referenced as ITEM.field_name. For an array of maps,
the keys and values within each array element are referenced as ITEM.KEY and ITEM.VALUE.

CREATE TABLE games2 (id BIGINT, play array < struct <game_name: string,
 score: BIGINT, high_score: boolean> >) STORED AS PARQUET
...use LOAD DATA to load externally created Parquet files into the table...
SELECT id, item.game_name, item.score FROM games2, games2.play
 WHERE item.score > 1000000
ORDER BY id, item.score DESC;

 | Impala SQL Language Reference | 332

CREATE TABLE games3 (id BIGINT, play ARRAY < MAP <STRING, BIGINT> >) STORED
 AS PARQUET;
...use LOAD DATA to load externally created Parquet files into the table...
SELECT id, info.key AS k, info.value AS v from games3, games3.play AS plays,
 games3.play.item AS info
 WHERE info.KEY = 'score' AND info.VALUE > 1000000
ORDER BY id, info.value desc;

Usage notes:

Although the LIMIT clause is now optional on ORDER BY queries, if your query only needs some number of rows
that you can predict in advance, use the LIMIT clause to reduce unnecessary processing. For example, if the query
has a clause LIMIT 10, each data node sorts its portion of the relevant result set and only returns 10 rows to the
coordinator node. The coordinator node picks the 10 highest or lowest row values out of this small intermediate result
set.

If an ORDER BY clause is applied to an early phase of query processing, such as a subquery or a view definition,
Impala ignores the ORDER BY clause. To get ordered results from a subquery or view, apply an ORDER BY clause to
the outermost or final SELECT level.

ORDER BY is often used in combination with LIMIT to perform “top-N” queries:

SELECT user_id AS "Top 10 Visitors", SUM(page_views) FROM web_stats
 GROUP BY page_views, user_id
 ORDER BY SUM(page_views) DESC LIMIT 10;

ORDER BY is sometimes used in combination with OFFSET and LIMIT to paginate query results, although it is
relatively inefficient to issue multiple queries like this against the large tables typically used with Impala:

SELECT page_title AS "Page 1 of search results", page_url FROM
 search_content
 WHERE LOWER(page_title) LIKE '%game%')
 ORDER BY page_title LIMIT 10 OFFSET 0;
SELECT page_title AS "Page 2 of search results", page_url FROM
 search_content
 WHERE LOWER(page_title) LIKE '%game%')
 ORDER BY page_title LIMIT 10 OFFSET 10;
SELECT page_title AS "Page 3 of search results", page_url FROM
 search_content
 WHERE LOWER(page_title) LIKE '%game%')
 ORDER BY page_title LIMIT 10 OFFSET 20;

Internal details:

Impala sorts the intermediate results of an ORDER BY clause in memory whenever practical. In a cluster of N
DataNodes, each node sorts roughly 1/Nth of the result set, the exact proportion varying depending on how the data
matching the query is distributed in HDFS.

If the size of the sorted intermediate result set on any DataNode would cause the query to exceed the Impala memory
limit, Impala sorts as much as practical in memory, then writes partially sorted data to disk. (This technique is known
in industry terminology as “external sorting” and “spilling to disk”.) As each 8 MB batch of data is written to disk,
Impala frees the corresponding memory to sort a new 8 MB batch of data. When all the data has been processed,
a final merge sort operation is performed to correctly order the in-memory and on-disk results as the result set is
transmitted back to the coordinator node. When external sorting becomes necessary, Impala requires approximately
60 MB of RAM at a minimum for the buffers needed to read, write, and sort the intermediate results. If more RAM is
available on the DataNode, Impala will use the additional RAM to minimize the amount of disk I/O for sorting.

This external sort technique is used as appropriate on each DataNode (possibly including the coordinator node) to sort
the portion of the result set that is processed on that node. When the sorted intermediate results are sent back to the
coordinator node to produce the final result set, the coordinator node uses a merge sort technique to produce a final
sorted result set without using any extra resources on the coordinator node.

 | Impala SQL Language Reference | 333

Configuration for disk usage:

By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored
in the directory /tmp/impala-scratch . These files are removed when the operation finishes. (Multiple
concurrent queries can perform operations that use the “spill to disk” technique, without any name conflicts
for these temporary files.) You can specify a different location by starting the impalad daemon with the --
scratch_dirs="path_to_directory" configuration option. You can specify a single directory, or a
comma-separated list of directories. The scratch directories must be on the local filesystem, not in HDFS. You might
specify different directory paths for different hosts, depending on the capacity and speed of the available storage
devices. In Impala 2.3 or higher, Impala successfully starts (with a warning Impala successfully starts (with a warning
written to the log) if it cannot create or read and write files in one of the scratch directories. If there is less than 1 GB
free on the filesystem where that directory resides, Impala still runs, but writes a warning message to its log. If Impala
encounters an error reading or writing files in a scratch directory during a query, Impala logs the error and the query
fails.

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement,
any ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation
potentially creates many different data files, prepared on different data nodes, and therefore the notion of the data
being stored in sorted order is impractical.

An ORDER BY clause without an additional LIMIT clause is ignored in any view definition. If you need to sort the
entire result set from a view, use an ORDER BY clause in the SELECT statement that queries the view. You can still
make a simple “top 10” report by combining the ORDER BY and LIMIT clauses in the same view definition:

[localhost:21000] > create table unsorted (x bigint);
[localhost:21000] > insert into unsorted values (1), (9), (3), (7), (5),
 (8), (4), (6), (2);
[localhost:21000] > create view sorted_view as select x from unsorted order
 by x;
[localhost:21000] > select x from sorted_view; -- ORDER BY clause in view
 has no effect.
+---+
| x |
+---+
| 1 |
| 9 |
| 3 |
| 7 |
| 5 |
| 8 |
| 4 |
| 6 |
| 2 |
+---+
[localhost:21000] > select x from sorted_view order by x; -- View query
 requires ORDER BY at outermost level.
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
+---+
[localhost:21000] > create view top_3_view as select x from unsorted order
 by x limit 3;

 | Impala SQL Language Reference | 334

[localhost:21000] > select x from top_3_view; -- ORDER BY and LIMIT together
 in view definition are preserved.
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
+---+

With the lifting of the requirement to include a LIMIT clause in every ORDER BY query (in Impala 1.4 and higher):

• Now the use of scratch disk space raises the possibility of an “out of disk space” error on a particular DataNode,
as opposed to the previous possibility of an “out of memory” error. Make sure to keep at least 1 GB free on the
filesystem used for temporary sorting work.

• The query options DEFAULT_ORDER_BY_LIMIT and ABORT_ON_DEFAULT_LIMIT_EXCEEDED, which
formerly controlled the behavior of ORDER BY queries with no limit specified, are now ignored.

In Impala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries,
and at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater
than all other values for sorting purposes. The original Impala behavior always put NULL values at the end, even
for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other
popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL by
adding the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.

[localhost:21000] > create table numbers (x int);
[localhost:21000] > insert into numbers values (1), (null), (2), (null),
 (3);
[localhost:21000] > select x from numbers order by x nulls first;
+------+
| x |
+------+
| NULL |
| NULL |
| 1 |
| 2 |
| 3 |
+------+
[localhost:21000] > select x from numbers order by x desc nulls first;
+------+
| x |
+------+
| NULL |
| NULL |
| 3 |
| 2 |
| 1 |
+------+
[localhost:21000] > select x from numbers order by x nulls last;
+------+
| x |
+------+
| 1 |
| 2 |
| 3 |
| NULL |
| NULL |
+------+
[localhost:21000] > select x from numbers order by x desc nulls last;
+------+
| x |
+------+

 | Impala SQL Language Reference | 335

| 3 |
| 2 |
| 1 |
| NULL |
| NULL |
+------+

Related information:

See SELECT Statement on page 322 for further examples of queries with the ORDER BY clause.

Analytic functions use the ORDER BY clause in a different context to define the sequence in which rows are
analyzed. See Impala Analytic Functions on page 568 for details.

GROUP BY Clause

Specify the GROUP BY clause in queries that use aggregation functions, such as COUNT(), SUM(), AVG(), MIN(),
and MAX(). Specify in the GROUP BY clause the names of all the columns that do not participate in the aggregation
operation.

Complex type considerations:

In Impala 2.3 and higher, the complex data types STRUCT, ARRAY, and MAP are available. These columns cannot
be referenced directly in the ORDER BY clause. When you query a complex type column, you use join notation
to “unpack” the elements of the complex type, and within the join query you can include an ORDER BY clause to
control the order in the result set of the scalar elements from the complex type. See Complex Types (Impala 2.3 or
higher only) on page 152 for details about Impala support for complex types.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length
strings (""), NULL, and space to all be different values.

Examples:

For example, the following query finds the 5 items that sold the highest total quantity (using the SUM() function,
and also counts the number of sales transactions for those items (using the COUNT() function). Because the column
representing the item IDs is not used in any aggregation functions, we specify that column in the GROUP BY clause.

select
 ss_item_sk as Item,
 count(ss_item_sk) as Times_Purchased,
 sum(ss_quantity) as Total_Quantity_Purchased
from store_sales
 group by ss_item_sk
 order by sum(ss_quantity) desc
 limit 5;
+-------+-----------------+--------------------------+
| item | times_purchased | total_quantity_purchased |
+-------+-----------------+--------------------------+
9325	372	19072
4279	357	18501
7507	371	18475
5953	369	18451
16753	375	18446
+-------+-----------------+--------------------------+

The HAVING clause lets you filter the results of aggregate functions, because you cannot refer to those expressions in
the WHERE clause. For example, to find the 5 lowest-selling items that were included in at least 100 sales transactions,
we could use this query:

select
 ss_item_sk as Item,
 count(ss_item_sk) as Times_Purchased,
 sum(ss_quantity) as Total_Quantity_Purchased

 | Impala SQL Language Reference | 336

from store_sales
 group by ss_item_sk
 having times_purchased >= 100
 order by sum(ss_quantity)
 limit 5;
+-------+-----------------+--------------------------+
| item | times_purchased | total_quantity_purchased |
+-------+-----------------+--------------------------+
13943	105	4087
2992	101	4176
4773	107	4204
14350	103	4260
11956	102	4275
+-------+-----------------+--------------------------+

When performing calculations involving scientific or financial data, remember that columns with type FLOAT or
DOUBLE are stored as true floating-point numbers, which cannot precisely represent every possible fractional value.
Thus, if you include a FLOAT or DOUBLE column in a GROUP BY clause, the results might not precisely match
literal values in your query or from an original Text data file. Use rounding operations, the BETWEEN operator, or
another arithmetic technique to match floating-point values that are “near” literal values you expect. For example,
this query on the ss_wholesale_cost column returns cost values that are close but not identical to the original
figures that were entered as decimal fractions.

select ss_wholesale_cost, avg(ss_quantity * ss_sales_price) as
 avg_revenue_per_sale
 from sales
 group by ss_wholesale_cost
 order by avg_revenue_per_sale desc
 limit 5;
+-------------------+----------------------+
| ss_wholesale_cost | avg_revenue_per_sale |
+-------------------+----------------------+
96.94000244140625	4454.351539300434
95.93000030517578	4423.119941283189
98.37999725341797	4332.516490316291
97.97000122070312	4330.480601655014
98.52999877929688	4291.316953108634
+-------------------+----------------------+

Notice how wholesale cost values originally entered as decimal fractions such as 96.94 and 98.38 are slightly
larger or smaller in the result set, due to precision limitations in the hardware floating-point types. The imprecise
representation of FLOAT and DOUBLE values is why financial data processing systems often store currency using
data types that are less space-efficient but avoid these types of rounding errors.

Related information:

SELECT Statement on page 322, Impala Aggregate Functions on page 537

HAVING Clause

Performs a filter operation on a SELECT query, by examining the results of aggregation functions rather than testing
each individual table row. Therefore, it is always used in conjunction with a function such as COUNT(), SUM(),
AVG(), MIN(), or MAX(), and typically with the GROUP BY clause also.

Restrictions:

The filter expression in the HAVING clause cannot include a scalar subquery.

Related information:

SELECT Statement on page 322, GROUP BY Clause on page 335, Impala Aggregate Functions on page 537

 | Impala SQL Language Reference | 337

LIMIT Clause

The LIMIT clause in a SELECT query sets a maximum number of rows for the result set. Pre-selecting the maximum
size of the result set helps Impala to optimize memory usage while processing a distributed query.

Syntax:

LIMIT constant_integer_expression

The argument to the LIMIT clause must evaluate to a constant value. It can be a numeric literal, or another kind
of numeric expression involving operators, casts, and function return values. You cannot refer to a column or use a
subquery.

Usage notes:

This clause is useful in contexts such as:

• To return exactly N items from a top-N query, such as the 10 highest-rated items in a shopping category or the 50
hostnames that refer the most traffic to a web site.

• To demonstrate some sample values from a table or a particular query. (To display some arbitrary items, use a
query with no ORDER BY clause. An ORDER BY clause causes additional memory and/or disk usage during the
query.)

• To keep queries from returning huge result sets by accident if a table is larger than expected, or a WHERE clause
matches more rows than expected.

Originally, the value for the LIMIT clause had to be a numeric literal. In Impala 1.2.1 and higher, it can be a numeric
expression.

Prior to Impala 1.4.0, Impala required any query including an ORDER BY clause to also use a LIMIT clause. In
Impala 1.4.0 and higher, the LIMIT clause is optional for ORDER BY queries. In cases where sorting a huge result
set requires enough memory to exceed the Impala memory limit for a particular node, Impala automatically uses a
temporary disk work area to perform the sort operation.

See ORDER BY Clause on page 330 for details.

In Impala 1.2.1 and higher, you can combine a LIMIT clause with an OFFSET clause to produce a small result
set that is different from a top-N query, for example, to return items 11 through 20. This technique can be used to
simulate “paged” results. Because Impala queries typically involve substantial amounts of I/O, use this technique
only for compatibility in cases where you cannot rewrite the application logic. For best performance and scalability,
wherever practical, query as many items as you expect to need, cache them on the application side, and display small
groups of results to users using application logic.

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Examples:

The following example shows how the LIMIT clause caps the size of the result set, with the limit being applied after
any other clauses such as WHERE.

[localhost:21000] > create database limits;
[localhost:21000] > use limits;
[localhost:21000] > create table numbers (x int);
[localhost:21000] > insert into numbers values (1), (3), (4), (5), (2);
Inserted 5 rows in 1.34s
[localhost:21000] > select x from numbers limit 100;
+---+
| x |
+---+
| 1 |
| 3 |
| 4 |
| 5 |

 | Impala SQL Language Reference | 338

| 2 |
+---+
Returned 5 row(s) in 0.26s
[localhost:21000] > select x from numbers limit 3;
+---+
| x |
+---+
| 1 |
| 3 |
| 4 |
+---+
Returned 3 row(s) in 0.27s
[localhost:21000] > select x from numbers where x > 2 limit 2;
+---+
| x |
+---+
| 3 |
| 4 |
+---+
Returned 2 row(s) in 0.27s

For top-N and bottom-N queries, you use the ORDER BY and LIMIT clauses together:

[localhost:21000] > select x as "Top 3" from numbers order by x desc limit
 3;
+-------+
| top 3 |
+-------+
| 5 |
| 4 |
| 3 |
+-------+
[localhost:21000] > select x as "Bottom 3" from numbers order by x limit 3;
+----------+
| bottom 3 |
+----------+
| 1 |
| 2 |
| 3 |
+----------+

You can use constant values besides integer literals as the LIMIT argument:

-- Other expressions that yield constant integer values work too.
SELECT x FROM t1 LIMIT 1e6; -- Limit is one million.
SELECT x FROM t1 LIMIT length('hello world'); -- Limit is 11.
SELECT x FROM t1 LIMIT 2+2; -- Limit is 4.
SELECT x FROM t1 LIMIT cast(truncate(9.9) AS INT); -- Limit is 9.

OFFSET Clause

The OFFSET clause in a SELECT query causes the result set to start some number of rows after the logical first item.
The result set is numbered starting from zero, so OFFSET 0 produces the same result as leaving out the OFFSET
clause. Always use this clause in combination with ORDER BY (so that it is clear which item should be first, second,
and so on) and LIMIT (so that the result set covers a bounded range, such as items 0-9, 100-199, and so on).

In Impala 1.2.1 and higher, you can combine a LIMIT clause with an OFFSET clause to produce a small result
set that is different from a top-N query, for example, to return items 11 through 20. This technique can be used to
simulate “paged” results. Because Impala queries typically involve substantial amounts of I/O, use this technique
only for compatibility in cases where you cannot rewrite the application logic. For best performance and scalability,
wherever practical, query as many items as you expect to need, cache them on the application side, and display small
groups of results to users using application logic.

 | Impala SQL Language Reference | 339

Examples:

The following example shows how you could run a “paging” query originally written for a traditional database
application. Because typical Impala queries process megabytes or gigabytes of data and read large data files from
disk each time, it is inefficient to run a separate query to retrieve each small group of items. Use this technique only
for compatibility while porting older applications, then rewrite the application code to use a single query with a large
result set, and display pages of results from the cached result set.

[localhost:21000] > create table numbers (x int);
[localhost:21000] > insert into numbers select x from very_long_sequence;
Inserted 1000000 rows in 1.34s
[localhost:21000] > select x from numbers order by x limit 5 offset 0;
+----+
| x |
+----+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
+----+
[localhost:21000] > select x from numbers order by x limit 5 offset 5;
+----+
| x |
+----+
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |
+----+

UNION Clause

The UNION clause lets you combine the result sets of multiple queries. By default, the result sets are combined as if
the DISTINCT operator was applied.

Syntax:

query_1 UNION [DISTINCT | ALL] query_2

Usage notes:

The UNION keyword by itself is the same as UNION DISTINCT. Because eliminating duplicates can be a memory-
intensive process for a large result set, prefer UNION ALL where practical. (That is, when you know the different
queries in the union will not produce any duplicates, or where the duplicate values are acceptable.)

When an ORDER BY clause applies to a UNION ALL or UNION query, in Impala 1.4 and higher, the LIMIT clause
is no longer required. To make the ORDER BY and LIMIT clauses apply to the entire result set, turn the UNION
query into a subquery, SELECT from the subquery, and put the ORDER BY clause at the end, outside the subquery.

Examples:

First, we set up some sample data, including duplicate 1 values.

[localhost:21000] > create table few_ints (x int);
[localhost:21000] > insert into few_ints values (1), (1), (2), (3);
[localhost:21000] > set default_order_by_limit=1000;

 | Impala SQL Language Reference | 340

This example shows how UNION ALL returns all rows from both queries, without any additional filtering to
eliminate duplicates. For the large result sets common with Impala queries, this is the most memory-efficient
technique.

[localhost:21000] > select x from few_ints order by x;
+---+
| x |
+---+
| 1 |
| 1 |
| 2 |
| 3 |
+---+
Returned 4 row(s) in 0.41s
[localhost:21000] > select x from few_ints union all select x from few_ints;
+---+
| x |
+---+
| 1 |
| 1 |
| 2 |
| 3 |
| 1 |
| 1 |
| 2 |
| 3 |
+---+
Returned 8 row(s) in 0.42s
[localhost:21000] > select * from (select x from few_ints union all select x
 from few_ints) as t1 order by x;
+---+
| x |
+---+
| 1 |
| 1 |
| 1 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
+---+
Returned 8 row(s) in 0.53s
[localhost:21000] > select x from few_ints union all select 10;
+----+
| x |
+----+
| 10 |
| 1 |
| 1 |
| 2 |
| 3 |
+----+
Returned 5 row(s) in 0.38s

This example shows how the UNION clause without the ALL keyword condenses the result set to eliminate all
duplicate values, making the query take more time and potentially more memory. The extra processing typically
makes this technique not recommended for queries that return result sets with millions or billions of values.

[localhost:21000] > select x from few_ints union select x+1 from few_ints;
+---+
| x |

 | Impala SQL Language Reference | 341

+---+
| 3 |
| 4 |
| 1 |
| 2 |
+---+
Returned 4 row(s) in 0.51s
[localhost:21000] > select x from few_ints union select 10;
+----+
| x |
+----+
| 2 |
| 10 |
| 1 |
| 3 |
+----+
Returned 4 row(s) in 0.49s
[localhost:21000] > select * from (select x from few_ints union select x
 from few_ints) as t1 order by x;
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
+---+
Returned 3 row(s) in 0.53s

Subqueries in Impala SELECT Statements

A subquery is a query that is nested within another query. Subqueries let queries on one table dynamically adapt
based on the contents of another table. This technique provides great flexibility and expressive power for SQL
queries.

A subquery can return a result set for use in the FROM or WITH clauses, or with operators such as IN or EXISTS.

A scalar subquery produces a result set with a single row containing a single column, typically produced by an
aggregation function such as MAX() or SUM(). This single result value can be substituted in scalar contexts such as
arguments to comparison operators. If the result set is empty, the value of the scalar subquery is NULL. For example,
the following query finds the maximum value of T2.Y and then substitutes that value into the WHERE clause of the
outer block that queries T1:

SELECT x FROM t1 WHERE x > (SELECT MAX(y) FROM t2);

Uncorrelated subqueries do not refer to any tables from the outer block of the query. The same value or set of values
produced by the subquery is used when evaluating each row from the outer query block. In this example, the subquery
returns an arbitrary number of values from T2.Y, and each value of T1.X is tested for membership in that same set
of values:

SELECT x FROM t1 WHERE x IN (SELECT y FROM t2);

Correlated subqueries compare one or more values from the outer query block to values referenced in the WHERE
clause of the subquery. Each row evaluated by the outer WHERE clause can be evaluated using a different set of
values. These kinds of subqueries are restricted in the kinds of comparisons they can do between columns of the inner
and outer tables. (See the following Restrictions item.)

For example, the following query finds all the employees with salaries that are higher than average for their
department. The subquery potentially computes a different AVG() value for each employee.

SELECT employee_name, employee_id FROM employees one WHERE

 | Impala SQL Language Reference | 342

 salary > (SELECT avg(salary) FROM employees two WHERE one.dept_id =
 two.dept_id);

Syntax:

Subquery in the FROM clause:

SELECT select_list FROM table_ref [, table_ref ...]

table_ref ::= table_name | (select_statement)

Subqueries in WHERE clause:

WHERE value comparison_operator (scalar_select_statement)
WHERE value [NOT] IN (select_statement)
WHERE [NOT] EXISTS (correlated_select_statement)
WHERE NOT EXISTS (correlated_select_statement)

comparison_operator is a numeric comparison such as =, <=, !=, and so on, or a string comparison operator
such as LIKE or REGEXP.

Although you can use non-equality comparison operators such as < or >=, the subquery must include at least one
equality comparison between the columns of the inner and outer query blocks.

All syntax is available for both correlated and uncorrelated queries, except that the NOT EXISTS clause cannot be
used with an uncorrelated subquery.

Impala subqueries can be nested arbitrarily deep.

Standards compliance: Introduced in SQL:1999.

Examples:

This example illustrates how subqueries can be used in the FROM clause to organize the table names, column names,
and column values by producing intermediate result sets, especially for join queries.

SELECT avg(t1.x), max(t2.y) FROM
 (SELECT id, cast(a AS DECIMAL(10,5)) AS x FROM raw_data WHERE a BETWEEN 0
 AND 100) AS t1
 JOIN
 (SELECT id, length(s) AS y FROM raw_data WHERE s LIKE 'A%') AS t2;
 USING (id);

These examples show how a query can test for the existence of values in a separate table using the EXISTS()
operator with a subquery.

The following examples show how a value can be compared against a set of values returned by a subquery.

SELECT count(x) FROM t1 WHERE EXISTS(SELECT 1 FROM t2 WHERE t1.x = t2.y *
 10);

SELECT x FROM t1 WHERE x IN (SELECT y FROM t2 WHERE state = 'CA');

The following examples demonstrate scalar subqueries. When a subquery is known to return a single value, you can
substitute it where you would normally put a constant value.

SELECT x FROM t1 WHERE y = (SELECT max(z) FROM t2);
SELECT x FROM t1 WHERE y > (SELECT count(z) FROM t2);

Usage notes:

http://en.wikipedia.org/wiki/SQL:1999

 | Impala SQL Language Reference | 343

If the same table is referenced in both the outer and inner query blocks, construct a table alias in the outer query block
and use a fully qualified name to distinguish the inner and outer table references:

SELECT * FROM t1 one WHERE id IN (SELECT parent FROM t1 two WHERE t1.parent
 = t2.id);

The STRAIGHT_JOIN hint affects the join order of table references in the query block containing the hint. It does
not affect the join order of nested queries, such as views, inline views, or WHERE-clause subqueries. To use this hint
for performance tuning of complex queries, apply the hint to all query blocks that need a fixed join order.

Internal details:

Internally, subqueries involving IN, NOT IN, EXISTS, or NOT EXISTS clauses are rewritten into join queries.
Depending on the syntax, the subquery might be rewritten to an outer join, semi join, cross join, or anti join.

A query is processed differently depending on whether the subquery calls any aggregation functions. There are
correlated and uncorrelated forms, with and without calls to aggregation functions. Each of these four categories is
rewritten differently.

Column statistics considerations:

Because queries that include correlated and uncorrelated subqueries in the WHERE clause are written into join queries,
to achieve best performance, follow the same guidelines for running the COMPUTE STATS statement as you do for
tables involved in regular join queries. Run the COMPUTE STATS statement for each associated tables after loading
or substantially changing the data in that table. See Table and Column Statistics on page 636 for details.

Added in: Subqueries are substantially enhanced starting in Impala 2.0. Now, they can be used in the WHERE clause,
in combination with clauses such as EXISTS and IN, rather than just in the FROM clause.

Restrictions:

The initial Impala support for nested subqueries addresses the most common use cases. Some restrictions remain:

• Although you can use subqueries in a query involving UNION or UNION ALL in Impala 2.1.0 and higher,
currently you cannot construct a union of two subqueries (for example, in the argument of an IN or EXISTS
operator).

• Subqueries returning scalar values cannot be used with the operators ANY or ALL. (Impala does not currently have
a SOME operator, but if it did, the same restriction would apply.)

• For the EXISTS and NOT EXISTS clauses, any subquery comparing values from the outer query block to
another table must use at least one equality comparison, not exclusively other kinds of comparisons such as less
than, greater than, BETWEEN, or !=.

• Currently, a scalar subquery cannot be used as the first or second argument to the BETWEEN operator.
• A subquery cannot be used inside an OR conjunction. Expressions inside a subquery, for example in the WHERE

clause, can use OR conjunctions; the restriction only applies to parts of the query “above” the subquery.
• Scalar subqueries are only supported in numeric contexts. You cannot use a scalar subquery as an argument to

the LIKE, REGEXP, or RLIKE operators, or compare it to a value of a non-numeric type such as TIMESTAMP or
BOOLEAN.

• You cannot use subqueries with the CASE function to generate the comparison value, the values to be compared
against, or the return value.

• A subquery is not allowed in the filter condition for the HAVING clause. (Strictly speaking, a subquery cannot
appear anywhere outside the WITH, FROM, and WHERE clauses.)

• You must use a fully qualified name (table_name.column_name or
database_name.table_name.column_name) when referring to any column from the outer query block
within a subquery.

• The TABLESAMPLE clause of the SELECT statement does not apply to a table reference derived from a view, a
subquery, or anything other than a real base table. This clause only works for tables backed by HDFS or HDFS-
like data files, therefore it does not apply to Kudu or HBase tables.

Complex type considerations:

 | Impala SQL Language Reference | 344

For the complex types (ARRAY, STRUCT, and MAP) available in Impala 2.3 and higher, the join queries that
“unpack” complex type columns often use correlated subqueries in the FROM clause. For example, if the first
table in the join clause is CUSTOMER, the second join clause might have a subquery that selects from the column
CUSTOMER.C_ORDERS, which is an ARRAY. The subquery re-evaluates the ARRAY elements corresponding to
each row from the CUSTOMER table. See Complex Types (Impala 2.3 or higher only) on page 152 for details and
examples of using subqueries with complex types.

Related information:

EXISTS Operator on page 193, IN Operator on page 197

TABLESAMPLE Clause

Specify the TABLESAMPLE clause in cases where you need to explore the data distribution within the table, the table
is very large, and it is impractical or unnecessary to process all the data from the table or selected partitions.

The clause makes the query process a randomized set of data files from the table, so that the total volume of data is
greater than or equal to the specified percentage of data bytes within that table. (Or the data bytes within the set of
partitions that remain after partition pruning is performed.)

Syntax:

 TABLESAMPLE SYSTEM(percentage) [REPEATABLE(seed)]

The TABLESAMPLE clause comes immediately after a table name or table alias.

The SYSTEM keyword represents the sampling method. Currently, Impala only supports a single sampling method
named SYSTEM.

The percentage argument is an integer literal from 0 to 100. A percentage of 0 produces an empty result set for a
particular table reference, while a percentage of 100 uses the entire contents. Because the sampling works by selecting
a random set of data files, the proportion of sampled data from the table may be greater than the specified percentage,
based on the number and sizes of the underlying data files. See the usage notes for details.

The optional REPEATABLE keyword lets you specify an arbitrary positive integer seed value that ensures that when
the query is run again, the sampling selects the same set of data files each time. REPEATABLE does not have a
default value. If you omit the REPEATABLE keyword, the random seed is derived from the current time.

Added in: Impala 2.9.0

Usage notes:

You might use this clause with aggregation queries, such as finding the approximate average, minimum, or maximum
where exact precision is not required. You can use these findings to plan the most effective strategy for constructing
queries against the full table or designing a partitioning strategy for the data.

Some other database systems have a TABLESAMPLE clause. The Impala syntax for this clause is modeled on the
syntax for popular relational databases, not the Hive TABLESAMPLE clause. For example, there is no BUCKETS
keyword as in HiveQL.

The precision of the percentage threshold depends on the number and sizes of the underlying data files. Impala brings
in additional data files, one at a time, until the number of bytes exceeds the specified percentage based on the total
number of bytes for the entire set of table data. The precision of the percentage threshold is higher when the table
contains many data files with consistent sizes. See the code listings later in this section for examples.

When you estimate characteristics of the data distribution based on sampling a percentage of the table data, be aware
that the data might be unevenly distributed between different files. Do not assume that the percentage figure reflects
the percentage of rows in the table. For example, one file might contain all blank values for a STRING column, while
another file contains long strings in that column; therefore, one file could contain many more rows than another.
Likewise, a table created with the SORT BY clause might contain narrow ranges of values for the sort columns,
making it impractical to extrapolate the number of distinct values for those columns based on sampling only some of
the data files.

 | Impala SQL Language Reference | 345

Because a sample of the table data might not contain all values for a particular column, if the TABLESAMPLE is used
in a join query, the key relationships between the tables might produce incomplete result sets compared to joins using
all the table data. For example, if you join 50% of table A with 50% of table B, some values in the join columns might
not match between the two tables, even though overall there is a 1:1 relationship between the tables.

The REPEATABLE keyword makes identical queries use a consistent set of data files when the query is repeated.
You specify an arbitrary integer key that acts as a seed value when Impala randomly selects the set of data files to
use in the query. This technique lets you verify correctness, examine performance, and so on for queries using the
TABLESAMPLE clause without the sampled data being different each time. The repeatable aspect is reset (that is, the
set of selected data files may change) any time the contents of the table change. The statements or operations that can
make sampling results non-repeatable are:

• INSERT.
• TRUNCATE TABLE.
• LOAD DATA.
• REFRESH or INVALIDATE METADATA after files are added or removed by a non-Impala mechanism.
•

This clause is similar in some ways to the LIMIT clause, because both serve to limit the size of the intermediate data
and final result set. LIMIT 0 is more efficient than TABLESAMPLE SYSTEM(0) for verifying that a query can
execute without producing any results. TABLESAMPLE SYSTEM(n) often makes query processing more efficient
than using a LIMIT clause by itself, because all phases of query execution use less data overall. If the intent is to
retrieve some representative values from the table in an efficient way, you might combine TABLESAMPLE, ORDER
BY, and LIMIT clauses within a single query.

Partitioning:

When you query a partitioned table, any partition pruning happens before Impala selects the data files to sample. For
example, in a table partitioned by year, a query with WHERE year = 2017 and a TABLESAMPLE SYSTEM(10)
clause would sample data files representing at least 10% of the bytes present in the 2017 partition.

Amazon S3 considerations:

This clause applies to S3 tables the same way as tables with data files stored on HDFS.

ADLS considerations:

This clause applies to ADLS tables the same way as tables with data files stored on HDFS.

Kudu considerations:

This clause does not apply to Kudu tables.

HBase considerations:

This clause does not apply to HBase tables.

Performance considerations:

From a performance perspective, the TABLESAMPLE clause is especially valuable for exploratory queries on text,
Avro, or other file formats other than Parquet. Text-based or row-oriented file formats must process substantial
amounts of redundant data for queries that derive aggregate results such as MAX(), MIN(), or AVG() for a single
column. Therefore, you might use TABLESAMPLE early in the ETL pipeline, when data is still in raw text format and
has not been converted to Parquet or moved into a partitioned table.

Restrictions:

This clause applies only to tables that use a storage layer with underlying raw data files, such as HDFS, Amazon S3,
or Microsoft ADLS.

This clause does not apply to table references that represent views. A query that applies the TABLESAMPLE clause to
a view or a subquery fails with a semantic error.

Because the sampling works at the level of entire data files, it is by nature coarse-grained. It is possible to specify a
small sample percentage but still process a substantial portion of the table data if the table contains relatively few data

 | Impala SQL Language Reference | 346

files, if each data file is very large, or if the data files vary substantially in size. Be sure that you understand the data
distribution and physical file layout so that you can verify if the results are suitable for extrapolation. For example,
if the table contains only a single data file, the “sample” will consist of all the table data regardless of the percentage
you specify. If the table contains data files of 1 GiB, 1 GiB, and 1 KiB, when you specify a sampling percentage of
50 you would either process slightly more than 50% of the table (1 GiB + 1 KiB) or almost the entire table (1 GiB + 1
GiB), depending on which data files were selected for sampling.

If data files are added by a non-Impala mechanism, and the table metadata is not updated by a REFRESH or
INVALIDATE METADATA statement, the TABLESAMPLE clause does not consider those new files when computing
the number of bytes in the table or selecting which files to sample.

If data files are removed by a non-Impala mechanism, and the table metadata is not updated by a REFRESH or
INVALIDATE METADATA statement, the query fails if the TABLESAMPLE clause attempts to reference any of the
missing files.

Examples:

The following examples demonstrate the TABLESAMPLE clause. These examples intentionally use very small
data sets to illustrate how the number of files, size of each file, and overall size of data in the table interact with the
percentage specified in the clause.

These examples use an unpartitioned table, containing several files of roughly the same size:

create table sample_demo (x int, s string);

insert into sample_demo values (1, 'one');
insert into sample_demo values (2, 'two');
insert into sample_demo values (3, 'three');
insert into sample_demo values (4, 'four');
insert into sample_demo values (5, 'five');

show files in sample_demo;
+---------------------+------+-----------+
| Path | Size | Partition |
+---------------------+------+-----------+
991213608_data.0.	7B	
982196806_data.0.	6B	
_2122096884_data.0.	8B	
_586325431_data.0.	6B	
1894746258_data.0.	7B	
+---------------------+------+-----------+

show table stats sample_demo;
+-------+--------+------+--------+-------------------------+
| #Rows | #Files | Size | Format | Location |
+-------+--------+------+--------+-------------------------+
| -1 | 5 | 34B | TEXT | /tsample.db/sample_demo |
+-------+--------+------+--------+-------------------------+
</codeblock>

 <p>
 A query that samples 50% of the table must process at least
 17 bytes of data. Based on the sizes of the data files,
 we can predict that each such query uses 3 arbitrary files.
 Any 1 or 2 files are not enough to reach 50% of the total
 data in the table (34 bytes), so the query adds more files
 until it passes the 50% threshold:
 </p>

<codeblock><![CDATA[
select distinct x from sample_demo tablesample system(50);
+---+

 | Impala SQL Language Reference | 347

| x |
+---+
| 4 |
| 1 |
| 5 |
+---+

select distinct x from sample_demo tablesample system(50);
+---+
| x |
+---+
| 5 |
| 4 |
| 2 |
+---+

select distinct x from sample_demo tablesample system(50);
+---+
| x |
+---+
| 5 |
| 3 |
| 2 |
+---+
</codeblock>

 <p>
 To help run reproducible experiments, the <codeph>REPEATABLE</codeph>
 clause causes Impala to choose the same set of files for each query.
 Although the data set being considered is deterministic, the order
 of results varies (in the absence of an <codeph>ORDER BY</codeph>
 clause) because of the way distributed queries are processed:
 </p>

<codeblock><![CDATA[
select distinct x from sample_demo
 tablesample system(50) repeatable (12345);
+---+
| x |
+---+
| 3 |
| 2 |
| 1 |
+---+

select distinct x from sample_demo
 tablesample system(50) repeatable (12345);
+---+
| x |
+---+
| 2 |
| 1 |
| 3 |
+---+
</codeblock>

 <p>
 The following examples show how uneven data distribution affects
 which data is sampled. Adding another data file containing a long
 string value changes the threshold for 50% of the total data in
 the table:
 </p>

<codeblock><![CDATA[

 | Impala SQL Language Reference | 348

insert into sample_demo values (1000, 'Boyhood is the longest time in li
fe for a boy. The last term of the school-year is made of decades, not o
f weeks, and living through them is like waiting for the millennium. Boo
th Tarkington');

show files in sample_demo;
+---------------------+------+-----------+
| Path | Size | Partition |
+---------------------+------+-----------+
991213608_data.0.	7B	
982196806_data.0.	6B	
_253317650_data.0.	196B	
_2122096884_data.0.	8B	
_586325431_data.0.	6B	
1894746258_data.0.	7B	
+---------------------+------+-----------+

show table stats sample_demo;
+-------+--------+------+--------+-------------------------+
| #Rows | #Files | Size | Format | Location |
+-------+--------+------+--------+-------------------------+
| -1 | 6 | 230B | TEXT | /tsample.db/sample_demo |
+-------+--------+------+--------+-------------------------+
</codeblock>

 <p>
 Even though the queries do not refer to the <codeph>S</codeph>
 column containing the long value, all the sampling queries include
 the data file containing the column value <codeph>X=1000</codeph>,
 because the query cannot reach the 50% threshold (115 bytes) without
 including that file. The large file might be considered first, in
 which
 case it is the only file processed by the query. Or an arbitrary
 set of other files might be considered first.
 </p>

<codeblock><![CDATA[
select distinct x from sample_demo tablesample system(50);
+------+
| x |
+------+
| 1000 |
| 3 |
| 1 |
+------+

select distinct x from sample_demo tablesample system(50);
+------+
| x |
+------+
| 1000 |
+------+

select distinct x from sample_demo tablesample system(50);
+------+
| x |
+------+
| 1000 |
| 4 |
| 2 |
| 1 |
+------+
</codeblock>

 | Impala SQL Language Reference | 349

 <p>
 The following examples demonstrate how the <codeph>TABLESAMPLE</
codeph>
 clause interacts with other table aspects, such as partitioning and
 file
 format:
 </p>

<codeblock><![CDATA[
create table sample_demo_partitions (x int, s string) partitioned by (n int)
 stored as parquet;

insert into sample_demo_partitions partition (n = 1) select * from
 sample_demo;
insert into sample_demo_partitions partition (n = 2) select * from
 sample_demo;
insert into sample_demo_partitions partition (n = 3) select * from
 sample_demo;

show files in sample_demo_partitions;
+--------------------------------+--------+-----------+
| Path | Size | Partition |
+--------------------------------+--------+-----------+
000000_364262785_data.0.parq	1.24KB	n=1
000001_973526736_data.0.parq	566B	n=1
0000000_1300598134_data.0.parq	1.24KB	n=2
0000001_689099063_data.0.parq	568B	n=2
0000000_1861371709_data.0.parq	1.24KB	n=3
0000001_1065507912_data.0.parq	566B	n=3
+--------------------------------+--------+-----------+

show table stats tablesample_demo_partitioned;
+-------+-------+--------+--------+---------
+--+
| n | #Rows | #Files | Size | Format | Location
 |
+-------+-------+--------+--------+---------
+--+
| 1 | -1 | 2 | 1.79KB | PARQUET | /tsample.db/
tablesample_demo_partitioned/n=1 |
| 2 | -1 | 2 | 1.80KB | PARQUET | /tsample.db/
tablesample_demo_partitioned/n=2 |
| 3 | -1 | 2 | 1.79KB | PARQUET | /tsample.db/
tablesample_demo_partitioned/n=3 |
| Total | -1 | 6 | 5.39KB | |
 |
+-------+-------+--------+--------+---------
+--+
</codeblock>

 <p>
 If the query does not involve any partition pruning, the
 sampling applies to the data volume of the entire table:
 </p>

<codeblock><![CDATA[
-- 18 rows total.
select count(*) from sample_demo_partitions;
+----------+
| count(*) |
+----------+
| 18 |
+----------+

 | Impala SQL Language Reference | 350

-- The number of rows per data file is not
-- perfectly balanced, therefore the count
-- is different depending on which set of files
-- is considered.
select count(*) from sample_demo_partitions
 tablesample system(75);
+----------+
| count(*) |
+----------+
| 14 |
+----------+

select count(*) from sample_demo_partitions
 tablesample system(75);
+----------+
| count(*) |
+----------+
| 16 |
+----------+
</codeblock>

 <p>
 If the query only processes certain partitions,
 the query computes the sampling threshold based on
 the data size and set of files only from the
 relevant partitions:
 </p>

<codeblock><![CDATA[
select count(*) from sample_demo_partitions
 tablesample system(50) where n = 1;
+----------+
| count(*) |
+----------+
| 6 |
+----------+

select count(*) from sample_demo_partitions
 tablesample system(50) where n = 1;
+----------+
| count(*) |
+----------+
| 2 |
+----------+

Related information:

SELECT Statement on page 322

WITH Clause

A clause that can be added before a SELECT statement, to define aliases for complicated expressions that are
referenced multiple times within the body of the SELECT. Similar to CREATE VIEW, except that the table and
column names defined in the WITH clause do not persist after the query finishes, and do not conflict with names used
in actual tables or views. Also known as “subquery factoring”.

You can rewrite a query using subqueries to work the same as with the WITH clause. The purposes of the WITH
clause are:

• Convenience and ease of maintenance from less repetition with the body of the query. Typically used with queries
involving UNION, joins, or aggregation functions where the similar complicated expressions are referenced
multiple times.

 | Impala SQL Language Reference | 351

• SQL code that is easier to read and understand by abstracting the most complex part of the query into a separate
block.

• Improved compatibility with SQL from other database systems that support the same clause (primarily Oracle
Database).

Note:

The Impala WITH clause does not support recursive queries in the WITH, which is supported in some other
database systems.

Standards compliance: Introduced in SQL:1999.

Examples:

-- Define 2 subqueries that can be referenced from the body of a longer
 query.
with t1 as (select 1), t2 as (select 2) insert into tab select * from t1
 union all select * from t2;

-- Define one subquery at the outer level, and another at the inner level as
 part of the
-- initial stage of the UNION ALL query.
with t1 as (select 1) (with t2 as (select 2) select * from t2) union all
 select * from t1;

DISTINCT Operator

The DISTINCT operator in a SELECT statement filters the result set to remove duplicates:

-- Returns the unique values from one column.
-- NULL is included in the set of values if any rows have a NULL in this
 column.
select distinct c_birth_country from customer;
-- Returns the unique combinations of values from multiple columns.
select distinct c_salutation, c_last_name from customer;

You can use DISTINCT in combination with an aggregation function, typically COUNT(), to find how many
different values a column contains:

-- Counts the unique values from one column.
-- NULL is not included as a distinct value in the count.
select count(distinct c_birth_country) from customer;
-- Counts the unique combinations of values from multiple columns.
select count(distinct c_salutation, c_last_name) from customer;

One construct that Impala SQL does not support is using DISTINCT in more than one aggregation function in the
same query. For example, you could not have a single query with both COUNT(DISTINCT c_first_name) and
COUNT(DISTINCT c_last_name) in the SELECT list.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length
strings (""), NULL, and space to all be different values.

Note:

By default, Impala only allows a single COUNT(DISTINCT columns) expression in each query.

If you do not need precise accuracy, you can produce an estimate of the distinct values for a column by specifying
NDV(column); a query can contain multiple instances of NDV(column). To make Impala automatically rewrite
COUNT(DISTINCT) expressions to NDV(), enable the APPX_COUNT_DISTINCT query option.

http://en.wikipedia.org/wiki/SQL:1999

 | Impala SQL Language Reference | 352

To produce the same result as multiple COUNT(DISTINCT) expressions, you can use the following technique for
queries involving a single table:

select v1.c1 result1, v2.c1 result2 from
 (select count(distinct col1) as c1 from t1) v1
 cross join
 (select count(distinct col2) as c1 from t1) v2;

Because CROSS JOIN is an expensive operation, prefer to use the NDV() technique wherever practical.

Note:

In contrast with some database systems that always return DISTINCT values in sorted order, Impala does not do
any ordering of DISTINCT values. Always include an ORDER BY clause if you need the values in alphabetical or
numeric sorted order.

Query Hints in Impala SELECT Statements

The Impala SQL dialect supports query hints, for fine-tuning the inner workings of queries. Specify hints as a
temporary workaround for expensive queries, where missing statistics or other factors cause inefficient performance.

Hints are most often used for the most resource-intensive kinds of Impala queries:

• Join queries involving large tables, where intermediate result sets are transmitted across the network to evaluate
the join conditions.

• Inserting into partitioned Parquet tables, where many memory buffers could be allocated on each host to hold
intermediate results for each partition.

Syntax:

You can also represent the hints as keywords surrounded by [] square brackets; include the brackets in the text of the
SQL statement.

Note: The square bracket style of hint is now deprecated and might be removed in a future release. For that reason,
any newly added hints are not available with the square bracket syntax.

SELECT STRAIGHT_JOIN select_list FROM
join_left_hand_table
 JOIN [{ /* +BROADCAST */ | /* +SHUFFLE */ }]
join_right_hand_table
remainder_of_query;

INSERT insert_clauses
 [{ /* +SHUFFLE */ | /* +NOSHUFFLE */ }]
 [/* +CLUSTERED */]
 SELECT remainder_of_query;

In Impala 2.0 and higher, you can also specify the hints inside comments that use either the /* */ or -- notation.
Specify a + symbol immediately before the hint name. Recently added hints are only available using the /* */ and
-- notation. For clarity, the /* */ and -- styles are used in the syntax and examples throughout this section. With
the /* */ or -- notation for hints, specify a + symbol immediately before the first hint name. Multiple hints can be
specified separated by commas, for example /* +clustered,shuffle */

SELECT STRAIGHT_JOIN select_list FROM
join_left_hand_table
 JOIN /* +BROADCAST|SHUFFLE */
join_right_hand_table
remainder_of_query;

SELECT select_list FROM
join_left_hand_table
 JOIN -- +BROADCAST|SHUFFLE
join_right_hand_table

 | Impala SQL Language Reference | 353

remainder_of_query;

INSERT insert_clauses
 /* +SHUFFLE|NOSHUFFLE */
 SELECT remainder_of_query;

INSERT insert_clauses
 -- +SHUFFLE|NOSHUFFLE
 SELECT remainder_of_query;

SELECT select_list
 FROM
table_ref
 /* +{SCHEDULE_CACHE_LOCAL | SCHEDULE_DISK_LOCAL | SCHEDULE_REMOTE}
 [,RANDOM_REPLICA] */
remainder_of_query;

INSERT insert_clauses
 -- +CLUSTERED
 SELECT remainder_of_query;

INSERT insert_clauses
 /* +CLUSTERED */
 SELECT remainder_of_query;

Usage notes:

With both forms of hint syntax, include the STRAIGHT_JOIN keyword immediately after the SELECT and any
DISTINCT or ALL keywords to prevent Impala from reordering the tables in a way that makes the join-related hints
ineffective.

The STRAIGHT_JOIN hint affects the join order of table references in the query block containing the hint. It does
not affect the join order of nested queries, such as views, inline views, or WHERE-clause subqueries. To use this hint
for performance tuning of complex queries, apply the hint to all query blocks that need a fixed join order.

To reduce the need to use hints, run the COMPUTE STATS statement against all tables involved in joins, or used as
the source tables for INSERT ... SELECT operations where the destination is a partitioned Parquet table. Do this
operation after loading data or making substantial changes to the data within each table. Having up-to-date statistics
helps Impala choose more efficient query plans without the need for hinting. See Table and Column Statistics on page
636 for details and examples.

To see which join strategy is used for a particular query, examine the EXPLAIN output for that query. See Using the
EXPLAIN Plan for Performance Tuning on page 663 for details and examples.

Hints for join queries:

The /* +BROADCAST */ and /* +SHUFFLE */ hints control the execution strategy for join queries. Specify
one of the following constructs immediately after the JOIN keyword in a query:

• /* +SHUFFLE */ - Makes that join operation use the “partitioned” technique, which divides up corresponding
rows from both tables using a hashing algorithm, sending subsets of the rows to other nodes for processing. (The
keyword SHUFFLE is used to indicate a “partitioned join”, because that type of join is not related to “partitioned
tables”.) Since the alternative “broadcast” join mechanism is the default when table and index statistics are
unavailable, you might use this hint for queries where broadcast joins are unsuitable; typically, partitioned joins
are more efficient for joins between large tables of similar size.

• /* +BROADCAST */ - Makes that join operation use the “broadcast” technique that sends the entire contents
of the right-hand table to all nodes involved in processing the join. This is the default mode of operation when
table and index statistics are unavailable, so you would typically only need it if stale metadata caused Impala to
mistakenly choose a partitioned join operation. Typically, broadcast joins are more efficient in cases where one
table is much smaller than the other. (Put the smaller table on the right side of the JOIN operator.)

Hints for INSERT ... SELECT queries:

 | Impala SQL Language Reference | 354

When inserting into partitioned tables, especially using the Parquet file format, you can include a hint in the INSERT
statement to fine-tune the overall performance of the operation and its resource usage:

• You would only use hints if an INSERT into a partitioned Parquet table was failing due to capacity limits, or if
such an INSERT was succeeding but with less-than-optimal performance.

• To use a hint to influence the join order, put the hint keyword /* +SHUFFLE */ or /* +NOSHUFFLE */
(including the square brackets) after the PARTITION clause, immediately before the SELECT keyword.

• /* +SHUFFLE */ selects an execution plan that reduces the number of files being written simultaneously to
HDFS, and the number of memory buffers holding data for individual partitions. Thus it reduces overall resource
usage for the INSERT operation, allowing some INSERT operations to succeed that otherwise would fail. It does
involve some data transfer between the nodes so that the data files for a particular partition are all constructed on
the same node.

• /* +NOSHUFFLE */ selects an execution plan that might be faster overall, but might also produce a larger
number of small data files or exceed capacity limits, causing the INSERT operation to fail. Use /* +SHUFFLE
*/ in cases where an INSERT statement fails or runs inefficiently due to all nodes attempting to construct data for
all partitions.

• Impala automatically uses the /* +SHUFFLE */ method if any partition key column in the source table,
mentioned in the INSERT ... SELECT query, does not have column statistics. In this case, only the /*
+NOSHUFFLE */ hint would have any effect.

• If column statistics are available for all partition key columns in the source table mentioned in the INSERT ...
SELECT query, Impala chooses whether to use the /* +SHUFFLE */ or /* +NOSHUFFLE */ technique
based on the estimated number of distinct values in those columns and the number of nodes involved in the
INSERT operation. In this case, you might need the /* +SHUFFLE */ or the /* +NOSHUFFLE */ hint to
override the execution plan selected by Impala.

• In Impala 2.8 or higher, you can make the INSERT operation organize (“cluster”) the data for each partition to
avoid buffering data for multiple partitions and reduce the risk of an out-of-memory condition. Specify the hint as
/* +CLUSTERED */. This technique is primarily useful for inserts into Parquet tables, where the large block
size requires substantial memory to buffer data for multiple output files at once.

Hints for scheduling of HDFS blocks:

The hints /* +SCHEDULE_CACHE_LOCAL */, /* +SCHEDULE_DISK_LOCAL */, and /*
+SCHEDULE_REMOTE */ have the same effect as specifying the REPLICA_PREFERENCE query option with the
respective option settings of CACHE_LOCAL, DISK_LOCAL, or REMOTE. The hint /* +RANDOM_REPLICA */
is the same as enabling the SCHEDULE_RANDOM_REPLICA query option.

You can use these hints in combination by separating them with commas, for example, /*
+SCHEDULE_CACHE_LOCAL,RANDOM_REPLICA */. See REPLICA_PREFERENCE Query Option (Impala 2.7
or higher only) on page 389 and SCHEDULE_RANDOM_REPLICA Query Option (Impala 2.5 or higher only) on
page 393 for information about how these settings influence the way Impala processes HDFS data blocks.

Specifying the replica preference as a query hint always overrides the query option setting. Specifying either the
SCHEDULE_RANDOM_REPLICA query option or the corresponding RANDOM_REPLICA query hint enables the
random tie-breaking behavior when processing data blocks during the query.

Suggestions versus directives:

In early Impala releases, hints were always obeyed and so acted more like directives. Once Impala gained join order
optimizations, sometimes join queries were automatically reordered in a way that made a hint irrelevant. Therefore,
the hints act more like suggestions in Impala 1.2.2 and higher.

To force Impala to follow the hinted execution mechanism for a join query, include the STRAIGHT_JOIN keyword
in the SELECT statement. See Overriding Join Reordering with STRAIGHT_JOIN on page 630 for details. When
you use this technique, Impala does not reorder the joined tables at all, so you must be careful to arrange the join
order to put the largest table (or subquery result set) first, then the smallest, second smallest, third smallest, and so on.
This ordering lets Impala do the most I/O-intensive parts of the query using local reads on the DataNodes, and then
reduce the size of the intermediate result set as much as possible as each subsequent table or subquery result set is
joined.

Restrictions:

 | Impala SQL Language Reference | 355

Queries that include subqueries in the WHERE clause can be rewritten internally as join queries. Currently, you cannot
apply hints to the joins produced by these types of queries.

Because hints can prevent queries from taking advantage of new metadata or improvements in query planning, use
them only when required to work around performance issues, and be prepared to remove them when they are no
longer required, such as after a new Impala release or bug fix.

In particular, the /* +BROADCAST */ and /* +SHUFFLE */ hints are expected to be needed much less
frequently in Impala 1.2.2 and higher, because the join order optimization feature in combination with the COMPUTE
STATS statement now automatically choose join order and join mechanism without the need to rewrite the query and
add hints. See Performance Considerations for Join Queries on page 629 for details.

Compatibility:

The hints embedded within -- comments are compatible with Hive queries. The hints embedded within /* */
comments or [] square brackets are not recognized by or not compatible with Hive. For example, Hive raises an
error for Impala hints within /* */ comments because it does not recognize the Impala hint names.

Considerations for views:

If you use a hint in the query that defines a view, the hint is preserved when you query the view. Impala internally
rewrites all hints in views to use the -- comment notation, so that Hive can query such views without errors due to
unrecognized hint names.

Examples:

For example, this query joins a large customer table with a small lookup table of less than 100 rows. The right-hand
table can be broadcast efficiently to all nodes involved in the join. Thus, you would use the /* +broadcast */
hint to force a broadcast join strategy:

select straight_join customer.address, state_lookup.state_name
 from customer join /* +broadcast */ state_lookup
 on customer.state_id = state_lookup.state_id;

This query joins two large tables of unpredictable size. You might benchmark the query with both kinds of hints and
find that it is more efficient to transmit portions of each table to other nodes for processing. Thus, you would use the
/* +shuffle */ hint to force a partitioned join strategy:

select straight_join weather.wind_velocity, geospatial.altitude
 from weather join /* +shuffle */ geospatial
 on weather.lat = geospatial.lat and weather.long = geospatial.long;

For joins involving three or more tables, the hint applies to the tables on either side of that specific JOIN keyword.
The STRAIGHT_JOIN keyword ensures that joins are processed in a predictable order from left to right. For
example, this query joins t1 and t2 using a partitioned join, then joins that result set to t3 using a broadcast join:

select straight_join t1.name, t2.id, t3.price
 from t1 join /* +shuffle */ t2 join /* +broadcast */ t3
 on t1.id = t2.id and t2.id = t3.id;

Related information:

For more background information about join queries, see Joins in Impala SELECT Statements on page 324. For
performance considerations, see Performance Considerations for Join Queries on page 629.

SET Statement

Specifies values for query options that control the runtime behavior of other statements within the same session.

In Impala 2.5 and higher, SET also defines user-specified substitution variables for the impala-shell interpreter.
This feature uses the SET command built into impala-shell instead of the SQL SET statement. Therefore the

 | Impala SQL Language Reference | 356

substitution mechanism only works with queries processed by impala-shell, not with queries submitted through
JDBC or ODBC.

Important:

In Impala 2.11 and higher, the output of the SET statement changes in some important ways:

• The options are divided into groups: Regular Query Options, Advanced Query Options,
Development Query Options, and Deprecated Query Options.

• The advanced options are intended for use in specific kinds of performance tuning and debugging scenarios. The
development options are related to internal development of Impala or features that are not yet finalized; these
options might be changed or removed without notice. The deprecated options are related to features that are
removed or changed so that the options no longer have any purpose; these options might be removed in future
versions.

• By default, only the first two groups (regular and advanced) are displayed by the SET command. Use the syntax
SET ALL to see all groups of options.

• impala-shell options and user-specified variables are always displayed at the end of the list of query options,
after all appropriate option groups.

• When the SET command is run through the JDBC or ODBC interfaces, the result set has a new third column,
level, indicating which group each option belongs to. The same distinction of SET returning the regular and
advanced options, and SET ALL returning all option groups, applies to JDBC and ODBC also.

Syntax:

SET [query_option=option_value]
SET ALL

SET and SET ALL with no arguments return a result set consisting of all the applicable query options and their
current values.

The query option name and any string argument values are case-insensitive.

Each query option has a specific allowed notation for its arguments. Boolean options can be enabled and disabled by
assigning values of either true and false, or 1 and 0. Some numeric options accept a final character signifying
the unit, such as 2g for 2 gigabytes or 100m for 100 megabytes. See Query Options for the SET Statement on page
358 for the details of each query option.

Setting query options during impala-shell invocation:

In Impala 2.11 and higher, you can use one or more command-line options of the form --
query_option=option=value when running the impala-shell command. The corresponding query option
settings take effect for that impala-shell session.

User-specified substitution variables:

In Impala 2.5 and higher, you can specify your own names and string substitution values within the impala-shell
interpreter. Once a substitution variable is set up, its value is inserted into any SQL statement in that same impala-
shell session that contains the notation ${var:varname}. Using SET in an interactive impala-shell session
overrides any value for that same variable passed in through the --var=varname=value command-line option.

For example, to set up some default parameters for report queries, but then override those default within an impala-
shell session, you might issue commands and statements such as the following:

-- Initial setup for this example.
create table staging_table (s string);
insert into staging_table values ('foo'), ('bar'), ('bletch');

create table production_table (s string);
insert into production_table values ('North America'), ('EMEA'), ('Asia');
quit;

 | Impala SQL Language Reference | 357

-- Start impala-shell with user-specified substitution variables,
-- run a query, then override the variables with SET and run the query
 again.
$ impala-shell --var=table_name=staging_table --var=cutoff=2
... banner message ...
[localhost:21000] > select s from ${var:table_name} order by s limit
 ${var:cutoff};
Query: select s from staging_table order by s limit 2
+--------+
| s |
+--------+
| bar |
| bletch |
+--------+
Fetched 2 row(s) in 1.06s

[localhost:21000] > set var:table_name=production_table;
Variable TABLE_NAME set to production_table
[localhost:21000] > set var:cutoff=3;
Variable CUTOFF set to 3

[localhost:21000] > select s from ${var:table_name} order by s limit
 ${var:cutoff};
Query: select s from production_table order by s limit 3
+---------------+
| s |
+---------------+
| Asia |
| EMEA |
| North America |
+---------------+

The following example shows how SET ALL with no parameters displays all user-specified substitution variables,
and how UNSET removes the substitution variable entirely:

[localhost:21000] > set all;
Query options (defaults shown in []):
ABORT_ON_ERROR: [0]
COMPRESSION_CODEC: []
DISABLE_CODEGEN: [0]
...

Advanced Query Options:
APPX_COUNT_DISTINCT: [0]
BUFFER_POOL_LIMIT: []
DEFAULT_JOIN_DISTRIBUTION_MODE: [0]
...

Development Query Options:
BATCH_SIZE: [0]
DEBUG_ACTION: []
DECIMAL_V2: [0]
...

Deprecated Query Options:
ABORT_ON_DEFAULT_LIMIT_EXCEEDED: [0]
ALLOW_UNSUPPORTED_FORMATS: [0]
DEFAULT_ORDER_BY_LIMIT: [-1]
...

Shell Options
 LIVE_PROGRESS: False

 | Impala SQL Language Reference | 358

 LIVE_SUMMARY: False

Variables:
 CUTOFF: 3
 TABLE_NAME: staging_table

[localhost:21000] > unset var:cutoff;
Unsetting variable CUTOFF
[localhost:21000] > select s from ${var:table_name} order by s limit
 ${var:cutoff};
Error: Unknown variable CUTOFF

See Running Commands and SQL Statements in impala-shell on page 618 for more examples of using the --var,
SET, and ${var:varname} substitution technique in impala-shell.

Usage notes:

MEM_LIMIT is probably the most commonly used query option. You can specify a high value to allow a resource-
intensive query to complete. For testing how queries would work on memory-constrained systems, you might specify
an artificially low value.

Complex type considerations:

Examples:

The following example sets some numeric and some Boolean query options to control usage of memory, disk space,
and timeout periods, then runs a query whose success could depend on the options in effect:

set mem_limit=64g;
set DISABLE_UNSAFE_SPILLS=true;
set parquet_file_size=400m;
set RESERVATION_REQUEST_TIMEOUT=900000;
insert overwrite parquet_table select c1, c2, count(c3) from text_table
 group by c1, c2, c3;

Added in: Impala 2.0.0

SET has always been available as an impala-shell command. Promoting it to a SQL statement lets you use this
feature in client applications through the JDBC and ODBC APIs.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

See Query Options for the SET Statement on page 358 for the query options you can adjust using this statement.

Query Options for the SET Statement

You can specify the following options using the SET statement, and those settings affect all queries issued from that
session.

Some query options are useful in day-to-day operations for improving usability, performance, or flexibility.

Other query options control special-purpose aspects of Impala operation and are intended primarily for advanced
debugging or troubleshooting.

Options with Boolean parameters can be set to 1 or true to enable, or 0 or false to turn off.

Note:

In Impala 2.0 and later, you can set query options directly through the JDBC and ODBC interfaces by using the SET
statement. Formerly, SET was only available as a command within the impala-shell interpreter.

 | Impala SQL Language Reference | 359

In Impala 2.11 and later, you can set query options for an impala-shell session by specifying one or more
command-line arguments of the form --query_option=option=value. See impala-shell Configuration
Options on page 612 for details.

Related information:

SET Statement on page 355

ABORT_ON_DEFAULT_LIMIT_EXCEEDED Query Option

Now that the ORDER BY clause no longer requires an accompanying LIMIT clause in Impala 1.4.0 and higher, this
query option is deprecated and has no effect.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

ABORT_ON_ERROR Query Option

When this option is enabled, Impala cancels a query immediately when any of the nodes encounters an error, rather
than continuing and possibly returning incomplete results. This option is disabled by default, to help gather maximum
diagnostic information when an error occurs, for example, whether the same problem occurred on all nodes or only a
single node. Currently, the errors that Impala can skip over involve data corruption, such as a column that contains a
string value when expected to contain an integer value.

To control how much logging Impala does for non-fatal errors when ABORT_ON_ERROR is turned off, use the
MAX_ERRORS option.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Related information:

MAX_ERRORS Query Option on page 374, Using Impala Logging on page 764

ALLOW_UNSUPPORTED_FORMATS Query Option

An obsolete query option from early work on support for file formats. Do not use. Might be removed in the future.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

APPX_COUNT_DISTINCT Query Option (Impala 2.0 or higher only)

Allows multiple COUNT(DISTINCT) operations within a single query, by internally rewriting each
COUNT(DISTINCT) to use the NDV() function. The resulting count is approximate rather than precise.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Examples:

The following examples show how the APPX_COUNT_DISTINCT lets you work around the restriction where a
query can only evaluate COUNT(DISTINCT col_name) for a single column. By default, you can count the
distinct values of one column or another, but not both in a single query:

[localhost:21000] > select count(distinct x) from int_t;
+-------------------+
| count(distinct x) |
+-------------------+
| 10 |
+-------------------+
[localhost:21000] > select count(distinct property) from int_t;
+--------------------------+
| count(distinct property) |

 | Impala SQL Language Reference | 360

+--------------------------+
| 7 |
+--------------------------+
[localhost:21000] > select count(distinct x), count(distinct property) from
 int_t;
ERROR: AnalysisException: all DISTINCT aggregate functions need to have the
 same set of parameters
as count(DISTINCT x); deviating function: count(DISTINCT property)

When you enable the APPX_COUNT_DISTINCT query option, now the query with multiple COUNT(DISTINCT)
works. The reason this behavior requires a query option is that each COUNT(DISTINCT) is rewritten internally to
use the NDV() function instead, which provides an approximate result rather than a precise count.

[localhost:21000] > set APPX_COUNT_DISTINCT=true;
[localhost:21000] > select count(distinct x), count(distinct property) from
 int_t;
+-------------------+--------------------------+
| count(distinct x) | count(distinct property) |
+-------------------+--------------------------+
| 10 | 7 |
+-------------------+--------------------------+

Related information:

COUNT Function on page 543, DISTINCT Operator on page 351, NDV Function on page 558

BATCH_SIZE Query Option

Number of rows evaluated at a time by SQL operators. Unspecified or a size of 0 uses a predefined default size. Using
a large number improves responsiveness, especially for scan operations, at the cost of a higher memory footprint.

This option is primarily for testing during Impala development, or for use under the direction of the appropriate
support channel.

Type: numeric

Default: 0 (meaning the predefined default of 1024)

Range: 0-65536. The value of 0 still has the special meaning of “use the default”, so the effective range is 1-65536.
The maximum applies in Impala 2.11 and higher.

BUFFER_POOL_LIMIT Query Option

Defines a limit on the amount of memory that a query can allocate from the internal buffer pool. The value for this
limit applies to the memory on each host, not the aggregate memory across the cluster. Typically not changed by
users, except during diagnosis of out-of-memory errors during queries.

Type: integer

Default:

The default setting for this option is the lower of 80% of the MEM_LIMIT setting, or the MEM_LIMIT setting minus
100 MB.

Added in: Impala 2.10.0

Usage notes:

If queries encounter out-of-memory errors, consider decreasing the BUFFER_POOL_LIMIT setting to less than 80%
of the MEM_LIMIT setting.

Examples:

-- Set an absolute value.
set buffer_pool_limit=8GB;

 | Impala SQL Language Reference | 361

-- Set a relative value based on the MEM_LIMIT setting.
set buffer_pool_limit=80%;

Related information:

DEFAULT_SPILLABLE_BUFFER_SIZE Query Option on page 363, MAX_ROW_SIZE Query Option on page
374, MIN_SPILLABLE_BUFFER_SIZE Query Option on page 381, Scalability Considerations for Impala on
page 672

COMPRESSION_CODEC Query Option (Impala 2.0 or higher only)

When Impala writes Parquet data files using the INSERT statement, the underlying compression is controlled by the
COMPRESSION_CODEC query option.

Note: Prior to Impala 2.0, this option was named PARQUET_COMPRESSION_CODEC. In Impala 2.0 and later, the
PARQUET_COMPRESSION_CODEC name is not recognized. Use the more general name COMPRESSION_CODEC
for new code.

Syntax:

SET COMPRESSION_CODEC=codec_name;

The allowed values for this query option are SNAPPY (the default), GZIP, and NONE.

Note: A Parquet file created with COMPRESSION_CODEC=NONE is still typically smaller than the original data,
due to encoding schemes such as run-length encoding and dictionary encoding that are applied separately from
compression.

The option value is not case-sensitive.

If the option is set to an unrecognized value, all kinds of queries will fail due to the invalid option setting, not just
queries involving Parquet tables. (The value BZIP2 is also recognized, but is not compatible with Parquet tables.)

Type: STRING

Default: SNAPPY

Examples:

set compression_codec=gzip;
insert into parquet_table_highly_compressed select * from t1;

set compression_codec=snappy;
insert into parquet_table_compression_plus_fast_queries select * from t1;

set compression_codec=none;
insert into parquet_table_no_compression select * from t1;

set compression_codec=foo;
select * from t1 limit 5;
ERROR: Invalid compression codec: foo

Related information:

For information about how compressing Parquet data files affects query performance, see Snappy and GZip
Compression for Parquet Data Files on page 704.

DEBUG_ACTION Query Option

Introduces artificial problem conditions within queries. For internal debugging and troubleshooting.

Type: STRING

Default: empty string

 | Impala SQL Language Reference | 362

DECIMAL_V2 Query Option

A query option that changes behavior related to the DECIMAL data type.

Important:

This query option is currently unsupported. Its precise behavior is currently undefined and might change in the future.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

DEFAULT_JOIN_DISTRIBUTION_MODE Query Option

This option determines the join distribution that Impala uses when any of the tables involved in a join query is
missing statistics.

Impala optimizes join queries based on the presence of table statistics, which are produced by the Impala COMPUTE
STATS statement. By default, when a table involved in the join query does not have statistics, Impala uses the
“broadcast” technique that transmits the entire contents of the table to all executor nodes participating in the query. If
one table involved in a join has statistics and the other does not, the table without statistics is broadcast. If both tables
are missing statistics, the table that is referenced second in the join order is broadcast. This behavior is appropriate
when the table involved is relatively small, but can lead to excessive network, memory, and CPU overhead if the table
being broadcast is large.

Because Impala queries frequently involve very large tables, and suboptimal joins for such tables could result in
spilling or out-of-memory errors, the setting DEFAULT_JOIN_DISTRIBUTION_MODE=SHUFFLE lets you
override the default behavior. The shuffle join mechanism divides the corresponding rows of each table involved in a
join query using a hashing algorithm, and transmits subsets of the rows to other nodes for processing. Typically, this
kind of join is more efficient for joins between large tables of similar size.

The setting DEFAULT_JOIN_DISTRIBUTION_MODE=SHUFFLE is recommended when setting up and deploying
new clusters, because it is less likely to result in serious consequences such as spilling or out-of-memory errors if
the query plan is based on incomplete information. This setting is not the default, to avoid changing the performance
characteristics of join queries for clusters that are already tuned for their existing workloads.

Type: integer

The allowed values are BROADCAST (equivalent to 0) or SHUFFLE (equivalent to 1).

Examples:

The following examples demonstrate appropriate scenarios for each setting of this query option.

-- Create a billion-row table.
create table big_table stored as parquet
 as select * from huge_table limit 1e9;

-- For a big table with no statistics, the
-- shuffle join mechanism is appropriate.
set default_join_distribution_mode=shuffle;

...join queries involving the big table...

-- Create a hundred-row table.
create table tiny_table stored as parquet
 as select * from huge_table limit 100;

-- For a tiny table with no statistics, the
-- broadcast join mechanism is appropriate.
set default_join_distribution_mode=broadcast;

 | Impala SQL Language Reference | 363

...join queries involving the tiny table...

compute stats tiny_table;
compute stats big_table;

-- Once the stats are computed, the query option has
-- no effect on join queries involving these tables.
-- Impala can determine the absolute and relative sizes
-- of each side of the join query by examining the
-- row size, cardinality, and so on of each table.

...join queries involving both of these tables...

Related information:

COMPUTE STATS Statement on page 240, Joins in Impala SELECT Statements on page 324, Performance
Considerations for Join Queries on page 629

DEFAULT_ORDER_BY_LIMIT Query Option

Now that the ORDER BY clause no longer requires an accompanying LIMIT clause in Impala 1.4.0 and higher, this
query option is deprecated and has no effect.

Prior to Impala 1.4.0, Impala queries that use the ORDER BY clause must also include a LIMIT clause, to avoid
accidentally producing huge result sets that must be sorted. Sorting a huge result set is a memory-intensive operation.
In Impala 1.4.0 and higher, Impala uses a temporary disk work area to perform the sort if that operation would
otherwise exceed the Impala memory limit on a particular host.

Type: numeric

Default: -1 (no default limit)

DEFAULT_SPILLABLE_BUFFER_SIZE Query Option

Specifies the default size for a memory buffer used when the spill-to-disk mechanism is activated, for example for
queries against a large table with no statistics, or large join operations.

Type: integer

Default:

2097152 (2 MB)

Units: A numeric argument represents a size in bytes; you can also use a suffix of m or mb for megabytes, or g or gb
for gigabytes. If you specify a value with unrecognized formats, subsequent queries fail with an error.

Added in: Impala 2.10.0

Usage notes:

This query option sets an upper bound on the size of the internal buffer size that can be used during spill-to-disk
operations. The actual size of the buffer is chosen by the query planner.

If overall query performance is limited by the time needed for spilling, consider increasing the
DEFAULT_SPILLABLE_BUFFER_SIZE setting. Larger buffer sizes result in Impala issuing larger I/O requests to
storage devices, which might result in higher throughput, particularly on rotational disks.

The tradeoff with a large value for this setting is increased memory usage during spill-to-disk operations. Reducing
this value may reduce memory consumption.

To determine if the value for this setting is having an effect by capping the spillable buffer size, you can see the buffer
size chosen by the query planner for a particular query. EXPLAIN the query while the setting EXPLAIN_LEVEL=2
is in effect.

 | Impala SQL Language Reference | 364

Examples:

set default_spillable_buffer_size=4MB;

Related information:

BUFFER_POOL_LIMIT Query Option on page 360, MAX_ROW_SIZE Query Option on page 374,
MIN_SPILLABLE_BUFFER_SIZE Query Option on page 381, Scalability Considerations for Impala on page
672

DISABLE_CODEGEN Query Option

This is a debug option, intended for diagnosing and working around issues that cause crashes. If a query fails with an
“illegal instruction” or other hardware-specific message, try setting DISABLE_CODEGEN=true and running the
query again. If the query succeeds only when the DISABLE_CODEGEN option is turned on, submit the problem to
the appropriate support channel and include that detail in the problem report. Do not otherwise run with this setting
turned on, because it results in lower overall performance.

Because the code generation phase adds a small amount of overhead for each query, you might turn on the
DISABLE_CODEGEN option to achieve maximum throughput when running many short-lived queries against small
tables.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

DISABLE_ROW_RUNTIME_FILTERING Query Option (Impala 2.5 or higher only)

The DISABLE_ROW_RUNTIME_FILTERING query option reduces the scope of the runtime filtering feature.
Queries still dynamically prune partitions, but do not apply the filtering logic to individual rows within partitions.

Only applies to queries against Parquet tables. For other file formats, Impala only prunes at the level of partitions, not
individual rows.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false

Added in: Impala 2.5.0

Usage notes:

Impala automatically evaluates whether the per-row filters are being effective at reducing the amount of intermediate
data. Therefore, this option is typically only needed for the rare case where Impala cannot accurately determine how
effective the per-row filtering is for a query.

Because the runtime filtering feature applies mainly to resource-intensive and long-running queries, only adjust this
query option when tuning long-running queries involving some combination of large partitioned tables and joins
involving large tables.

Because this setting only improves query performance in very specific circumstances, depending on the query
characteristics and data distribution, only use it when you determine through benchmarking that it improves
performance of specific expensive queries. Consider setting this query option immediately before the expensive query
and unsetting it immediately afterward.

File format considerations:

This query option only applies to queries against HDFS-based tables using the Parquet file format.

Kudu considerations:

When applied to a query involving a Kudu table, this option turns off all runtime filtering for the Kudu table.

Related information:

 | Impala SQL Language Reference | 365

Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page 651, RUNTIME_FILTER_MODE Query
Option (Impala 2.5 or higher only) on page 391

DISABLE_STREAMING_PREAGGREGATIONS Query Option (Impala 2.5 or higher only)

Turns off the “streaming preaggregation” optimization that is available in Impala 2.5 and higher. This optimization
reduces unnecessary work performed by queries that perform aggregation operations on columns with few or no
duplicate values, for example DISTINCT id_column or GROUP BY unique_column. If the optimization
causes regressions in existing queries that use aggregation functions, you can turn it off as needed by setting this
query option.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Note: In Impala 2.5.0, only the value 1 enables the option, and the value true is not recognized. This limitation is
tracked by the issue IMPALA-3334, which shows the releases where the problem is fixed.

Usage notes:

Typically, queries that would require enabling this option involve very large numbers of aggregated values, such as a
billion or more distinct keys being processed on each worker node.

Added in: Impala 2.5.0

DISABLE_UNSAFE_SPILLS Query Option (Impala 2.0 or higher only)

Enable this option if you prefer to have queries fail when they exceed the Impala memory limit, rather than write
temporary data to disk.

Queries that “spill” to disk typically complete successfully, when in earlier Impala releases they would have failed.
However, queries with exorbitant memory requirements due to missing statistics or inefficient join clauses could
become so slow as a result that you would rather have them cancelled automatically and reduce the memory usage
through standard Impala tuning techniques.

This option prevents only “unsafe” spill operations, meaning that one or more tables are missing statistics or the query
does not include a hint to set the most efficient mechanism for a join or INSERT ... SELECT into a partitioned
table. These are the tables most likely to result in suboptimal execution plans that could cause unnecessary spilling.
Therefore, leaving this option enabled is a good way to find tables on which to run the COMPUTE STATS statement.

See SQL Operations that Spill to Disk on page 675 for information about the “spill to disk” feature for queries
processing large result sets with joins, ORDER BY, GROUP BY, DISTINCT, aggregation functions, or analytic
functions.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Added in: Impala 2.0.0

EXEC_SINGLE_NODE_ROWS_THRESHOLD Query Option (Impala 2.1 or higher only)

This setting controls the cutoff point (in terms of number of rows scanned) below which Impala treats a query as
a “small” query, turning off optimizations such as parallel execution and native code generation. The overhead for
these optimizations is applicable for queries involving substantial amounts of data, but it makes sense to skip them
for queries involving tiny amounts of data. Reducing the overhead for small queries allows Impala to complete them
more quickly, keeping YARN resources, admission control slots, and so on available for data-intensive queries.

Syntax:

SET EXEC_SINGLE_NODE_ROWS_THRESHOLD=number_of_rows

Type: numeric

Default: 100

https://issues.apache.org/jira/browse/IMPALA-3334

 | Impala SQL Language Reference | 366

Usage notes: Typically, you increase the default value to make this optimization apply to more queries. If incorrect
or corrupted table and column statistics cause Impala to apply this optimization incorrectly to queries that actually
involve substantial work, you might see the queries being slower as a result of remote reads. In that case, recompute
statistics with the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement. If there is a problem
collecting accurate statistics, you can turn this feature off by setting the value to -1.

Internal details:

This setting applies to query fragments where the amount of data to scan can be accurately determined, either through
table and column statistics, or by the presence of a LIMIT clause. If Impala cannot accurately estimate the size of the
input data, this setting does not apply.

In Impala 2.3 and higher, where Impala supports the complex data types STRUCT, ARRAY, and MAP, if a query
refers to any column of those types, the small-query optimization is turned off for that query regardless of the
EXEC_SINGLE_NODE_ROWS_THRESHOLD setting.

For a query that is determined to be “small”, all work is performed on the coordinator node. This might result in some
I/O being performed by remote reads. The savings from not distributing the query work and not generating native
code are expected to outweigh any overhead from the remote reads.

Added in: Impala 2.10

Examples:

A common use case is to query just a few rows from a table to inspect typical data values. In this example, Impala
does not parallelize the query or perform native code generation because the result set is guaranteed to be smaller than
the threshold value from this query option:

SET EXEC_SINGLE_NODE_ROWS_THRESHOLD=500;
SELECT * FROM enormous_table LIMIT 300;

EXPLAIN_LEVEL Query Option

Controls the amount of detail provided in the output of the EXPLAIN statement. The basic output can help you
identify high-level performance issues such as scanning a higher volume of data or more partitions than you expect.
The higher levels of detail show how intermediate results flow between nodes and how different SQL operations such
as ORDER BY, GROUP BY, joins, and WHERE clauses are implemented within a distributed query.

Type: STRING or INT

Default: 1

Arguments:

The allowed range of numeric values for this option is 0 to 3:

• 0 or MINIMAL: A barebones list, one line per operation. Primarily useful for checking the join order in very long
queries where the regular EXPLAIN output is too long to read easily.

• 1 or STANDARD: The default level of detail, showing the logical way that work is split up for the distributed
query.

• 2 or EXTENDED: Includes additional detail about how the query planner uses statistics in its decision-making
process, to understand how a query could be tuned by gathering statistics, using query hints, adding or removing
predicates, and so on.

• 3 or VERBOSE: The maximum level of detail, showing how work is split up within each node into “query
fragments” that are connected in a pipeline. This extra detail is primarily useful for low-level performance testing
and tuning within Impala itself, rather than for rewriting the SQL code at the user level.

Note: Prior to Impala 1.3, the allowed argument range for EXPLAIN_LEVEL was 0 to 1: level 0 had the mnemonic
NORMAL, and level 1 was VERBOSE. In Impala 1.3 and higher, NORMAL is not a valid mnemonic value, and
VERBOSE still applies to the highest level of detail but now corresponds to level 3. You might need to adjust the
values if you have any older impala-shell script files that set the EXPLAIN_LEVEL query option.

 | Impala SQL Language Reference | 367

Changing the value of this option controls the amount of detail in the output of the EXPLAIN statement. The
extended information from level 2 or 3 is especially useful during performance tuning, when you need to confirm
whether the work for the query is distributed the way you expect, particularly for the most resource-intensive
operations such as join queries against large tables, queries against tables with large numbers of partitions, and insert
operations for Parquet tables. The extended information also helps to check estimated resource usage when you use
the admission control or resource management features explained in Resource Management for Impala on page
76. See EXPLAIN Statement on page 297 for the syntax of the EXPLAIN statement, and Using the EXPLAIN
Plan for Performance Tuning on page 663 for details about how to use the extended information.

Usage notes:

As always, read the EXPLAIN output from bottom to top. The lowest lines represent the initial work of the query
(scanning data files), the lines in the middle represent calculations done on each node and how intermediate results
are transmitted from one node to another, and the topmost lines represent the final results being sent back to the
coordinator node.

The numbers in the left column are generated internally during the initial planning phase and do not represent the
actual order of operations, so it is not significant if they appear out of order in the EXPLAIN output.

At all EXPLAIN levels, the plan contains a warning if any tables in the query are missing statistics. Use the
COMPUTE STATS statement to gather statistics for each table and suppress this warning. See Table and Column
Statistics on page 636 for details about how the statistics help query performance.

The PROFILE command in impala-shell always starts with an explain plan showing full detail, the same as
with EXPLAIN_LEVEL=3. After the explain plan comes the executive summary, the same output as produced by the
SUMMARY command in impala-shell.

Examples:

These examples use a trivial, empty table to illustrate how the essential aspects of query planning are shown in
EXPLAIN output:

[localhost:21000] > create table t1 (x int, s string);
[localhost:21000] > set explain_level=1;
[localhost:21000] > explain select count(*) from t1;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=10.00MB VCores=1 |
| WARNING: The following tables are missing relevant table and/or column |
| statistics. |
| explain_plan.t1 |
| |
| 03:AGGREGATE [MERGE FINALIZE] |
| | output: sum(count(*)) |
| | |
| 02:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 01:AGGREGATE |
| | output: count(*) |
| | |
| 00:SCAN HDFS [explain_plan.t1] |
| partitions=1/1 size=0B |
+--+
[localhost:21000] > explain select * from t1;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0 |
| WARNING: The following tables are missing relevant table and/or column |
| statistics. |
| explain_plan.t1 |
| |

 | Impala SQL Language Reference | 368

| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 00:SCAN HDFS [explain_plan.t1] |
| partitions=1/1 size=0B |
+--+
[localhost:21000] > set explain_level=2;
[localhost:21000] > explain select * from t1;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0 |
| WARNING: The following tables are missing relevant table and/or column |
| statistics. |
| explain_plan.t1 |
| |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
	hosts=0 per-host-mem=unavailable
	tuple-ids=0 row-size=19B cardinality=unavailable
00:SCAN HDFS [explain_plan.t1, PARTITION=RANDOM]	
partitions=1/1 size=0B	
table stats: unavailable	
column stats: unavailable	
hosts=0 per-host-mem=0B	
tuple-ids=0 row-size=19B cardinality=unavailable	
+--+	
[localhost:21000] > set explain_level=3;	
[localhost:21000] > explain select * from t1;	
+--+	
Explain String	
+--+	
Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0	
WARNING: The following tables are missing relevant table and/or column	
statistics.	
explain_plan.t1	
F01:PLAN FRAGMENT [PARTITION=UNPARTITIONED]	
01:EXCHANGE [PARTITION=UNPARTITIONED]	
hosts=0 per-host-mem=unavailable	
tuple-ids=0 row-size=19B cardinality=unavailable	
F00:PLAN FRAGMENT [PARTITION=RANDOM]	
DATASTREAM SINK [FRAGMENT=F01, EXCHANGE=01, PARTITION=UNPARTITIONED]	
00:SCAN HDFS [explain_plan.t1, PARTITION=RANDOM]	
partitions=1/1 size=0B	
table stats: unavailable	
column stats: unavailable	
hosts=0 per-host-mem=0B	
tuple-ids=0 row-size=19B cardinality=unavailable	
+--+

As the warning message demonstrates, most of the information needed for Impala to do efficient query planning, and
for you to understand the performance characteristics of the query, requires running the COMPUTE STATS statement
for the table:

[localhost:21000] > compute stats t1;
+---+
| summary |
+---+
| Updated 1 partition(s) and 2 column(s). |
+---+
[localhost:21000] > explain select * from t1;
+--+

 | Impala SQL Language Reference | 369

| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0 |
| |
| F01:PLAN FRAGMENT [PARTITION=UNPARTITIONED] |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
| hosts=0 per-host-mem=unavailable |
| tuple-ids=0 row-size=20B cardinality=0 |
| |
| F00:PLAN FRAGMENT [PARTITION=RANDOM] |
| DATASTREAM SINK [FRAGMENT=F01, EXCHANGE=01, PARTITION=UNPARTITIONED] |
| 00:SCAN HDFS [explain_plan.t1, PARTITION=RANDOM] |
| partitions=1/1 size=0B |
| table stats: 0 rows total |
| column stats: all |
| hosts=0 per-host-mem=0B |
| tuple-ids=0 row-size=20B cardinality=0 |
+--+

Joins and other complicated, multi-part queries are the ones where you most commonly need to examine the
EXPLAIN output and customize the amount of detail in the output. This example shows the default EXPLAIN output
for a three-way join query, then the equivalent output with a [SHUFFLE] hint to change the join mechanism between
the first two tables from a broadcast join to a shuffle join.

[localhost:21000] > set explain_level=1;
[localhost:21000] > explain select one.*, two.*, three.* from t1 one, t1
 two, t1 three where one.x = two.x and two.x = three.x;
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=4.00GB VCores=3 |
| |
| 07:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 04:HASH JOIN [INNER JOIN, BROADCAST] |
	hash predicates: two.x = three.x	
	--06:EXCHANGE [BROADCAST]	
	02:SCAN HDFS [explain_plan.t1 three]	
	partitions=1/1 size=0B	
03:HASH JOIN [INNER JOIN, BROADCAST]		
	hash predicates: one.x = two.x	
	--05:EXCHANGE [BROADCAST]	
	01:SCAN HDFS [explain_plan.t1 two]	
	partitions=1/1 size=0B	
00:SCAN HDFS [explain_plan.t1 one]		
partitions=1/1 size=0B		
+---+
[localhost:21000] > explain select one.*, two.*, three.*
 > from t1 one join [shuffle] t1 two join t1 three
 > where one.x = two.x and two.x = three.x;
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=4.00GB VCores=3 |
| |
| 08:EXCHANGE [PARTITION=UNPARTITIONED] |

 | Impala SQL Language Reference | 370

| | |
| 04:HASH JOIN [INNER JOIN, BROADCAST] |
	hash predicates: two.x = three.x	
	--07:EXCHANGE [BROADCAST]	
	02:SCAN HDFS [explain_plan.t1 three]	
	partitions=1/1 size=0B	
03:HASH JOIN [INNER JOIN, PARTITIONED]		
	hash predicates: one.x = two.x	
	--06:EXCHANGE [PARTITION=HASH(two.x)]	
	01:SCAN HDFS [explain_plan.t1 two]	
	partitions=1/1 size=0B	
05:EXCHANGE [PARTITION=HASH(one.x)]		
00:SCAN HDFS [explain_plan.t1 one]		
partitions=1/1 size=0B		
+---+

For a join involving many different tables, the default EXPLAIN output might stretch over several pages, and the
only details you care about might be the join order and the mechanism (broadcast or shuffle) for joining each pair of
tables. In that case, you might set EXPLAIN_LEVEL to its lowest value of 0, to focus on just the join order and join
mechanism for each stage. The following example shows how the rows from the first and second joined tables are
hashed and divided among the nodes of the cluster for further filtering; then the entire contents of the third table are
broadcast to all nodes for the final stage of join processing.

[localhost:21000] > set explain_level=0;
[localhost:21000] > explain select one.*, two.*, three.*
 > from t1 one join [shuffle] t1 two join t1 three
 > where one.x = two.x and two.x = three.x;
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=4.00GB VCores=3 |
| |
| 08:EXCHANGE [PARTITION=UNPARTITIONED] |
| 04:HASH JOIN [INNER JOIN, BROADCAST] |
| |--07:EXCHANGE [BROADCAST] |
| | 02:SCAN HDFS [explain_plan.t1 three] |
| 03:HASH JOIN [INNER JOIN, PARTITIONED] |
| |--06:EXCHANGE [PARTITION=HASH(two.x)] |
| | 01:SCAN HDFS [explain_plan.t1 two] |
| 05:EXCHANGE [PARTITION=HASH(one.x)] |
| 00:SCAN HDFS [explain_plan.t1 one] |
+---+

HBASE_CACHE_BLOCKS Query Option

Setting this option is equivalent to calling the setCacheBlocks method of the class
org.apache.hadoop.hbase.client.Scan, in an HBase Java application. Helps to control the memory pressure on the
HBase RegionServer, in conjunction with the HBASE_CACHING query option.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Related information:

Using Impala to Query HBase Tables on page 738, HBASE_CACHING Query Option on page 371

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

 | Impala SQL Language Reference | 371

HBASE_CACHING Query Option

Setting this option is equivalent to calling the setCaching method of the class
org.apache.hadoop.hbase.client.Scan, in an HBase Java application. Helps to control the memory pressure on the
HBase RegionServer, in conjunction with the HBASE_CACHE_BLOCKS query option.

Type: BOOLEAN

Default: 0

Related information:

Using Impala to Query HBase Tables on page 738, HBASE_CACHE_BLOCKS Query Option on page 370

LIVE_PROGRESS Query Option (Impala 2.3 or higher only)

For queries submitted through the impala-shell command, displays an interactive progress bar showing roughly
what percentage of processing has been completed. When the query finishes, the progress bar is erased from the
impala-shell console output.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Command-line equivalent:

You can enable this query option within impala-shell by starting the shell with the --live_progress
command-line option. You can still turn this setting off and on again within the shell through the SET command.

Usage notes:

The output from this query option is printed to standard error. The output is only displayed in interactive mode, that
is, not when the -q or -f options are used.

For a more detailed way of tracking the progress of an interactive query through all phases of processing, see
LIVE_SUMMARY Query Option (Impala 2.3 or higher only) on page 372.

Restrictions:

Because the percentage complete figure is calculated using the number of issued and completed “scan ranges”,
which occur while reading the table data, the progress bar might reach 100% before the query is entirely finished.
For example, the query might do work to perform aggregations after all the table data has been read. If many of
your queries fall into this category, consider using the LIVE_SUMMARY option instead for more granular progress
reporting.

The LIVE_PROGRESS and LIVE_SUMMARY query options currently do not produce any output during COMPUTE
STATS operations.

Because the LIVE_PROGRESS and LIVE_SUMMARY query options are available only within the impala-shell
interpreter:

• You cannot change these query options through the SQL SET statement using the JDBC or ODBC interfaces. The
SET command in impala-shell recognizes these names as shell-only options.

• Be careful when using impala-shell on a pre-Impala 2.3 system to connect to a system running Impala 2.3 or
higher. The older impala-shell does not recognize these query option names. Upgrade impala-shell on
the systems where you intend to use these query options.

• Likewise, the impala-shell command relies on some information only available in Impala 2.3 and higher to
prepare live progress reports and query summaries. The LIVE_PROGRESS and LIVE_SUMMARY query options
have no effect when impala-shell connects to a cluster running an older version of Impala.

Added in: Impala 2.3.0

Examples:

[localhost:21000] > set live_progress=true;
LIVE_PROGRESS set to true

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

 | Impala SQL Language Reference | 372

[localhost:21000] > select count(*) from customer;
+----------+
| count(*) |
+----------+
| 150000 |
+----------+
[localhost:21000] > select count(*) from customer t1 cross join customer t2;
[###################################] 50%
[##]
 100%

To see how the LIVE_PROGRESS and LIVE_SUMMARY query options work in real time, see this animated demo.

LIVE_SUMMARY Query Option (Impala 2.3 or higher only)

For queries submitted through the impala-shell command, displays the same output as the SUMMARY command,
with the measurements updated in real time as the query progresses. When the query finishes, the final SUMMARY
output remains visible in the impala-shell console output.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Command-line equivalent:

You can enable this query option within impala-shell by starting the shell with the --live_summary
command-line option. You can still turn this setting off and on again within the shell through the SET command.

Usage notes:

The live summary output can be useful for evaluating long-running queries, to evaluate which phase of execution
takes up the most time, or if some hosts take much longer than others for certain operations, dragging overall
performance down. By making the information available in real time, this feature lets you decide what action to take
even before you cancel a query that is taking much longer than normal.

For example, you might see the HDFS scan phase taking a long time, and therefore revisit performance-related
aspects of your schema design such as constructing a partitioned table, switching to the Parquet file format, running
the COMPUTE STATS statement for the table, and so on. Or you might see a wide variation between the average
and maximum times for all hosts to perform some phase of the query, and therefore investigate if one particular host
needed more memory or was experiencing a network problem.

The output from this query option is printed to standard error. The output is only displayed in interactive mode, that
is, not when the -q or -f options are used.

For a simple and concise way of tracking the progress of an interactive query, see LIVE_PROGRESS Query Option
(Impala 2.3 or higher only) on page 371.

Restrictions:

The LIVE_PROGRESS and LIVE_SUMMARY query options currently do not produce any output during COMPUTE
STATS operations.

Because the LIVE_PROGRESS and LIVE_SUMMARY query options are available only within the impala-shell
interpreter:

• You cannot change these query options through the SQL SET statement using the JDBC or ODBC interfaces. The
SET command in impala-shell recognizes these names as shell-only options.

• Be careful when using impala-shell on a pre-Impala 2.3 system to connect to a system running Impala 2.3 or
higher. The older impala-shell does not recognize these query option names. Upgrade impala-shell on
the systems where you intend to use these query options.

https://asciinema.org/a/1rv7qippo0fe7h5k1b6k4nexk

 | Impala SQL Language Reference | 373

• Likewise, the impala-shell command relies on some information only available in Impala 2.3 and higher to
prepare live progress reports and query summaries. The LIVE_PROGRESS and LIVE_SUMMARY query options
have no effect when impala-shell connects to a cluster running an older version of Impala.

Added in: Impala 2.3.0

Examples:

The following example shows a series of LIVE_SUMMARY reports that are displayed during the course of a query,
showing how the numbers increase to show the progress of different phases of the distributed query. When you do
the same in impala-shell, only a single report is displayed at any one time, with each update overwriting the
previous numbers.

[localhost:21000] > set live_summary=true;
LIVE_SUMMARY set to true
[localhost:21000] > select count(*) from customer t1 cross join customer t2;
+---------------------+--------+----------+----------+---------+------------
+----------+---------------+-----------------------+
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows
 | Peak Mem | Est. Peak Mem | Detail |
+---------------------+--------+----------+----------+---------+------------
+----------+---------------+-----------------------+
| 06:AGGREGATE | 0 | 0ns | 0ns | 0 | 1
 | 0 B | -1 B | FINALIZE |
| 05:EXCHANGE | 0 | 0ns | 0ns | 0 | 1
 | 0 B | -1 B | UNPARTITIONED |
| 03:AGGREGATE | 0 | 0ns | 0ns | 0 | 1
 | 0 B | 10.00 MB | |
| 02:NESTED LOOP JOIN | 0 | 0ns | 0ns | 0 | 22.50B
 | 0 B | 0 B | CROSS JOIN, BROADCAST |
| |--04:EXCHANGE | 0 | 0ns | 0ns | 0 | 150.00K
 | 0 B | 0 B | BROADCAST |
| | 01:SCAN HDFS | 1 | 503.57ms | 503.57ms | 150.00K | 150.00K
 | 24.09 MB | 64.00 MB | tpch.customer t2 |
| 00:SCAN HDFS | 0 | 0ns | 0ns | 0 | 150.00K
 | 0 B | 64.00 MB | tpch.customer t1 |
+---------------------+--------+----------+----------+---------+------------
+----------+---------------+-----------------------+

+---------------------+--------+----------+----------+---------+------------
+----------+---------------+-----------------------+
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows
 | Peak Mem | Est. Peak Mem | Detail |
+---------------------+--------+----------+----------+---------+------------
+----------+---------------+-----------------------+
| 06:AGGREGATE | 0 | 0ns | 0ns | 0 | 1
 | 0 B | -1 B | FINALIZE |
| 05:EXCHANGE | 0 | 0ns | 0ns | 0 | 1
 | 0 B | -1 B | UNPARTITIONED |
| 03:AGGREGATE | 1 | 0ns | 0ns | 0 | 1
 | 20.00 KB | 10.00 MB | |
| 02:NESTED LOOP JOIN | 1 | 17.62s | 17.62s | 81.14M | 22.50B
 | 3.23 MB | 0 B | CROSS JOIN, BROADCAST |
| |--04:EXCHANGE | 1 | 26.29ms | 26.29ms | 150.00K | 150.00K
 | 0 B | 0 B | BROADCAST |
| | 01:SCAN HDFS | 1 | 503.57ms | 503.57ms | 150.00K | 150.00K
 | 24.09 MB | 64.00 MB | tpch.customer t2 |
| 00:SCAN HDFS | 1 | 247.53ms | 247.53ms | 1.02K | 150.00K
 | 24.39 MB | 64.00 MB | tpch.customer t1 |
+---------------------+--------+----------+----------+---------+------------
+----------+---------------+-----------------------+

+---------------------+--------+----------+----------+---------+------------
+----------+---------------+-----------------------+

 | Impala SQL Language Reference | 374

| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows
 | Peak Mem | Est. Peak Mem | Detail |
+---------------------+--------+----------+----------+---------+------------
+----------+---------------+-----------------------+
| 06:AGGREGATE | 0 | 0ns | 0ns | 0 | 1
 | 0 B | -1 B | FINALIZE |
| 05:EXCHANGE | 0 | 0ns | 0ns | 0 | 1
 | 0 B | -1 B | UNPARTITIONED |
| 03:AGGREGATE | 1 | 0ns | 0ns | 0 | 1
 | 20.00 KB | 10.00 MB | |
| 02:NESTED LOOP JOIN | 1 | 61.85s | 61.85s | 283.43M | 22.50B
 | 3.23 MB | 0 B | CROSS JOIN, BROADCAST |
| |--04:EXCHANGE | 1 | 26.29ms | 26.29ms | 150.00K | 150.00K
 | 0 B | 0 B | BROADCAST |
| | 01:SCAN HDFS | 1 | 503.57ms | 503.57ms | 150.00K | 150.00K
 | 24.09 MB | 64.00 MB | tpch.customer t2 |
| 00:SCAN HDFS | 1 | 247.59ms | 247.59ms | 2.05K | 150.00K
 | 24.39 MB | 64.00 MB | tpch.customer t1 |
+---------------------+--------+----------+----------+---------+------------
+----------+---------------+-----------------------+

To see how the LIVE_PROGRESS and LIVE_SUMMARY query options work in real time, see this animated demo.

MAX_ERRORS Query Option

Maximum number of non-fatal errors for any particular query that are recorded in the Impala log file. For example, if
a billion-row table had a non-fatal data error in every row, you could diagnose the problem without all billion errors
being logged. Unspecified or 0 indicates the built-in default value of 1000.

This option only controls how many errors are reported. To specify whether Impala continues or halts when it
encounters such errors, use the ABORT_ON_ERROR option.

Type: numeric

Default: 0 (meaning 1000 errors)

Related information:

ABORT_ON_ERROR Query Option on page 359, Using Impala Logging on page 764

MAX_IO_BUFFERS Query Option

Deprecated query option. Currently has no effect.

Type: numeric

Default: 0

MAX_ROW_SIZE Query Option

Ensures that Impala can process rows of at least the specified size. (Larger rows might be successfully processed, but
that is not guaranteed.) Applies when constructing intermediate or final rows in the result set. This setting prevents
out-of-control memory use when accessing columns containing huge strings.

Type: integer

Default:

524288 (512 KB)

Units: A numeric argument represents a size in bytes; you can also use a suffix of m or mb for megabytes, or g or gb
for gigabytes. If you specify a value with unrecognized formats, subsequent queries fail with an error.

Added in: Impala 2.10.0

Usage notes:

https://asciinema.org/a/1rv7qippo0fe7h5k1b6k4nexk

 | Impala SQL Language Reference | 375

If a query fails because it involves rows with long strings and/or many columns, causing the total row size to exceed
MAX_ROW_SIZE bytes, increase the MAX_ROW_SIZE setting to accommodate the total bytes stored in the largest
row. Examine the error messages for any failed queries to see the size of the row that caused the problem.

Impala attempts to handle rows that exceed the MAX_ROW_SIZE value where practical, so in many cases, queries
succeed despite having rows that are larger than this setting.

Specifying a value that is substantially higher than actually needed can cause Impala to reserve more memory than is
necessary to execute the query.

In a Hadoop cluster with highly concurrent workloads and queries that process high volumes of data, traditional SQL
tuning advice about minimizing wasted memory is worth remembering. For example, if a table has STRING columns
where a single value might be multiple megabytes, make sure that the SELECT lists in queries only refer to columns
that are actually needed in the result set, instead of using the SELECT * shorthand.

Examples:

The following examples show the kinds of situations where it is necessary to adjust the MAX_ROW_SIZE setting.
First, we create a table containing some very long values in STRING columns:

create table big_strings (s1 string, s2 string, s3 string) stored as
 parquet;

-- Turn off compression to more easily reason about data volume by doing
 SHOW TABLE STATS.
-- Does not actually affect query success or failure, because MAX_ROW_SIZE
 applies when
-- column values are materialized in memory.
set compression_codec=none;
set;
...
 MAX_ROW_SIZE: [524288]
...

-- A very small row.
insert into big_strings values ('one', 'two', 'three');
-- A row right around the default MAX_ROW_SIZE limit: a 500 KiB string and a
 30 KiB string.
insert into big_strings values (repeat('12345',100000), 'short',
 repeat('123',10000));
-- A row that is too big if the query has to materialize both S1 and S3.
insert into big_strings values (repeat('12345',100000), 'short',
 repeat('12345',100000));

With the default MAX_ROW_SIZE setting, different queries succeed or fail based on which column values have to be
materialized during query processing:

-- All the S1 values can be materialized within the 512 KB MAX_ROW_SIZE
 buffer.
select count(distinct s1) from big_strings;
+--------------------+
| count(distinct s1) |
+--------------------+
| 2 |
+--------------------+

-- A row where even the S1 value is too large to materialize within
 MAX_ROW_SIZE.
insert into big_strings values (repeat('12345',1000000), 'short',
 repeat('12345',1000000));

 | Impala SQL Language Reference | 376

-- The 5 MiB string is too large to materialize. The message explains the
 size of the result
-- set row the query is attempting to materialize.
select count(distinct(s1)) from big_strings;
WARNINGS: Row of size 4.77 MB could not be materialized in plan node with id
 1.
 Increase the max_row_size query option (currently 512.00 KB) to process
 larger rows.

-- If more columns are involved, the result set row being materialized is
 bigger.
select count(distinct s1, s2, s3) from big_strings;
WARNINGS: Row of size 9.54 MB could not be materialized in plan node with id
 1.
 Increase the max_row_size query option (currently 512.00 KB) to process
 larger rows.

-- Column S2, containing only short strings, can still be examined.
select count(distinct(s2)) from big_strings;
+----------------------+
| count(distinct (s2)) |
+----------------------+
| 2 |
+----------------------+

-- Queries that do not materialize the big column values are OK.
select count(*) from big_strings;
+----------+
| count(*) |
+----------+
| 4 |
+----------+

The following examples show how adjusting MAX_ROW_SIZE upward allows queries involving the long string
columns to succeed:

-- Boosting MAX_ROW_SIZE moderately allows all S1 values to be materialized.
set max_row_size=7mb;

select count(distinct s1) from big_strings;
+--------------------+
| count(distinct s1) |
+--------------------+
| 3 |
+--------------------+

-- But the combination of S1 + S3 strings is still too large.
select count(distinct s1, s2, s3) from big_strings;
WARNINGS: Row of size 9.54 MB could not be materialized in plan node with id
 1. Increase the max_row_size query option (currently 7.00 MB) to process
 larger rows.

-- Boosting MAX_ROW_SIZE to larger than the largest row in the table allows
-- all queries to complete successfully.
set max_row_size=12mb;

select count(distinct s1, s2, s3) from big_strings;
+----------------------------+
| count(distinct s1, s2, s3) |
+----------------------------+

 | Impala SQL Language Reference | 377

| 4 |
+----------------------------+

The following examples show how to reason about appropriate values for MAX_ROW_SIZE, based on the
characteristics of the columns containing the long values:

-- With a large MAX_ROW_SIZE in place, we can examine the columns to
-- understand the practical lower limit for MAX_ROW_SIZE based on the
-- table structure and column values.
select max(length(s1) + length(s2) + length(s3)) / 1e6 as megabytes from
 big_strings;
+-----------+
| megabytes |
+-----------+
| 10.000005 |
+-----------+

-- We can also examine the 'Max Size' for each column after computing stats.
compute stats big_strings;
show column stats big_strings;
+--------+--------+------------------+--------+----------+-----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+-----------+
s1	STRING	2	-1	5000000	2500002.5
s2	STRING	2	-1	10	7.5
s3	STRING	2	-1	5000000	2500005
+--------+--------+------------------+--------+----------+-----------+

Related information:

BUFFER_POOL_LIMIT Query Option on page 360, DEFAULT_SPILLABLE_BUFFER_SIZE Query Option on
page 363, MIN_SPILLABLE_BUFFER_SIZE Query Option on page 381, Scalability Considerations for Impala
on page 672

MAX_NUM_RUNTIME_FILTERS Query Option (Impala 2.5 or higher only)

The MAX_NUM_RUNTIME_FILTERS query option sets an upper limit on the number of runtime filters that can be
produced for each query.

Type: integer

Default: 10

Added in: Impala 2.5.0

Usage notes:

Each runtime filter imposes some memory overhead on the query. Depending on the setting of the
RUNTIME_BLOOM_FILTER_SIZE query option, each filter might consume between 1 and 16 megabytes per plan
fragment. There are typically 5 or fewer filters per plan fragment.

Impala evaluates the effectiveness of each filter, and keeps the ones that eliminate the largest number of partitions
or rows. Therefore, this setting can protect against potential problems due to excessive memory overhead for filter
production, while still allowing a high level of optimization for suitable queries.

Because the runtime filtering feature applies mainly to resource-intensive and long-running queries, only adjust this
query option when tuning long-running queries involving some combination of large partitioned tables and joins
involving large tables.

Kudu considerations:

 | Impala SQL Language Reference | 378

This query option affects only Bloom filters, not the min/max filters that are applied to Kudu tables. Therefore, it does
not affect the performance of queries against Kudu tables.

Related information:

Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page 651,
RUNTIME_BLOOM_FILTER_SIZE Query Option (Impala 2.5 or higher only) on page 389,
RUNTIME_FILTER_MODE Query Option (Impala 2.5 or higher only) on page 391

MAX_SCAN_RANGE_LENGTH Query Option

Maximum length of the scan range. Interacts with the number of HDFS blocks in the table to determine how many
CPU cores across the cluster are involved with the processing for a query. (Each core processes one scan range.)

Lowering the value can sometimes increase parallelism if you have unused CPU capacity, but a too-small value can
limit query performance because each scan range involves extra overhead.

Only applicable to HDFS tables. Has no effect on Parquet tables. Unspecified or 0 indicates backend default, which is
the same as the HDFS block size for each table.

Although the scan range can be arbitrarily long, Impala internally uses an 8 MB read buffer so that it can query tables
with huge block sizes without allocating equivalent blocks of memory.

Type: numeric

In Impala 2.7 and higher, the argument value can include unit specifiers, such as 100m or 100mb. In previous
versions, Impala interpreted such formatted values as 0, leading to query failures.

Default: 0

MEM_LIMIT Query Option

When resource management is not enabled, defines the maximum amount of memory a query can allocate on each
node. Therefore, the total memory that can be used by a query is the MEM_LIMIT times the number of nodes.

There are two levels of memory limit for Impala. The -mem_limit startup option sets an overall limit for the
impalad process (which handles multiple queries concurrently). That limit is typically expressed in terms of a
percentage of the RAM available on the host, such as -mem_limit=70%. The MEM_LIMIT query option, which
you set through impala-shell or the SET statement in a JDBC or ODBC application, applies to each individual
query. The MEM_LIMIT query option is usually expressed as a fixed size such as 10gb, and must always be less than
the impalad memory limit.

If query processing exceeds the specified memory limit on any node, either the per-query limit or the impalad limit,
Impala cancels the query automatically. Memory limits are checked periodically during query processing, so the
actual memory in use might briefly exceed the limit without the query being cancelled.

When resource management is enabled, the mechanism for this option changes. If set, it overrides the automatic
memory estimate from Impala. Impala requests this amount of memory from YARN on each node, and the query does
not proceed until that much memory is available. The actual memory used by the query could be lower, since some
queries use much less memory than others. With resource management, the MEM_LIMIT setting acts both as a hard
limit on the amount of memory a query can use on any node (enforced by YARN) and a guarantee that that much
memory will be available on each node while the query is being executed. When resource management is enabled but
no MEM_LIMIT setting is specified, Impala estimates the amount of memory needed on each node for each query,
requests that much memory from YARN before starting the query, and then internally sets the MEM_LIMIT on each
node to the requested amount of memory during the query. Thus, if the query takes more memory than was originally
estimated, Impala detects that the MEM_LIMIT is exceeded and cancels the query itself.

Type: numeric

Units: A numeric argument represents memory size in bytes; you can also use a suffix of m or mb for megabytes, or
more commonly g or gb for gigabytes. If you specify a value with unrecognized formats, subsequent queries fail with
an error.

Default: 0 (unlimited)

Usage notes:

 | Impala SQL Language Reference | 379

The MEM_LIMIT setting is primarily useful in a high-concurrency setting, or on a cluster with a workload shared
between Impala and other data processing components. You can prevent any query from accidentally using much
more memory than expected, which could negatively impact other Impala queries.

Use the output of the SUMMARY command in impala-shell to get a report of memory used for each phase of
your most heavyweight queries on each node, and then set a MEM_LIMIT somewhat higher than that. See Using the
SUMMARY Report for Performance Tuning on page 663 for usage information about the SUMMARY command.

Examples:

The following examples show how to set the MEM_LIMIT query option using a fixed number of bytes, or suffixes
representing gigabytes or megabytes.

[localhost:21000] > set mem_limit=3000000000;
MEM_LIMIT set to 3000000000
[localhost:21000] > select 5;
Query: select 5
+---+
| 5 |
+---+
| 5 |
+---+

[localhost:21000] > set mem_limit=3g;
MEM_LIMIT set to 3g
[localhost:21000] > select 5;
Query: select 5
+---+
| 5 |
+---+
| 5 |
+---+

[localhost:21000] > set mem_limit=3gb;
MEM_LIMIT set to 3gb
[localhost:21000] > select 5;
+---+
| 5 |
+---+
| 5 |
+---+

[localhost:21000] > set mem_limit=3m;
MEM_LIMIT set to 3m
[localhost:21000] > select 5;
+---+
| 5 |
+---+
| 5 |
+---+
[localhost:21000] > set mem_limit=3mb;
MEM_LIMIT set to 3mb
[localhost:21000] > select 5;
+---+
| 5 |
+---+

The following examples show how unrecognized MEM_LIMIT values lead to errors for subsequent queries.

[localhost:21000] > set mem_limit=3tb;
MEM_LIMIT set to 3tb

 | Impala SQL Language Reference | 380

[localhost:21000] > select 5;
ERROR: Failed to parse query memory limit from '3tb'.

[localhost:21000] > set mem_limit=xyz;
MEM_LIMIT set to xyz
[localhost:21000] > select 5;
Query: select 5
ERROR: Failed to parse query memory limit from 'xyz'.

The following examples shows the automatic query cancellation when the MEM_LIMIT value is exceeded on any
host involved in the Impala query. First it runs a successful query and checks the largest amount of memory used on
any node for any stage of the query. Then it sets an artificially low MEM_LIMIT setting so that the same query cannot
run.

[localhost:21000] > select count(*) from customer;
Query: select count(*) from customer
+----------+
| count(*) |
+----------+
| 150000 |
+----------+

[localhost:21000] > select count(distinct c_name) from customer;
Query: select count(distinct c_name) from customer
+------------------------+
| count(distinct c_name) |
+------------------------+
| 150000 |
+------------------------+

[localhost:21000] > summary;
+--------------+--------+----------+----------+---------+------------
+----------+---------------+---------------+
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows | Peak
 Mem | Est. Peak Mem | Detail |
+--------------+--------+----------+----------+---------+------------
+----------+---------------+---------------+
| 06:AGGREGATE | 1 | 230.00ms | 230.00ms | 1 | 1 | 16.00
 KB | -1 B | FINALIZE |
| 05:EXCHANGE | 1 | 43.44us | 43.44us | 1 | 1 | 0 B
 | -1 B | UNPARTITIONED |
| 02:AGGREGATE | 1 | 227.14ms | 227.14ms | 1 | 1 | 12.00
 KB | 10.00 MB | |
| 04:AGGREGATE | 1 | 126.27ms | 126.27ms | 150.00K | 150.00K | 15.17
 MB | 10.00 MB | |
| 03:EXCHANGE | 1 | 44.07ms | 44.07ms | 150.00K | 150.00K | 0 B
 | 0 B | HASH(c_name) |
| 01:AGGREGATE | 1 | 361.94ms | 361.94ms | 150.00K | 150.00K | 23.04
 MB | 10.00 MB | |
| 00:SCAN HDFS | 1 | 43.64ms | 43.64ms | 150.00K | 150.00K | 24.19
 MB | 64.00 MB | tpch.customer |
+--------------+--------+----------+----------+---------+------------
+----------+---------------+---------------+

[localhost:21000] > set mem_limit=15mb;
MEM_LIMIT set to 15mb
[localhost:21000] > select count(distinct c_name) from customer;
Query: select count(distinct c_name) from customer
ERROR:
Memory limit exceeded

 | Impala SQL Language Reference | 381

Query did not have enough memory to get the minimum required buffers in the
 block manager.

MIN_SPILLABLE_BUFFER_SIZE Query Option

Specifies the minimum size for a memory buffer used when the spill-to-disk mechanism is activated, for example for
queries against a large table with no statistics, or large join operations.

Type: integer

Default:

65536 (64 KB)

Units: A numeric argument represents a size in bytes; you can also use a suffix of m or mb for megabytes, or g or gb
for gigabytes. If you specify a value with unrecognized formats, subsequent queries fail with an error.

Added in: Impala 2.10.0

Usage notes:

This query option sets a lower bound on the size of the internal buffer size that can be used during spill-to-disk
operations. The actual size of the buffer is chosen by the query planner.

If overall query performance is limited by the time needed for spilling, consider increasing the
MIN_SPILLABLE_BUFFER_SIZE setting. Larger buffer sizes result in Impala issuing larger I/O requests to
storage devices, which might result in higher throughput, particularly on rotational disks.

The tradeoff with a large value for this setting is increased memory usage during spill-to-disk operations. Reducing
this value may reduce memory consumption.

To determine if the value for this setting is having an effect by capping the spillable buffer size, you can see the buffer
size chosen by the query planner for a particular query. EXPLAIN the query while the setting EXPLAIN_LEVEL=2
is in effect.

Examples:

set min_spillable_buffer_size=128KB;

Related information:

BUFFER_POOL_LIMIT Query Option on page 360, DEFAULT_SPILLABLE_BUFFER_SIZE Query Option on
page 363, MAX_ROW_SIZE Query Option on page 374, Scalability Considerations for Impala on page 672

MT_DOP Query Option

Sets the degree of intra-node parallelism used for certain operations that can benefit from multithreaded execution.
You can specify values higher than zero to find the ideal balance of response time, memory usage, and CPU usage
during statement processing.

Note:

The Impala execution engine is being revamped incrementally to add additional parallelism within a single host for
certain statements and kinds of operations. The setting MT_DOP=0 uses the “old” code path with limited intra-node
parallelism.

Currently, the operations affected by the MT_DOP query option are:

• COMPUTE [INCREMENTAL] STATS. Impala automatically sets MT_DOP=4 for COMPUTE STATS and
COMPUTE INCREMENTAL STATS statements on Parquet tables.

• Queries with execution plans containing only scan and aggregation operators, or local joins that do not need
data exchanges (such as for nested types). Other queries produce an error if MT_DOP is set to a non-zero value.
Therefore, this query option is typically only set for the duration of specific long-running, CPU-intensive queries.

Type: integer

 | Impala SQL Language Reference | 382

Default: 0

Because COMPUTE STATS and COMPUTE INCREMENTAL STATS statements for Parquet tables benefit
substantially from extra intra-node parallelism, Impala automatically sets MT_DOP=4 when computing stats for
Parquet tables.

Range: 0 to 64

Examples:

Note:

Any timing figures in the following examples are on a small, lightly loaded development cluster. Your mileage may
vary. Speedups depend on many factors, including the number of rows, columns, and partitions within each table.

The following example shows how to run a COMPUTE STATS statement against a Parquet table with or without an
explicit MT_DOP setting:

-- Explicitly setting MT_DOP to 0 selects the old code path.
set mt_dop = 0;
MT_DOP set to 0

-- The analysis for the billion rows is distributed among hosts,
-- but uses only a single core on each host.
compute stats billion_rows_parquet;
+---+
| summary |
+---+
| Updated 1 partition(s) and 2 column(s). |
+---+

drop stats billion_rows_parquet;

-- Using 4 logical processors per host is faster.
set mt_dop = 4;
MT_DOP set to 4

compute stats billion_rows_parquet;
+---+
| summary |
+---+
| Updated 1 partition(s) and 2 column(s). |
+---+

drop stats billion_rows_parquet;

-- Unsetting the option reverts back to its default.
-- Which for COMPUTE STATS and a Parquet table is 4,
-- so again it uses the fast path.
unset MT_DOP;
Unsetting option MT_DOP

compute stats billion_rows_parquet;
+---+
| summary |
+---+
| Updated 1 partition(s) and 2 column(s). |
+---+

 | Impala SQL Language Reference | 383

The following example shows the effects of setting MT_DOP for a query involving only scan and aggregation
operations for a Parquet table:

set mt_dop = 0;
MT_DOP set to 0

-- COUNT(DISTINCT) for a unique column is CPU-intensive.
select count(distinct id) from billion_rows_parquet;
+--------------------+
| count(distinct id) |
+--------------------+
| 1000000000 |
+--------------------+
Fetched 1 row(s) in 67.20s

set mt_dop = 16;
MT_DOP set to 16

-- Introducing more intra-node parallelism for the aggregation
-- speeds things up, and potentially reduces memory overhead by
-- reducing the number of scanner threads.
select count(distinct id) from billion_rows_parquet;
+--------------------+
| count(distinct id) |
+--------------------+
| 1000000000 |
+--------------------+
Fetched 1 row(s) in 17.19s

The following example shows how queries that are not compatible with non-zero MT_DOP settings produce an error
when MT_DOP is set:

set mt_dop=1;
MT_DOP set to 1

select * from a1 inner join a2
 on a1.id = a2.id limit 4;
ERROR: NotImplementedException: MT_DOP not supported for plans with
 base table joins or table sinks.

Related information:

COMPUTE STATS Statement on page 240, Impala Aggregate Functions on page 537

NUM_NODES Query Option

Limit the number of nodes that process a query, typically during debugging.

Type: numeric

Allowed values: Only accepts the values 0 (meaning all nodes) or 1 (meaning all work is done on the coordinator
node).

Default: 0

Usage notes:

If you are diagnosing a problem that you suspect is due to a timing issue due to distributed query processing, you can
set NUM_NODES=1 to verify if the problem still occurs when all the work is done on a single node.

 | Impala SQL Language Reference | 384

You might set the NUM_NODES option to 1 briefly, during INSERT or CREATE TABLE AS SELECT statements.
Normally, those statements produce one or more data files per data node. If the write operation involves small
amounts of data, a Parquet table, and/or a partitioned table, the default behavior could produce many small files when
intuitively you might expect only a single output file. SET NUM_NODES=1 turns off the “distributed” aspect of the
write operation, making it more likely to produce only one or a few data files.

Warning:

Because this option results in increased resource utilization on a single host, it could cause problems due to
contention with other Impala statements or high resource usage. Symptoms could include queries running
slowly, exceeding the memory limit, or appearing to hang. Use it only in a single-user development/test
environment; do not use it in a production environment or in a cluster with a high-concurrency or high-
volume or performance-critical workload.

NUM_SCANNER_THREADS Query Option

Maximum number of scanner threads (on each node) used for each query. By default, Impala uses as many cores as
are available (one thread per core). You might lower this value if queries are using excessive resources on a busy
cluster. Impala imposes a maximum value automatically, so a high value has no practical effect.

Type: numeric

Default: 0

OPTIMIZE_PARTITION_KEY_SCANS Query Option (Impala 2.5 or higher only)

Enables a fast code path for queries that apply simple aggregate functions to partition key columns:
MIN(key_column), MAX(key_column), or COUNT(DISTINCT key_column).

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Note: In Impala 2.5.0, only the value 1 enables the option, and the value true is not recognized. This limitation is
tracked by the issue IMPALA-3334, which shows the releases where the problem is fixed.

Added in: Impala 2.5.0

Usage notes:

This optimization speeds up common “introspection” operations when using queries to calculate the cardinality and
range for partition key columns.

This optimization does not apply if the queries contain any WHERE, GROUP BY, or HAVING clause. The relevant
queries should only compute the minimum, maximum, or number of distinct values for the partition key columns
across the whole table.

This optimization is enabled by a query option because it skips some consistency checks and therefore can return
slightly different partition values if partitions are in the process of being added, dropped, or loaded outside of Impala.
Queries might exhibit different behavior depending on the setting of this option in the following cases:

• If files are removed from a partition using HDFS or other non-Impala operations, there is a period until the next
REFRESH of the table where regular queries fail at run time because they detect the missing files. With this
optimization enabled, queries that evaluate only the partition key column values (not the contents of the partition
itself) succeed, and treat the partition as if it still exists.

• If a partition contains any data files, but the data files do not contain any rows, a regular query considers that the
partition does not exist. With this optimization enabled, the partition is treated as if it exists.

If the partition includes no files at all, this optimization does not change the query behavior: the partition is
considered to not exist whether or not this optimization is enabled.

Examples:

https://issues.apache.org/jira/browse/IMPALA-3334

 | Impala SQL Language Reference | 385

The following example shows initial schema setup and the default behavior of queries that return just the partition key
column for a table:

-- Make a partitioned table with 3 partitions.
create table t1 (s string) partitioned by (year int);
insert into t1 partition (year=2015) values ('last year');
insert into t1 partition (year=2016) values ('this year');
insert into t1 partition (year=2017) values ('next year');

-- Regardless of the option setting, this query must read the
-- data files to know how many rows to return for each year value.
explain select year from t1;
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=0B VCores=0 |
| |
| F00:PLAN FRAGMENT [UNPARTITIONED] |
| 00:SCAN HDFS [key_cols.t1] |
| partitions=3/3 files=4 size=40B |
| table stats: 3 rows total |
| column stats: all |
| hosts=3 per-host-mem=unavailable |
| tuple-ids=0 row-size=4B cardinality=3 |
+---+

-- The aggregation operation means the query does not need to read
-- the data within each partition: the result set contains exactly 1 row
-- per partition, derived from the partition key column value.
-- By default, Impala still includes a 'scan' operation in the query.
explain select distinct year from t1;
+--
+
| Explain String
 |
+--
+
| Estimated Per-Host Requirements: Memory=0B VCores=0
 |
|
 |
| 01:AGGREGATE [FINALIZE]
 |
| | group by: year
 |
| |
 |
| 00:SCAN HDFS [key_cols.t1]
 |
| partitions=0/0 files=0 size=0B
 |
+--
+

The following examples show how the plan is made more efficient when the
OPTIMIZE_PARTITION_KEY_SCANS option is enabled:

set optimize_partition_key_scans=1;
OPTIMIZE_PARTITION_KEY_SCANS set to 1

-- The aggregation operation is turned into a UNION internally,

 | Impala SQL Language Reference | 386

-- with constant values known in advance based on the metadata
-- for the partitioned table.
explain select distinct year from t1;
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=0B VCores=0 |
| |
| F00:PLAN FRAGMENT [UNPARTITIONED] |
| 01:AGGREGATE [FINALIZE] |
	group by: year
	hosts=1 per-host-mem=unavailable
	tuple-ids=1 row-size=4B cardinality=3
00:UNION	
constant-operands=3	
hosts=1 per-host-mem=unavailable	
tuple-ids=0 row-size=4B cardinality=3	
+---+

-- The same optimization applies to other aggregation queries
-- that only return values based on partition key columns:
-- MIN, MAX, COUNT(DISTINCT), and so on.
explain select min(year) from t1;
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=0B VCores=0 |
| |
| F00:PLAN FRAGMENT [UNPARTITIONED] |
| 01:AGGREGATE [FINALIZE] |
	output: min(year)
	hosts=1 per-host-mem=unavailable
	tuple-ids=1 row-size=4B cardinality=1
00:UNION	
constant-operands=3	
hosts=1 per-host-mem=unavailable	
tuple-ids=0 row-size=4B cardinality=3	
+---+

PARQUET_COMPRESSION_CODEC Query Option

Deprecated. Use COMPRESSION_CODEC in Impala 2.0 and later. See COMPRESSION_CODEC Query Option
(Impala 2.0 or higher only) on page 361 for details.

PARQUET_ANNOTATE_STRINGS_UTF8 Query Option (Impala 2.6 or higher only)

Causes Impala INSERT and CREATE TABLE AS SELECT statements to write Parquet files that use the UTF-8
annotation for STRING columns.

Usage notes:

By default, Impala represents a STRING column in Parquet as an unannotated binary field.

Impala always uses the UTF-8 annotation when writing CHAR and VARCHAR columns to Parquet files. An alternative
to using the query option is to cast STRING values to VARCHAR.

This option is to help make Impala-written data more interoperable with other data processing engines. Impala itself
currently does not support all operations on UTF-8 data. Although data processed by Impala is typically represented
in ASCII, it is valid to designate the data as UTF-8 when storing on disk, because ASCII is a subset of UTF-8.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

 | Impala SQL Language Reference | 387

Added in: Impala 2.6.0

Related information:

Using the Parquet File Format with Impala Tables on page 699

PARQUET_FALLBACK_SCHEMA_RESOLUTION Query Option (Impala 2.6 or higher only)

Allows Impala to look up columns within Parquet files by column name, rather than column order, when necessary.

Usage notes:

By default, Impala looks up columns within a Parquet file based on the order of columns in the table.
The name setting for this option enables behavior for Impala queries similar to the Hive setting
parquet.column.index.access=false. It also allows Impala to query Parquet files created by Hive with
the parquet.column.index.access=false setting in effect.

Type: integer or string. Allowed values are 0 or position (default), 1 or name.

Added in: Impala 2.6.0

Related information:

Schema Evolution for Parquet Tables on page 711

PARQUET_FILE_SIZE Query Option

Specifies the maximum size of each Parquet data file produced by Impala INSERT statements.

Syntax:

Specify the size in bytes, or with a trailing m or g character to indicate megabytes or gigabytes. For example:

-- 128 megabytes.
set PARQUET_FILE_SIZE=134217728
INSERT OVERWRITE parquet_table SELECT * FROM text_table;

-- 512 megabytes.
set PARQUET_FILE_SIZE=512m;
INSERT OVERWRITE parquet_table SELECT * FROM text_table;

-- 1 gigabyte.
set PARQUET_FILE_SIZE=1g;
INSERT OVERWRITE parquet_table SELECT * FROM text_table;

Usage notes:

With tables that are small or finely partitioned, the default Parquet block size (formerly 1 GB, now 256 MB in Impala
2.0 and later) could be much larger than needed for each data file. For INSERT operations into such tables, you can
increase parallelism by specifying a smaller PARQUET_FILE_SIZE value, resulting in more HDFS blocks that can
be processed by different nodes.

Type: numeric, with optional unit specifier

Important:

Currently, the maximum value for this setting is 1 gigabyte (1g). Setting a value higher than 1 gigabyte could result
in errors during an INSERT operation.

Default: 0 (produces files with a target size of 256 MB; files might be larger for very wide tables)

Because ADLS does not expose the block sizes of data files the way HDFS does, any Impala INSERT or CREATE
TABLE AS SELECT statements use the PARQUET_FILE_SIZE query option setting to define the size of Parquet
data files. (Using a large block size is more important for Parquet tables than for tables that use other file formats.)

Isilon considerations:

 | Impala SQL Language Reference | 388

Because the EMC Isilon storage devices use a global value for the block size rather than a configurable value for each
file, the PARQUET_FILE_SIZE query option has no effect when Impala inserts data into a table or partition residing
on Isilon storage. Use the isi command to set the default block size globally on the Isilon device. For example, to set
the Isilon default block size to 256 MB, the recommended size for Parquet data files for Impala, issue the following
command:

isi hdfs settings modify --default-block-size=256MB

Related information:

For information about the Parquet file format, and how the number and size of data files affects query performance,
see Using the Parquet File Format with Impala Tables on page 699.

PREFETCH_MODE Query Option (Impala 2.6 or higher only)

Determines whether the prefetching optimization is applied during join query processing.

Type: numeric (0, 1) or corresponding mnemonic strings (NONE, HT_BUCKET).

Default: 1 (equivalent to HT_BUCKET)

Added in: Impala 2.6.0

Usage notes:

The default mode is 1, which means that hash table buckets are prefetched during join query processing.

Related information:

Joins in Impala SELECT Statements on page 324, Performance Considerations for Join Queries on page 629.

QUERY_TIMEOUT_S Query Option (Impala 2.0 or higher only)

Sets the idle query timeout value for the session, in seconds. Queries that sit idle for longer than the timeout value
are automatically cancelled. If the system administrator specified the --idle_query_timeout startup option,
QUERY_TIMEOUT_S must be smaller than or equal to the --idle_query_timeout value.

Note:

The timeout clock for queries and sessions only starts ticking when the query or session is idle. For queries, this
means the query has results ready but is waiting for a client to fetch the data. A query can run for an arbitrary time
without triggering a timeout, because the query is computing results rather than sitting idle waiting for the results to
be fetched. The timeout period is intended to prevent unclosed queries from consuming resources and taking up slots
in the admission count of running queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.

Syntax:

SET QUERY_TIMEOUT_S=seconds;

Type: numeric

Default: 0 (no timeout if --idle_query_timeout not in effect; otherwise, use --idle_query_timeout
value)

Added in: Impala 2.0.0

Related information:

Setting Timeout Periods for Daemons, Queries, and Sessions on page 76

REQUEST_POOL Query Option

The pool or queue name that queries should be submitted to. Only applies when you enable the Impala admission
control feature. Specifies the name of the pool used by requests from Impala to the resource manager.

Type: STRING

 | Impala SQL Language Reference | 389

Default: empty (use the user-to-pool mapping defined by an impalad startup option in the Impala configuration
file)

Related information:

Admission Control and Query Queuing on page 67

REPLICA_PREFERENCE Query Option (Impala 2.7 or higher only)

The REPLICA_PREFERENCE query option lets you spread the load more evenly if hotspots and bottlenecks
persist, by allowing hosts to do local reads, or even remote reads, to retrieve the data for cached blocks if Impala can
determine that it would be too expensive to do all such processing on a particular host.

Type: numeric (0, 3, 5) or corresponding mnemonic strings (CACHE_LOCAL, DISK_LOCAL, REMOTE). The gaps in
the numeric sequence are to accomodate other intermediate values that might be added in the future.

Default: 0 (equivalent to CACHE_LOCAL)

Added in: Impala 2.7.0

Related information:

Using HDFS Caching with Impala (Impala 2.1 or higher only) on page 656, SCHEDULE_RANDOM_REPLICA
Query Option (Impala 2.5 or higher only) on page 393

RESERVATION_REQUEST_TIMEOUT Query Option

Note:

This query option no longer has any effect. The use of the Llama component for integrated resource management
within YARN is no longer supported with Impala 2.3 and higher, and the Llama support code is removed entirely in
Impala 2.8 and higher.

RUNTIME_BLOOM_FILTER_SIZE Query Option (Impala 2.5 or higher only)

Size (in bytes) of Bloom filter data structure used by the runtime filtering feature.

Important:

In Impala 2.6 and higher, this query option only applies as a fallback, when statistics are not available. By default,
Impala estimates the optimal size of the Bloom filter structure regardless of the setting for this option. (This is a
change from the original behavior in Impala 2.5.)

In Impala 2.6 and higher, when the value of this query option is used for query planning, it is
constrained by the minimum and maximum sizes specified by the RUNTIME_FILTER_MIN_SIZE and
RUNTIME_FILTER_MAX_SIZE query options. The filter size is adjusted upward or downward if necessary to fit
within the minimum/maximum range.

Type: integer

Default: 1048576 (1 MB)

Maximum: 16 MB

Added in: Impala 2.5.0

Usage notes:

This setting affects optimizations for large and complex queries, such as dynamic partition pruning for partitioned
tables, and join optimization for queries that join large tables. Larger filters are more effective at handling higher
cardinality input sets, but consume more memory per filter.

If your query filters on high-cardinality columns (for example, millions of different values) and you do not get the
expected speedup from the runtime filtering mechanism, consider doing some benchmarks with a higher value for
RUNTIME_BLOOM_FILTER_SIZE. The extra memory devoted to the Bloom filter data structures can help make
the filtering more accurate.

 | Impala SQL Language Reference | 390

Because the runtime filtering feature applies mainly to resource-intensive and long-running queries, only adjust this
query option when tuning long-running queries involving some combination of large partitioned tables and joins
involving large tables.

Because the effectiveness of this setting depends so much on query characteristics and data distribution, you typically
only use it for specific queries that need some extra tuning, and the ideal value depends on the query. Consider setting
this query option immediately before the expensive query and unsetting it immediately afterward.

Kudu considerations:

This query option affects only Bloom filters, not the min/max filters that are applied to Kudu tables. Therefore, it does
not affect the performance of queries against Kudu tables.

Related information:

Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page 651, RUNTIME_FILTER_MODE Query
Option (Impala 2.5 or higher only) on page 391, RUNTIME_FILTER_MIN_SIZE Query Option (Impala 2.6 or
higher only) on page 390, RUNTIME_FILTER_MAX_SIZE Query Option (Impala 2.6 or higher only) on page
390

RUNTIME_FILTER_MAX_SIZE Query Option (Impala 2.6 or higher only)

The RUNTIME_FILTER_MAX_SIZE query option adjusts the settings for the runtime filtering feature. This option
defines the maximum size for a filter, no matter what the estimates produced by the planner are. This value also
overrides any lower number specified for the RUNTIME_BLOOM_FILTER_SIZE query option. Filter sizes are
rounded up to the nearest power of two.

Type: integer

Default: 0 (meaning use the value from the corresponding impalad startup option)

Added in: Impala 2.6.0

Usage notes:

Because the runtime filtering feature applies mainly to resource-intensive and long-running queries, only adjust this
query option when tuning long-running queries involving some combination of large partitioned tables and joins
involving large tables.

Kudu considerations:

This query option affects only Bloom filters, not the min/max filters that are applied to Kudu tables. Therefore, it does
not affect the performance of queries against Kudu tables.

Related information:

Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page 651, RUNTIME_FILTER_MODE Query
Option (Impala 2.5 or higher only) on page 391, RUNTIME_FILTER_MIN_SIZE Query Option (Impala 2.6 or
higher only) on page 390, RUNTIME_BLOOM_FILTER_SIZE Query Option (Impala 2.5 or higher only) on page
389

RUNTIME_FILTER_MIN_SIZE Query Option (Impala 2.6 or higher only)

The RUNTIME_FILTER_MIN_SIZE query option adjusts the settings for the runtime filtering feature. This option
defines the minimum size for a filter, no matter what the estimates produced by the planner are. This value also
overrides any lower number specified for the RUNTIME_BLOOM_FILTER_SIZE query option. Filter sizes are
rounded up to the nearest power of two.

Type: integer

Default: 0 (meaning use the value from the corresponding impalad startup option)

Added in: Impala 2.6.0

Usage notes:

 | Impala SQL Language Reference | 391

Because the runtime filtering feature applies mainly to resource-intensive and long-running queries, only adjust this
query option when tuning long-running queries involving some combination of large partitioned tables and joins
involving large tables.

Kudu considerations:

This query option affects only Bloom filters, not the min/max filters that are applied to Kudu tables. Therefore, it does
not affect the performance of queries against Kudu tables.

Related information:

Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page 651, RUNTIME_FILTER_MODE Query
Option (Impala 2.5 or higher only) on page 391, RUNTIME_FILTER_MAX_SIZE Query Option (Impala 2.6 or
higher only) on page 390, RUNTIME_BLOOM_FILTER_SIZE Query Option (Impala 2.5 or higher only) on page
389

RUNTIME_FILTER_MODE Query Option (Impala 2.5 or higher only)

The RUNTIME_FILTER_MODE query option adjusts the settings for the runtime filtering feature. It turns this feature
on and off, and controls how extensively the filters are transmitted between hosts.

Type: numeric (0, 1, 2) or corresponding mnemonic strings (OFF, LOCAL, GLOBAL).

Default: 2 (equivalent to GLOBAL); formerly was 1 / LOCAL, in Impala 2.5

Added in: Impala 2.5.0

Usage notes:

In Impala 2.6 and higher, the default is GLOBAL. This setting is recommended for a wide variety of workloads, to
provide best performance with “out of the box” settings.

The lowest setting of LOCAL does a similar level of optimization (such as partition pruning) as in earlier Impala
releases. This setting was the default in Impala 2.5, to allow for a period of post-upgrade testing for existing
workloads. This setting is suitable for workloads with non-performance-critical queries, or if the coordinator node is
under heavy CPU or memory pressure.

You might change the setting to OFF if your workload contains many queries involving partitioned tables or joins that
do not experience a performance increase from the runtime filters feature. If the overhead of producing the runtime
filters outweighs the performance benefit for queries, you can turn the feature off entirely.

Related information:

Partitioning for Impala Tables on page 681 for details about runtime filtering.
DISABLE_ROW_RUNTIME_FILTERING Query Option (Impala 2.5 or higher only) on page 364,
RUNTIME_BLOOM_FILTER_SIZE Query Option (Impala 2.5 or higher only) on page 389,
RUNTIME_FILTER_WAIT_TIME_MS Query Option (Impala 2.5 or higher only) on page 391, and
MAX_NUM_RUNTIME_FILTERS Query Option (Impala 2.5 or higher only) on page 377 for tuning options for
runtime filtering.

RUNTIME_FILTER_WAIT_TIME_MS Query Option (Impala 2.5 or higher only)

The RUNTIME_FILTER_WAIT_TIME_MS query option adjusts the settings for the runtime filtering feature. It
specifies a time in milliseconds that each scan node waits for runtime filters to be produced by other plan fragments.

Type: integer

Default: 0 (meaning use the value from the corresponding impalad startup option)

Added in: Impala 2.5.0

Usage notes:

Because the runtime filtering feature applies mainly to resource-intensive and long-running queries, only adjust this
query option when tuning long-running queries involving some combination of large partitioned tables and joins
involving large tables.

 | Impala SQL Language Reference | 392

Related information:

Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page 651, RUNTIME_FILTER_MODE Query
Option (Impala 2.5 or higher only) on page 391

S3_SKIP_INSERT_STAGING Query Option (Impala 2.6 or higher only)

Speeds up INSERT operations on tables or partitions residing on the Amazon S3 filesystem. The tradeoff is the
possibility of inconsistent data left behind if an error occurs partway through the operation.

By default, Impala write operations to S3 tables and partitions involve a two-stage process. Impala writes intermediate
files to S3, then (because S3 does not provide a “rename” operation) those intermediate files are copied to their final
location, making the process more expensive as on a filesystem that supports renaming or moving files. This query
option makes Impala skip the intermediate files, and instead write the new data directly to the final destination.

Usage notes:

Important:

If a host that is participating in the INSERT operation fails partway through the query, you might be left with a table
or partition that contains some but not all of the expected data files. Therefore, this option is most appropriate for a
development or test environment where you have the ability to reconstruct the table if a problem during INSERT
leaves the data in an inconsistent state.

The timing of file deletion during an INSERT OVERWRITE operation makes it impractical to write new files to S3
and delete the old files in a single operation. Therefore, this query option only affects regular INSERT statements that
add to the existing data in a table, not INSERT OVERWRITE statements. Use TRUNCATE TABLE if you need to
remove all contents from an S3 table before performing a fast INSERT with this option enabled.

Performance improvements with this option enabled can be substantial. The speed increase might be more noticeable
for non-partitioned tables than for partitioned tables.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: true (shown as 1 in output of SET statement)

Added in: Impala 2.6.0

Related information:

Using Impala with the Amazon S3 Filesystem on page 748

SCAN_NODE_CODEGEN_THRESHOLD Query Option (Impala 2.5 or higher only)

The SCAN_NODE_CODEGEN_THRESHOLD query option adjusts the aggressiveness of the code generation
optimization process when performing I/O read operations. It can help to work around performance problems for
queries where the table is small and the WHERE clause is complicated.

Type: integer

Default: 1800000 (1.8 million)

Added in: Impala 2.5.0

Usage notes:

This query option is intended mainly for the case where a query with a very complicated WHERE clause, such as an
IN operator with thousands of entries, is run against a small table, especially a small table using Parquet format. The
code generation phase can become the dominant factor in the query response time, making the query take several
seconds even though there is relatively little work to do. In this case, increase the value of this option to a much larger
amount, anything up to the maximum for a 32-bit integer.

Because this option only affects the code generation phase for the portion of the query that performs I/O (the scan
nodes within the query plan), it lets you continue to keep code generation enabled for other queries, and other parts of
the same query, that can benefit from it. In contrast, the IMPALA_DISABLE_CODEGEN query option turns off code
generation entirely.

 | Impala SQL Language Reference | 393

Because of the way the work for queries is divided internally, this option might not affect code generation for all
kinds of queries. If a plan fragment contains a scan node and some other kind of plan node, code generation still
occurs regardless of this option setting.

To use this option effectively, you should be familiar with reading query profile output to determine the proportion of
time spent in the code generation phase, and whether code generation is enabled or not for specific plan fragments.

SCHEDULE_RANDOM_REPLICA Query Option (Impala 2.5 or higher only)

The SCHEDULE_RANDOM_REPLICA query option fine-tunes the algorithm for deciding which host processes each
HDFS data block. It only applies to tables and partitions that are not enabled for the HDFS caching feature.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false

Added in: Impala 2.5.0

Usage notes:

In the presence of HDFS cached replicas, Impala randomizes which host processes each cached data block. To ensure
that HDFS data blocks are cached on more than one host, use the WITH REPLICATION clause along with the
CACHED IN clause in a CREATE TABLE or ALTER TABLE statement. Specify a replication value greater than or
equal to the HDFS block replication factor.

The SCHEDULE_RANDOM_REPLICA query option applies to tables and partitions that do not use HDFS caching.
By default, Impala estimates how much work each host has done for the query, and selects the host that has the
lowest workload. This algorithm is intended to reduce CPU hotspots arising when the same host is selected to process
multiple data blocks, but hotspots might still arise for some combinations of queries and data layout. When the
SCHEDULE_RANDOM_REPLICA option is enabled, Impala further randomizes the scheduling algorithm for non-
HDFS cached blocks, which can further reduce the chance of CPU hotspots.

This query option works in conjunction with the work scheduling improvements in Impala 2.5 and higher. The
scheduling improvements distribute the processing for cached HDFS data blocks to minimize hotspots: if a data block
is cached on more than one host, Impala chooses which host to process each block based on which host has read the
fewest bytes during the current query. Enable SCHEDULE_RANDOM_REPLICA setting if CPU hotspots still persist
because of cases where hosts are “tied” in terms of the amount of work done; by default, Impala picks the first eligible
host in this case.

Related information:

Using HDFS Caching with Impala (Impala 2.1 or higher only) on page 656, Avoiding CPU Hotspots for HDFS
Cached Data on page 680 , REPLICA_PREFERENCE Query Option (Impala 2.7 or higher only) on page 389

SCRATCH_LIMIT Query Option

Specifies the maximum amount of disk storage, in bytes, that any Impala query can consume on any host using the
“spill to disk” mechanism that handles queries that exceed the memory limit.

Syntax:

Specify the size in bytes, or with a trailing m or g character to indicate megabytes or gigabytes. For example:

-- 128 megabytes.
set SCRATCH_LIMIT=134217728

-- 512 megabytes.
set SCRATCH_LIMIT=512m;

-- 1 gigabyte.
set SCRATCH_LIMIT=1g;

Usage notes:

 | Impala SQL Language Reference | 394

A value of zero turns off the spill to disk feature for queries in the current session, causing them to fail immediately if
they exceed the memory limit.

The amount of memory used per host for a query is limited by the MEM_LIMIT query option.

The more Impala daemon hosts in the cluster, the less memory is used on each host, and therefore also less scratch
space is required for queries that exceed the memory limit.

Type: numeric, with optional unit specifier

Default: -1 (amount of spill space is unlimited)

Related information:

SQL Operations that Spill to Disk on page 675, MEM_LIMIT Query Option on page 378

SUPPORT_START_OVER Query Option

Leave this setting at its default value. It is a read-only setting, tested by some client applications such as Hue.

If you accidentally change it through impala-shell, subsequent queries encounter errors until you undo the
change by issuing UNSET support_start_over.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false

SYNC_DDL Query Option

When enabled, causes any DDL operation such as CREATE TABLE or ALTER TABLE to return only when the
changes have been propagated to all other Impala nodes in the cluster by the Impala catalog service. That way, if you
issue a subsequent CONNECT statement in impala-shell to connect to a different node in the cluster, you can be
sure that other node will already recognize any added or changed tables. (The catalog service automatically broadcasts
the DDL changes to all nodes automatically, but without this option there could be a period of inconsistency if you
quickly switched to another node, such as by issuing a subsequent query through a load-balancing proxy.)

Although INSERT is classified as a DML statement, when the SYNC_DDL option is enabled, INSERT statements
also delay their completion until all the underlying data and metadata changes are propagated to all Impala nodes.
Internally, Impala inserts have similarities with DDL statements in traditional database systems, because they create
metadata needed to track HDFS block locations for new files and they potentially add new partitions to partitioned
tables.

Note: Because this option can introduce a delay after each write operation, if you are running a sequence of CREATE
DATABASE, CREATE TABLE, ALTER TABLE, INSERT, and similar statements within a setup script, to minimize
the overall delay you can enable the SYNC_DDL query option only near the end, before the final DDL statement.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Related information:

DDL Statements on page 223

V_CPU_CORES Query Option

Note:

This query option no longer has any effect. The use of the Llama component for integrated resource management
within YARN is no longer supported with Impala 2.3 and higher, and the Llama support code is removed entirely in
Impala 2.8 and higher.

SHOW Statement

The SHOW statement is a flexible way to get information about different types of Impala objects.

 | Impala SQL Language Reference | 395

Syntax:

SHOW DATABASES [[LIKE] 'pattern']
SHOW SCHEMAS [[LIKE] 'pattern'] - an alias for SHOW DATABASES
SHOW TABLES [IN database_name] [[LIKE] 'pattern']
SHOW [AGGREGATE | ANALYTIC] FUNCTIONS [IN database_name] [[LIKE] 'pattern']
SHOW CREATE TABLE [database_name].table_name
SHOW TABLE STATS [database_name.]table_name
SHOW COLUMN STATS [database_name.]table_name
SHOW PARTITIONS [database_name.]table_name
SHOW [RANGE] PARTITIONS [database_name.]table_name
SHOW FILES IN [database_name.]table_name [PARTITION (key_col_expression
 [, key_col_expression]]

SHOW ROLES
SHOW CURRENT ROLES
SHOW ROLE GRANT GROUP group_name
SHOW GRANT ROLE role_name

Issue a SHOW object_type statement to see the appropriate objects in the current database, or SHOW
object_type IN database_name to see objects in a specific database.

The optional pattern argument is a quoted string literal, using Unix-style * wildcards and allowing | for alternation.
The preceding LIKE keyword is also optional. All object names are stored in lowercase, so use all lowercase letters in
the pattern string. For example:

show databases 'a*';
show databases like 'a*';
show tables in some_db like '*fact*';
use some_db;
show tables '*dim*|*fact*';

Cancellation: Cannot be cancelled.

SHOW FILES Statement

The SHOW FILES statement displays the files that constitute a specified table, or a partition within a partitioned
table. This syntax is available in Impala 2.2 and higher only. The output includes the names of the files, the size
of each file, and the applicable partition for a partitioned table. The size includes a suffix of B for bytes, MB for
megabytes, and GB for gigabytes.

In Impala 2.8 and higher, you can use general expressions with operators such as <, IN, LIKE, and BETWEEN in the
PARTITION clause, instead of only equality operators. For example:

show files in sample_table partition (j < 5);
show files in sample_table partition (k = 3, l between 1 and 10);
show files in sample_table partition (month like 'J%');

Note: This statement applies to tables and partitions stored on HDFS, or in the Amazon Simple Storage System (S3).
It does not apply to views. It does not apply to tables mapped onto HBase or Kudu, because those data management
systems do not use the same file-based storage layout.

Usage notes:

You can use this statement to verify the results of your ETL process: that is, that the expected files are present, with
the expected sizes. You can examine the file information to detect conditions such as empty files, missing files, or
inefficient layouts due to a large number of small files. When you use INSERT statements to copy from one table to
another, you can see how the file layout changes due to file format conversions, compaction of small input files into
large data blocks, and multiple output files from parallel queries and partitioned inserts.

 | Impala SQL Language Reference | 396

The output from this statement does not include files that Impala considers to be hidden or invisible, such as those
whose names start with a dot or an underscore, or that end with the suffixes .copying or .tmp.

The information for partitioned tables complements the output of the SHOW PARTITIONS statement, which
summarizes information about each partition. SHOW PARTITIONS produces some output for each partition, while
SHOW FILES does not produce any output for empty partitions because they do not include any data files.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permission for all the
table files, read and execute permission for all the directories that make up the table, and execute permission for the
database directory and all its parent directories.

Examples:

The following example shows a SHOW FILES statement for an unpartitioned table using text format:

[localhost:21000] > create table unpart_text (x bigint, s string);
[localhost:21000] > insert into unpart_text (x, s) select id, name
 > from oreilly.sample_data limit 20e6;
[localhost:21000] > show files in unpart_text;
+--+----------+-----------+
| path | size | partition |
+--+----------+-----------+
| hdfs://impala_data_dir/show_files.db/unpart_text/35665776ef85cfaf_1012432410_data.0. | 448.31MB | |
+--+----------+-----------+
[localhost:21000] > insert into unpart_text (x, s) select id, name from oreilly.sample_data limit 100e6;
[localhost:21000] > show files in unpart_text;
+--+----------+-----------+
| path | size | partition |
+--+----------+-----------+
| hdfs://impala_data_dir/show_files.db/unpart_text/35665776ef85cfaf_1012432410_data.0. | 448.31MB | |
| hdfs://impala_data_dir/show_files.db/unpart_text/ac3dba252a8952b8_1663177415_data.0. | 2.19GB | |
+--+----------+-----------+

This example illustrates how, after issuing some INSERT ... VALUES statements, the table now contains some
tiny files of just a few bytes. Such small files could cause inefficient processing of parallel queries that are expecting
multi-megabyte input files. The example shows how you might compact the small files by doing an INSERT ...
SELECT into a different table, possibly converting the data to Parquet in the process:

[localhost:21000] > insert into unpart_text values (10,'hello'), (20, 'world');
[localhost:21000] > insert into unpart_text values (-1,'foo'), (-1000, 'bar');
[localhost:21000] > show files in unpart_text;
+--+----------+
| path | size |
+--+----------+
| hdfs://impala_data_dir/show_files.db/unpart_text/4f11b8bdf8b6aa92_238145083_data.0. | 18B
| hdfs://impala_data_dir/show_files.db/unpart_text/35665776ef85cfaf_1012432410_data.0. | 448.31MB
| hdfs://impala_data_dir/show_files.db/unpart_text/ac3dba252a8952b8_1663177415_data.0. | 2.19GB
| hdfs://impala_data_dir/show_files.db/unpart_text/cfb8252452445682_1868457216_data.0. | 17B
+--+----------+
[localhost:21000] > create table unpart_parq stored as parquet as select * from unpart_text;
+---------------------------+
| summary |
+---------------------------+
| Inserted 120000002 row(s) |
+---------------------------+
[localhost:21000] > show files in unpart_parq;
+--+----------+
| path | size |
+--+----------+
hdfs://impala_data_dir/show_files.db/unpart_parq/60798d96ba630184_549959007_data.0.parq	255.36MB
hdfs://impala_data_dir/show_files.db/unpart_parq/60798d96ba630184_549959007_data.1.parq	178.52MB
hdfs://impala_data_dir/show_files.db/unpart_parq/60798d96ba630185_549959007_data.0.parq	255.37MB
hdfs://impala_data_dir/show_files.db/unpart_parq/60798d96ba630185_549959007_data.1.parq	57.71MB
hdfs://impala_data_dir/show_files.db/unpart_parq/60798d96ba630186_2141167244_data.0.parq	255.40MB
hdfs://impala_data_dir/show_files.db/unpart_parq/60798d96ba630186_2141167244_data.1.parq	175.52MB
hdfs://impala_data_dir/show_files.db/unpart_parq/60798d96ba630187_1006832086_data.0.parq	255.40MB
hdfs://impala_data_dir/show_files.db/unpart_parq/60798d96ba630187_1006832086_data.1.parq	214.61MB
+--+----------+

The following example shows a SHOW FILES statement for a partitioned text table with data in two different
partitions, and two empty partitions. The partitions with no data are not represented in the SHOW FILES output.

[localhost:21000] > create table part_text (x bigint, y int, s string)
 > partitioned by (year bigint, month bigint, day bigint);
[localhost:21000] > insert overwrite part_text (x, y, s) partition (year=2014,month=1,day=1)
 > select id, val, name from oreilly.normalized_parquet
where id between 1 and 1000000;
[localhost:21000] > insert overwrite part_text (x, y, s) partition (year=2014,month=1,day=2)
 > select id, val, name from oreilly.normalized_parquet
 > where id between 1000001 and 2000000;
[localhost:21000] > alter table part_text add partition (year=2014,month=1,day=3);
[localhost:21000] > alter table part_text add partition (year=2014,month=1,day=4);
[localhost:21000] > show partitions part_text;
+-------+-------+-----+-------+--------+---------+--------------+-------------------+--------+-------------------+
| year | month | day | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental stats |

 | Impala SQL Language Reference | 397

+-------+-------+-----+-------+--------+---------+--------------+-------------------+--------+-------------------+
2014	1	1	-1	4	25.16MB	NOT CACHED	NOT CACHED	TEXT	false
2014	1	2	-1	4	26.22MB	NOT CACHED	NOT CACHED	TEXT	false
2014	1	3	-1	0	0B	NOT CACHED	NOT CACHED	TEXT	false
2014	1	4	-1	0	0B	NOT CACHED	NOT CACHED	TEXT	false
Total			-1	8	51.38MB	0B			
+-------+-------+-----+-------+--------+---------+--------------+-------------------+--------+-------------------+									
[localhost:21000] > show files in part_text;									
+---+--------									
+-------------------------+									
path	size	partition							
 |
+---+--------
+-------------------------+
| hdfs://impala_data_dir/show_files.db/part_text/year=2014/month=1/day=1/80732d9dc80689f_1418645991_data.0. | 5.77MB |
 year=2014/month=1/day=1 |
| hdfs://impala_data_dir/show_files.db/part_text/year=2014/month=1/day=1/80732d9dc8068a0_1418645991_data.0. | 6.25MB |
 year=2014/month=1/day=1 |
| hdfs://impala_data_dir/show_files.db/part_text/year=2014/month=1/day=1/80732d9dc8068a1_147082319_data.0. | 7.16MB |
 year=2014/month=1/day=1 |
| hdfs://impala_data_dir/show_files.db/part_text/year=2014/month=1/day=1/80732d9dc8068a2_2111411753_data.0. | 5.98MB |
 year=2014/month=1/day=1 |
| hdfs://impala_data_dir/show_files.db/part_text/year=2014/month=1/day=2/21a828cf494b5bbb_501271652_data.0. | 6.42MB |
 year=2014/month=1/day=2 |
| hdfs://impala_data_dir/show_files.db/part_text/year=2014/month=1/day=2/21a828cf494b5bbc_501271652_data.0. | 6.62MB |
 year=2014/month=1/day=2 |
| hdfs://impala_data_dir/show_files.db/part_text/year=2014/month=1/day=2/21a828cf494b5bbd_1393490200_data.0. | 6.98MB |
 year=2014/month=1/day=2 |
| hdfs://impala_data_dir/show_files.db/part_text/year=2014/month=1/day=2/21a828cf494b5bbe_1393490200_data.0. | 6.20MB |
 year=2014/month=1/day=2 |
+---+--------
+-------------------------+

The following example shows a SHOW FILES statement for a partitioned Parquet table. The number and sizes of
files are different from the equivalent partitioned text table used in the previous example, because INSERT operations
for Parquet tables are parallelized differently than for text tables. (Also, the amount of data is so small that it can be
written to Parquet without involving all the hosts in this 4-node cluster.)

[localhost:21000] > create table part_parq (x bigint, y int, s string) partitioned by (year bigint, month bigint, day bigint)
 stored as parquet;
[localhost:21000] > insert into part_parq partition (year,month,day) select x, y, s, year, month, day from partitioned_text;
[localhost:21000] > show partitions part_parq;
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+-------------------+
| year | month | day | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental stats |
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+-------------------+
2014	1	1	-1	3	17.89MB	NOT CACHED	NOT CACHED	PARQUET	false
2014	1	2	-1	3	17.89MB	NOT CACHED	NOT CACHED	PARQUET	false
Total			-1	6	35.79MB	0B			
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+-------------------+									
[localhost:21000] > show files in part_parq;									
+---+--------									
+-------------------------+									
path	size	partition							
 |
+---+--------
+-------------------------+
| hdfs://impala_data_dir/show_files.db/part_parq/year=2014/month=1/day=1/1134113650_data.0.parq | 4.49MB | year=2014/month=1/
day=1 |
| hdfs://impala_data_dir/show_files.db/part_parq/year=2014/month=1/day=1/617567880_data.0.parq | 5.14MB | year=2014/month=1/
day=1 |
| hdfs://impala_data_dir/show_files.db/part_parq/year=2014/month=1/day=1/2099499416_data.0.parq | 8.27MB | year=2014/month=1/
day=1 |
| hdfs://impala_data_dir/show_files.db/part_parq/year=2014/month=1/day=2/945567189_data.0.parq | 8.80MB | year=2014/month=1/
day=2 |
| hdfs://impala_data_dir/show_files.db/part_parq/year=2014/month=1/day=2/2145850112_data.0.parq | 4.80MB | year=2014/month=1/
day=2 |
| hdfs://impala_data_dir/show_files.db/part_parq/year=2014/month=1/day=2/665613448_data.0.parq | 4.29MB | year=2014/month=1/
day=2 |
+---+--------
+-------------------------+

The following example shows output from the SHOW FILES statement for a table where the data files are stored in
Amazon S3:

[localhost:21000] > show files in s3_testing.sample_data_s3;
+---+---------+
| path | size |
+---+---------+
| s3a://impala-demo/sample_data/e065453cba1988a6_1733868553_data.0.parq | 24.84MB |
+---+---------+

SHOW ROLES Statement

The SHOW ROLES statement displays roles. This syntax is available in Impala 2.0 and later only, when you are
using the Sentry authorization framework along with the Sentry service, as described in Using Impala with the Sentry
Service (Impala 1.4 or higher only) on page 89. It does not apply when you use the Sentry framework with
privileges defined in a policy file.

Security considerations:

 | Impala SQL Language Reference | 398

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

Examples:

Depending on the roles set up within your organization by the CREATE ROLE statement, the output might look
something like this:

show roles;
+-----------+
| role_name |
+-----------+
| analyst |
| role1 |
| sales |
| superuser |
| test_role |
+-----------+

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 87

SHOW CURRENT ROLE

The SHOW CURRENT ROLE statement displays roles assigned to the current user. This syntax is available in Impala
2.0 and later only, when you are using the Sentry authorization framework along with the Sentry service, as described
in Using Impala with the Sentry Service (Impala 1.4 or higher only) on page 89. It does not apply when you use
the Sentry framework with privileges defined in a policy file.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

Examples:

Depending on the roles set up within your organization by the CREATE ROLE statement, the output might look
something like this:

show current roles;
+-----------+
| role_name |
+-----------+
| role1 |
| superuser |
+-----------+

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 87

 | Impala SQL Language Reference | 399

SHOW ROLE GRANT Statement

The SHOW ROLE GRANT statement lists all the roles assigned to the specified group. This statement is only allowed
for Sentry administrative users and others users that are part of the specified group. This syntax is available in Impala
2.0 and later only, when you are using the Sentry authorization framework along with the Sentry service, as described
in Using Impala with the Sentry Service (Impala 1.4 or higher only) on page 89. It does not apply when you use
the Sentry framework with privileges defined in a policy file.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 87

SHOW GRANT ROLE Statement

The SHOW GRANT ROLE statement list all the grants for the given role name. This statement is only allowed for
Sentry administrative users and other users that have been granted the specified role. This syntax is available in
Impala 2.0 and later only, when you are using the Sentry authorization framework along with the Sentry service, as
described in Using Impala with the Sentry Service (Impala 1.4 or higher only) on page 89. It does not apply when
you use the Sentry framework with privileges defined in a policy file.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 87

SHOW DATABASES

The SHOW DATABASES statement is often the first one you issue when connecting to an instance for the first time.
You typically issue SHOW DATABASES to see the names you can specify in a USE db_name statement, then
after switching to a database you issue SHOW TABLES to see the names you can specify in SELECT and INSERT
statements.

In Impala 2.5 and higher, the output includes a second column showing any associated comment for each database.

The output of SHOW DATABASES includes the special _impala_builtins database, which lets you view
definitions of built-in functions, as described under SHOW FUNCTIONS.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

 | Impala SQL Language Reference | 400

Examples:

This example shows how you might locate a particular table on an unfamiliar system. The DEFAULT database is the
one you initially connect to; a database with that name is present on every system. You can issue SHOW TABLES IN
db_name without going into a database, or SHOW TABLES once you are inside a particular database.

[localhost:21000] > show databases;
+------------------+--+
| name | comment |
+------------------+--+
_impala_builtins	System database for Impala builtin functions
default	Default Hive database
file_formats	
+------------------+--+	
Returned 3 row(s) in 0.02s	
[localhost:21000] > show tables in file_formats;	
+--------------------+	
name	
+--------------------+	
parquet_table	
rcfile_table	
sequencefile_table	
textfile_table	
+--------------------+	
Returned 4 row(s) in 0.01s	
[localhost:21000] > use file_formats;	
[localhost:21000] > show tables like '*parq*';	
+--------------------+	
name	
+--------------------+	
parquet_table	
+--------------------+
Returned 1 row(s) in 0.01s

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Overview of Impala Databases on page 212, CREATE DATABASE Statement on page 247, DROP DATABASE
Statement on page 286, USE Statement on page 418 SHOW TABLES Statement on page 400, SHOW
FUNCTIONS Statement on page 412

SHOW TABLES Statement

Displays the names of tables. By default, lists tables in the current database, or with the IN clause, in a specified
database. By default, lists all tables, or with the LIKE clause, only those whose name match a pattern with *
wildcards.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute
permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it
is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory
based on its LOCATION attribute.)

Examples:

 | Impala SQL Language Reference | 401

The following examples demonstrate the SHOW TABLES statement. If the database contains no tables, the result
set is empty. If the database does contain tables, SHOW TABLES IN db_name lists all the table names. SHOW
TABLES with no qualifiers lists all the table names in the current database.

create database empty_db;
show tables in empty_db;
Fetched 0 row(s) in 0.11s

create database full_db;
create table full_db.t1 (x int);
create table full_db.t2 like full_db.t1;

show tables in full_db;
+------+
| name |
+------+
| t1 |
| t2 |
+------+

use full_db;
show tables;
+------+
| name |
+------+
| t1 |
| t2 |
+------+

This example demonstrates how SHOW TABLES LIKE 'wildcard_pattern' lists table names that match
a pattern, or multiple alternative patterns. The ability to do wildcard matches for table names makes it helpful to
establish naming conventions for tables to conveniently locate a group of related tables.

create table fact_tbl (x int);
create table dim_tbl_1 (s string);
create table dim_tbl_2 (s string);

/* Asterisk is the wildcard character. Only 2 out of the 3 just-created
 tables are returned. */
show tables like 'dim*';
+-----------+
| name |
+-----------+
| dim_tbl_1 |
| dim_tbl_2 |
+-----------+

/* We are already in the FULL_DB database, but just to be sure we can
 specify the database name also. */
show tables in full_db like 'dim*';
+-----------+
| name |
+-----------+
| dim_tbl_1 |
| dim_tbl_2 |
+-----------+

/* The pipe character separates multiple wildcard patterns. */
show tables like '*dim*|t*';
+-----------+
| name |
+-----------+

 | Impala SQL Language Reference | 402

| dim_tbl_1 |
| dim_tbl_2 |
| t1 |
| t2 |
+-----------+

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Overview of Impala Tables on page 214, CREATE TABLE Statement on page 256, ALTER TABLE Statement
on page 225, DROP TABLE Statement on page 295, DESCRIBE Statement on page 274, SHOW CREATE
TABLE Statement on page 402, SHOW TABLE STATS Statement on page 404, SHOW DATABASES on page
399, SHOW FUNCTIONS Statement on page 412

SHOW CREATE TABLE Statement

As a schema changes over time, you might run a CREATE TABLE statement followed by several ALTER TABLE
statements. To capture the cumulative effect of all those statements, SHOW CREATE TABLE displays a CREATE
TABLE statement that would reproduce the current structure of a table. You can use this output in scripts that set up
or clone a group of tables, rather than trying to reproduce the original sequence of CREATE TABLE and ALTER
TABLE statements. When creating variations on the original table, or cloning the original table on a different system,
you might need to edit the SHOW CREATE TABLE output to change things such as the database name, LOCATION
field, and so on that might be different on the destination system.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

For Kudu tables:

• The column specifications include attributes such as NULL, NOT NULL, ENCODING, and COMPRESSION. If you
do not specify those attributes in the original CREATE TABLE statement, the SHOW CREATE TABLE output
displays the defaults that were used.

• The specifications of any RANGE clauses are not displayed in full. To see the definition of the range clauses for a
Kudu table, use the SHOW RANGE PARTITIONS statement.

• The TBLPROPERTIES output reflects the Kudu master address and the internal Kudu name associated with the
Impala table.

show CREATE TABLE numeric_grades_default_letter;
+--
+
| result
 |
+--
+
| CREATE TABLE user.numeric_grades_default_letter (
 |
| score TINYINT NOT NULL ENCODING AUTO_ENCODING COMPRESSION
 DEFAULT_COMPRESSION, |
| letter_grade STRING NULL ENCODING AUTO_ENCODING COMPRESSION
 DEFAULT_COMPRESSION DEFAULT '-', |

 | Impala SQL Language Reference | 403

| student STRING NULL ENCODING AUTO_ENCODING COMPRESSION
 DEFAULT_COMPRESSION, |
| PRIMARY KEY (score)
 |
|)
 |
| PARTITION BY RANGE (score) (...)
 |
| STORED AS KUDU
 |
| TBLPROPERTIES ('kudu.master_addresses'='vd0342.example.com:7051',
 |
| 'kudu.table_name'='impala::USER.numeric_grades_default_letter')
 |
+--
+

show range partitions numeric_grades_default_letter;
+--------------------+
| RANGE (score) |
+--------------------+
| 0 <= VALUES < 50 |
| 50 <= VALUES < 65 |
| 65 <= VALUES < 80 |
| 80 <= VALUES < 100 |
+--------------------+

Examples:

The following example shows how various clauses from the CREATE TABLE statement are represented in the output
of SHOW CREATE TABLE.

create table show_create_table_demo (id int comment "Unique ID", y double, s
 string)
 partitioned by (year smallint)
 stored as parquet;

show create table show_create_table_demo;
+--
+
| result
 |
+--
+
| CREATE TABLE scratch.show_create_table_demo (
 |
| id INT COMMENT 'Unique ID',
 |
| y DOUBLE,
 |
| s STRING
 |
|)
 |
| PARTITIONED BY (
 |
| year SMALLINT
 |
|)
 |
| STORED AS PARQUET
 |

 | Impala SQL Language Reference | 404

| LOCATION 'hdfs://127.0.0.1:8020/user/hive/warehouse/scratch.db/
show_create_table_demo' |
| TBLPROPERTIES ('transient_lastDdlTime'='1418152582')
 |
+--
+

The following example shows how, after a sequence of ALTER TABLE statements, the output from SHOW CREATE
TABLE represents the current state of the table. This output could be used to create a matching table rather than
executing the original CREATE TABLE and sequence of ALTER TABLE statements.

alter table show_create_table_demo drop column s;
alter table show_create_table_demo set fileformat textfile;

show create table show_create_table_demo;
+--
+
| result
 |
+--
+
| CREATE TABLE scratch.show_create_table_demo (
 |
| id INT COMMENT 'Unique ID',
 |
| y DOUBLE
 |
|)
 |
| PARTITIONED BY (
 |
| year SMALLINT
 |
|)
 |
| STORED AS TEXTFILE
 |
| LOCATION 'hdfs://127.0.0.1:8020/user/hive/warehouse/demo.db/
show_create_table_demo' |
| TBLPROPERTIES ('transient_lastDdlTime'='1418152638')
 |
+--
+

Related information:

CREATE TABLE Statement on page 256, DESCRIBE Statement on page 274, SHOW TABLES Statement on
page 400

SHOW TABLE STATS Statement

The SHOW TABLE STATS and SHOW COLUMN STATS variants are important for tuning performance and
diagnosing performance issues, especially with the largest tables and the most complex join queries.

Any values that are not available (because the COMPUTE STATS statement has not been run yet) are displayed as
-1.

SHOW TABLE STATS provides some general information about the table, such as the number of files, overall size
of the data, whether some or all of the data is in the HDFS cache, and the file format, that is useful whether or not
you have run the COMPUTE STATS statement. A -1 in the #Rows output column indicates that the COMPUTE
STATS statement has never been run for this table. If the table is partitioned, SHOW TABLE STATS provides this
information for each partition. (It produces the same output as the SHOW PARTITIONS statement in this case.)

 | Impala SQL Language Reference | 405

The output of SHOW COLUMN STATS is primarily only useful after the COMPUTE STATS statement has been
run on the table. A -1 in the #Distinct Values output column indicates that the COMPUTE STATS statement
has never been run for this table. Currently, Impala always leaves the #Nulls column as -1, even after COMPUTE
STATS has been run.

These SHOW statements work on actual tables only, not on views.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

Kudu considerations:

Because Kudu tables do not have characteristics derived from HDFS, such as number of files, file format, and HDFS
cache status, the output of SHOW TABLE STATS reflects different characteristics that apply to Kudu tables. If the
Kudu table is created with the clause PARTITIONS 20, then the result set of SHOW TABLE STATS consists of 20
rows, each representing one of the numbered partitions. For example:

show table stats kudu_table;
+--------+-----------+----------+-----------------------+------------+
| # Rows | Start Key | Stop Key | Leader Replica | # Replicas |
+--------+-----------+----------+-----------------------+------------+
-1		00000001	host.example.com:7050	3
-1	00000001	00000002	host.example.com:7050	3
-1	00000002	00000003	host.example.com:7050	3
-1	00000003	00000004	host.example.com:7050	3
-1	00000004	00000005	host.example.com:7050	3
...

Impala does not compute the number of rows for each partition for Kudu tables. Therefore, you do not need to re-run
COMPUTE STATS when you see -1 in the # Rows column of the output from SHOW TABLE STATS. That column
always shows -1 for all Kudu tables.

Examples:

The following examples show how the SHOW TABLE STATS statement displays physical information about a table
and the associated data files:

show table stats store_sales;
+-------+--------+----------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+-------+--------+----------+--------------+--------+-------------------+
| -1 | 1 | 370.45MB | NOT CACHED | TEXT | false |
+-------+--------+----------+--------------+--------+-------------------+

show table stats customer;
+-------+--------+---------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+-------+--------+---------+--------------+--------+-------------------+
| -1 | 1 | 12.60MB | NOT CACHED | TEXT | false |
+-------+--------+---------+--------------+--------+-------------------+

The following example shows how, after a COMPUTE STATS or COMPUTE INCREMENTAL STATS statement,
the #Rows field is now filled in. Because the STORE_SALES table in this example is not partitioned, the COMPUTE

 | Impala SQL Language Reference | 406

INCREMENTAL STATS statement produces regular stats rather than incremental stats, therefore the Incremental
stats field remains false.

compute stats customer;
+--+
| summary |
+--+
| Updated 1 partition(s) and 18 column(s). |
+--+

show table stats customer;
+--------+--------+---------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+--------+--------+---------+--------------+--------+-------------------+
| 100000 | 1 | 12.60MB | NOT CACHED | TEXT | false |
+--------+--------+---------+--------------+--------+-------------------+

compute incremental stats store_sales;
+--+
| summary |
+--+
| Updated 1 partition(s) and 23 column(s). |
+--+

show table stats store_sales;
+---------+--------+----------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+---------+--------+----------+--------------+--------+-------------------+
| 2880404 | 1 | 370.45MB | NOT CACHED | TEXT | false |
+---------+--------+----------+--------------+--------+-------------------+

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute
permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it
is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory
based on its LOCATION attribute.) The Impala user must also have execute permission for the database directory, and
any parent directories of the database directory in HDFS.

Related information:

COMPUTE STATS Statement on page 240, SHOW COLUMN STATS Statement on page 406

See Table and Column Statistics on page 636 for usage information and examples.

SHOW COLUMN STATS Statement

The SHOW TABLE STATS and SHOW COLUMN STATS variants are important for tuning performance and
diagnosing performance issues, especially with the largest tables and the most complex join queries.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

The output for SHOW COLUMN STATS includes the relevant information for Kudu tables. The information for
column statistics that originates in the underlying Kudu storage layer is also represented in the metastore database that
Impala uses.

Examples:

 | Impala SQL Language Reference | 407

The following examples show the output of the SHOW COLUMN STATS statement for some tables, before the
COMPUTE STATS statement is run. Impala deduces some information, such as maximum and average size for fixed-
length columns, and leaves and unknown values as -1.

show column stats customer;
+------------------------+--------+------------------+--------+----------
+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size |
 Avg Size |
+------------------------+--------+------------------+--------+----------
+----------+
| c_customer_sk | INT | -1 | -1 | 4 | 4
 |
| c_customer_id | STRING | -1 | -1 | -1 |
 -1 |
| c_current_cdemo_sk | INT | -1 | -1 | 4 | 4
 |
| c_current_hdemo_sk | INT | -1 | -1 | 4 | 4
 |
| c_current_addr_sk | INT | -1 | -1 | 4 | 4
 |
| c_first_shipto_date_sk | INT | -1 | -1 | 4 | 4
 |
| c_first_sales_date_sk | INT | -1 | -1 | 4 | 4
 |
| c_salutation | STRING | -1 | -1 | -1 |
 -1 |
| c_first_name | STRING | -1 | -1 | -1 |
 -1 |
| c_last_name | STRING | -1 | -1 | -1 |
 -1 |
| c_preferred_cust_flag | STRING | -1 | -1 | -1 |
 -1 |
| c_birth_day | INT | -1 | -1 | 4 | 4
 |
| c_birth_month | INT | -1 | -1 | 4 | 4
 |
| c_birth_year | INT | -1 | -1 | 4 | 4
 |
| c_birth_country | STRING | -1 | -1 | -1 |
 -1 |
| c_login | STRING | -1 | -1 | -1 |
 -1 |
| c_email_address | STRING | -1 | -1 | -1 |
 -1 |
| c_last_review_date | STRING | -1 | -1 | -1 |
 -1 |
+------------------------+--------+------------------+--------+----------
+----------+

show column stats store_sales;
+-----------------------+-------+------------------+--------+----------
+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg
 Size |
+-----------------------+-------+------------------+--------+----------
+----------+
| ss_sold_date_sk | INT | -1 | -1 | 4 | 4
 |
| ss_sold_time_sk | INT | -1 | -1 | 4 | 4
 |
| ss_item_sk | INT | -1 | -1 | 4 | 4
 |

 | Impala SQL Language Reference | 408

| ss_customer_sk | INT | -1 | -1 | 4 | 4
 |
| ss_cdemo_sk | INT | -1 | -1 | 4 | 4
 |
| ss_hdemo_sk | INT | -1 | -1 | 4 | 4
 |
| ss_addr_sk | INT | -1 | -1 | 4 | 4
 |
| ss_store_sk | INT | -1 | -1 | 4 | 4
 |
| ss_promo_sk | INT | -1 | -1 | 4 | 4
 |
| ss_ticket_number | INT | -1 | -1 | 4 | 4
 |
| ss_quantity | INT | -1 | -1 | 4 | 4
 |
| ss_wholesale_cost | FLOAT | -1 | -1 | 4 | 4
 |
| ss_list_price | FLOAT | -1 | -1 | 4 | 4
 |
| ss_sales_price | FLOAT | -1 | -1 | 4 | 4
 |
| ss_ext_discount_amt | FLOAT | -1 | -1 | 4 | 4
 |
| ss_ext_sales_price | FLOAT | -1 | -1 | 4 | 4
 |
| ss_ext_wholesale_cost | FLOAT | -1 | -1 | 4 | 4
 |
| ss_ext_list_price | FLOAT | -1 | -1 | 4 | 4
 |
| ss_ext_tax | FLOAT | -1 | -1 | 4 | 4
 |
| ss_coupon_amt | FLOAT | -1 | -1 | 4 | 4
 |
| ss_net_paid | FLOAT | -1 | -1 | 4 | 4
 |
| ss_net_paid_inc_tax | FLOAT | -1 | -1 | 4 | 4
 |
| ss_net_profit | FLOAT | -1 | -1 | 4 | 4
 |
+-----------------------+-------+------------------+--------+----------
+----------+

The following examples show the output of the SHOW COLUMN STATS statement for some tables, after the
COMPUTE STATS statement is run. Now most of the -1 values are changed to reflect the actual table data. The
#Nulls column remains -1 because Impala does not use the number of NULL values to influence query planning.

compute stats customer;
+--+
| summary |
+--+
| Updated 1 partition(s) and 18 column(s). |
+--+

compute stats store_sales;
+--+
| summary |
+--+
| Updated 1 partition(s) and 23 column(s). |
+--+

show column stats customer;

 | Impala SQL Language Reference | 409

+------------------------+--------+------------------+--------+----------
+--------+
| Column | Type | #Distinct Values | #Nulls | Max Size |
 Avg Size
+------------------------+--------+------------------+--------+----------
+--------+
| c_customer_sk | INT | 139017 | -1 | 4 | 4
 |
| c_customer_id | STRING | 111904 | -1 | 16 |
 16 |
| c_current_cdemo_sk | INT | 95837 | -1 | 4 | 4
 |
| c_current_hdemo_sk | INT | 8097 | -1 | 4 | 4
 |
| c_current_addr_sk | INT | 57334 | -1 | 4 | 4
 |
| c_first_shipto_date_sk | INT | 4374 | -1 | 4 | 4
 |
| c_first_sales_date_sk | INT | 4409 | -1 | 4 | 4
 |
| c_salutation | STRING | 7 | -1 | 4 |
 3.1308 |
| c_first_name | STRING | 3887 | -1 | 11 |
 5.6356 |
| c_last_name | STRING | 4739 | -1 | 13 |
 5.9106 |
| c_preferred_cust_flag | STRING | 3 | -1 | 1 |
 0.9656 |
| c_birth_day | INT | 31 | -1 | 4 | 4
 |
| c_birth_month | INT | 12 | -1 | 4 | 4
 |
| c_birth_year | INT | 71 | -1 | 4 | 4
 |
| c_birth_country | STRING | 205 | -1 | 20 |
 8.4001 |
| c_login | STRING | 1 | -1 | 0 | 0
 |
| c_email_address | STRING | 94492 | -1 | 46 |
 26.485 |
| c_last_review_date | STRING | 349 | -1 | 7 |
 6.7561 |
+------------------------+--------+------------------+--------+----------
+--------+

show column stats store_sales;
+-----------------------+-------+------------------+--------+----------
+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg
 Size |
+-----------------------+-------+------------------+--------+----------
+----------+
| ss_sold_date_sk | INT | 4395 | -1 | 4 | 4
 |
| ss_sold_time_sk | INT | 63617 | -1 | 4 | 4
 |
| ss_item_sk | INT | 19463 | -1 | 4 | 4
 |
| ss_customer_sk | INT | 122720 | -1 | 4 | 4
 |
| ss_cdemo_sk | INT | 242982 | -1 | 4 | 4
 |
| ss_hdemo_sk | INT | 8097 | -1 | 4 | 4
 |

 | Impala SQL Language Reference | 410

| ss_addr_sk | INT | 70770 | -1 | 4 | 4
 |
| ss_store_sk | INT | 6 | -1 | 4 | 4
 |
| ss_promo_sk | INT | 355 | -1 | 4 | 4
 |
| ss_ticket_number | INT | 304098 | -1 | 4 | 4
 |
| ss_quantity | INT | 105 | -1 | 4 | 4
 |
| ss_wholesale_cost | FLOAT | 9600 | -1 | 4 | 4
 |
| ss_list_price | FLOAT | 22191 | -1 | 4 | 4
 |
| ss_sales_price | FLOAT | 20693 | -1 | 4 | 4
 |
| ss_ext_discount_amt | FLOAT | 228141 | -1 | 4 | 4
 |
| ss_ext_sales_price | FLOAT | 433550 | -1 | 4 | 4
 |
| ss_ext_wholesale_cost | FLOAT | 406291 | -1 | 4 | 4
 |
| ss_ext_list_price | FLOAT | 574871 | -1 | 4 | 4
 |
| ss_ext_tax | FLOAT | 91806 | -1 | 4 | 4
 |
| ss_coupon_amt | FLOAT | 228141 | -1 | 4 | 4
 |
| ss_net_paid | FLOAT | 493107 | -1 | 4 | 4
 |
| ss_net_paid_inc_tax | FLOAT | 653523 | -1 | 4 | 4
 |
| ss_net_profit | FLOAT | 611934 | -1 | 4 | 4
 |
+-----------------------+-------+------------------+--------+----------
+----------+

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute
permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it
is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory
based on its LOCATION attribute.) The Impala user must also have execute permission for the database directory, and
any parent directories of the database directory in HDFS.

Related information:

COMPUTE STATS Statement on page 240, SHOW TABLE STATS Statement on page 404

See Table and Column Statistics on page 636 for usage information and examples.

SHOW PARTITIONS Statement

SHOW PARTITIONS displays information about each partition for a partitioned table. (The output is the same as the
SHOW TABLE STATS statement, but SHOW PARTITIONS only works on a partitioned table.) Because it displays
table statistics for all partitions, the output is more informative if you have run the COMPUTE STATS statement after
creating all the partitions. See COMPUTE STATS Statement on page 240 for details. For example, on a CENSUS
table partitioned on the YEAR column:

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new

 | Impala SQL Language Reference | 411

privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

Kudu considerations:

The optional RANGE clause only applies to Kudu tables. It displays only the partitions defined by the RANGE clause
of CREATE TABLE or ALTER TABLE.

Although you can specify < or <= comparison operators when defining range partitions for Kudu tables, Kudu
rewrites them if necessary to represent each range as low_bound <= VALUES < high_bound. This rewriting
might involve incrementing one of the boundary values or appending a \0 for string values, so that the partition
covers the same range as originally specified.

Examples:

The following example shows the output for a Parquet, text, or other HDFS-backed table partitioned on the YEAR
column:

[localhost:21000] > show partitions census;
+-------+-------+--------+------+---------+
| year | #Rows | #Files | Size | Format |
+-------+-------+--------+------+---------+
2000	-1	0	0B	TEXT
2004	-1	0	0B	TEXT
2008	-1	0	0B	TEXT
2010	-1	0	0B	TEXT
2011	4	1	22B	TEXT
2012	4	1	22B	TEXT
2013	1	1	231B	PARQUET
Total	9	3	275B	
+-------+-------+--------+------+---------+

The following example shows the output for a Kudu table using the hash partitioning mechanism. The number of
rows in the result set corresponds to the values used in the PARTITIONS N clause of CREATE TABLE.

show partitions million_rows_hash;

+--------+-----------+----------+-----------------------+--
| # Rows | Start Key | Stop Key | Leader Replica | # Replicas
+--------+-----------+----------+-----------------------+--
| -1 | | 00000001 | n236.example.com:7050 | 3
| -1 | 00000001 | 00000002 | n236.example.com:7050 | 3
| -1 | 00000002 | 00000003 | n336.example.com:7050 | 3
| -1 | 00000003 | 00000004 | n238.example.com:7050 | 3
| -1 | 00000004 | 00000005 | n338.example.com:7050 | 3
....
| -1 | 0000002E | 0000002F | n240.example.com:7050 | 3
| -1 | 0000002F | 00000030 | n336.example.com:7050 | 3
| -1 | 00000030 | 00000031 | n240.example.com:7050 | 3
| -1 | 00000031 | | n334.example.com:7050 | 3
+--------+-----------+----------+-----------------------+--
Fetched 50 row(s) in 0.05s

The following example shows the output for a Kudu table using the range partitioning mechanism:

show range partitions million_rows_range;
+-----------------------+
| RANGE (id) |
+-----------------------+
| VALUES < "A" |

 | Impala SQL Language Reference | 412

| "A" <= VALUES < "[" |
| "a" <= VALUES < "{" |
| "{" <= VALUES < "~\0" |
+-----------------------+

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute
permissions for all directories that are part of the table. (A table could span multiple different HDFS directories if it
is partitioned. The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory
based on its LOCATION attribute.) The Impala user must also have execute permission for the database directory, and
any parent directories of the database directory in HDFS.

Related information:

See Table and Column Statistics on page 636 for usage information and examples.

SHOW TABLE STATS Statement on page 404, Partitioning for Impala Tables on page 681

SHOW FUNCTIONS Statement

By default, SHOW FUNCTIONS displays user-defined functions (UDFs) and SHOW AGGREGATE FUNCTIONS
displays user-defined aggregate functions (UDAFs) associated with a particular database. The output from SHOW
FUNCTIONS includes the argument signature of each function. You specify this argument signature as part of the
DROP FUNCTION statement. You might have several UDFs with the same name, each accepting different argument
data types.

Usage notes:

In Impala 2.5 and higher, the SHOW FUNCTIONS output includes a new column, labelled is persistent.
This property is true for Impala built-in functions, C++ UDFs, and Java UDFs created using the new CREATE
FUNCTION syntax with no signature. It is false for Java UDFs created using the old CREATE FUNCTION syntax
that includes the types for the arguments and return value. Any functions with false shown for this property must
be created again by the CREATE FUNCTION statement each time the Impala catalog server is restarted. See CREATE
FUNCTION for information on switching to the new syntax, so that Java UDFs are preserved across restarts. Java
UDFs that are persisted this way are also easier to share across Impala and Hive.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 87 for how to set up authorization
and add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

To display Impala built-in functions, specify the special database name _impala_builtins:

show functions in _impala_builtins;
+--------------+---
+-------------+---------------+
| return type | signature | binary
 type | is persistent |
+--------------+---
+-------------+---------------+
| BIGINT | abs(BIGINT) | BUILTIN
 | true |
| DECIMAL(*,*) | abs(DECIMAL(*,*)) | BUILTIN
 | true |

 | Impala SQL Language Reference | 413

| DOUBLE | abs(DOUBLE) | BUILTIN
 | true |
| FLOAT | abs(FLOAT) | BUILTIN
 | true |
+----------------+--+
...

show functions in _impala_builtins like '*week*';
+-------------+------------------------------+-------------+---------------+
| return type | signature | binary type | is persistent |
+-------------+------------------------------+-------------+---------------+
INT	dayofweek(TIMESTAMP)	BUILTIN	true
INT	weekofyear(TIMESTAMP)	BUILTIN	true
TIMESTAMP	weeks_add(TIMESTAMP, BIGINT)	BUILTIN	true
TIMESTAMP	weeks_add(TIMESTAMP, INT)	BUILTIN	true
TIMESTAMP	weeks_sub(TIMESTAMP, BIGINT)	BUILTIN	true
TIMESTAMP	weeks_sub(TIMESTAMP, INT)	BUILTIN	true
+-------------+------------------------------+-------------+---------------+

Related information:

Overview of Impala Functions on page 212, Impala Built-In Functions on page 418, Impala User-Defined
Functions (UDFs) on page 587, SHOW DATABASES on page 399, SHOW TABLES Statement on page 400

TRUNCATE TABLE Statement (Impala 2.3 or higher only)

Removes the data from an Impala table while leaving the table itself.

Syntax:

TRUNCATE TABLE [IF EXISTS] [db_name.]table_name

Statement type: DDL

Usage notes:

Often used to empty tables that are used during ETL cycles, after the data has been copied to another table for the
next stage of processing. This statement is a low-overhead alternative to dropping and recreating the table, or using
INSERT OVERWRITE to replace the data during the next ETL cycle.

This statement removes all the data and associated data files in the table. It can remove data files from internal tables,
external tables, partitioned tables, and tables mapped to HBase or the Amazon Simple Storage Service (S3). The data
removal applies to the entire table, including all partitions of a partitioned table.

Any statistics produced by the COMPUTE STATS statement are reset when the data is removed.

Make sure that you are in the correct database before truncating a table, either by issuing a USE statement first or by
using a fully qualified name db_name.table_name.

The optional IF EXISTS clause makes the statement succeed whether or not the table exists. If the table does exist,
it is truncated; if it does not exist, the statement has no effect. This capability is useful in standardized setup scripts
that are might be run both before and after some of the tables exist. This clause is available in Impala 2.5 and higher.

Any HDFS data files removed by this statement go into the HDFS trashcan, from which you can recover them within
a defined time interval if this operation turns out to be a mistake.

For other tips about managing and reclaiming Impala disk space, see Managing Disk Space for Impala Data on page
81.

Amazon S3 considerations:

Although Impala cannot write new data to a table stored in the Amazon S3 filesystem, the TRUNCATE TABLE
statement can remove data files from S3. See Using Impala with the Amazon S3 Filesystem on page 748 for details
about working with S3 tables.

 | Impala SQL Language Reference | 414

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have write permission for all the
files and directories that make up the table.

Kudu considerations:

Currently, the TRUNCATE TABLE statement cannot be used with Kudu tables.

Examples:

The following example shows a table containing some data and with table and column statistics. After the TRUNCATE
TABLE statement, the data is removed and the statistics are reset.

CREATE TABLE truncate_demo (x INT);
INSERT INTO truncate_demo VALUES (1), (2), (4), (8);
SELECT COUNT(*) FROM truncate_demo;
+----------+
| count(*) |
+----------+
| 4 |
+----------+
COMPUTE STATS truncate_demo;
+---+
| summary |
+---+
| Updated 1 partition(s) and 1 column(s). |
+---+
SHOW TABLE STATS truncate_demo;
+-------+--------+------+--------------+-------------------+--------
+-------------------+
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format |
 Incremental stats |
+-------+--------+------+--------------+-------------------+--------
+-------------------+
| 4 | 1 | 8B | NOT CACHED | NOT CACHED | TEXT | false
 |
+-------+--------+------+--------------+-------------------+--------
+-------------------+
SHOW COLUMN STATS truncate_demo;
+--------+------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+------+------------------+--------+----------+----------+
| x | INT | 4 | -1 | 4 | 4 |
+--------+------+------------------+--------+----------+----------+

-- After this statement, the data and the table/column stats will be gone.
TRUNCATE TABLE truncate_demo;

SELECT COUNT(*) FROM truncate_demo;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
SHOW TABLE STATS truncate_demo;
+-------+--------+------+--------------+-------------------+--------
+-------------------+
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format |
 Incremental stats |
+-------+--------+------+--------------+-------------------+--------
+-------------------+

 | Impala SQL Language Reference | 415

| -1 | 0 | 0B | NOT CACHED | NOT CACHED | TEXT | false
 |
+-------+--------+------+--------------+-------------------+--------
+-------------------+
SHOW COLUMN STATS truncate_demo;
+--------+------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+------+------------------+--------+----------+----------+
| x | INT | -1 | -1 | 4 | 4 |
+--------+------+------------------+--------+----------+----------+

The following example shows how the IF EXISTS clause allows the TRUNCATE TABLE statement to be run
without error whether or not the table exists:

CREATE TABLE staging_table1 (x INT, s STRING);
Fetched 0 row(s) in 0.33s

SHOW TABLES LIKE 'staging*';
+----------------+
| name |
+----------------+
| staging_table1 |
+----------------+
Fetched 1 row(s) in 0.25s

-- Our ETL process involves removing all data from several staging tables
-- even though some might be already dropped, or not created yet.

TRUNCATE TABLE IF EXISTS staging_table1;
Fetched 0 row(s) in 5.04s

TRUNCATE TABLE IF EXISTS staging_table2;
Fetched 0 row(s) in 0.25s

TRUNCATE TABLE IF EXISTS staging_table3;
Fetched 0 row(s) in 0.25s

Related information:

Overview of Impala Tables on page 214, ALTER TABLE Statement on page 225, CREATE TABLE Statement on
page 256, Partitioning for Impala Tables on page 681, Internal Tables on page 215, External Tables on page
215

UPDATE Statement (Impala 2.8 or higher only)

Updates an arbitrary number of rows in a Kudu table. This statement only works for Impala tables that use the Kudu
storage engine.

Syntax:

UPDATE [database_name.]table_name SET col = val [, col = val ...]
 [FROM joined_table_refs]
 [WHERE where_conditions]

Usage notes:

None of the columns that make up the primary key can be updated by the SET clause.

The conditions in the WHERE clause are the same ones allowed for the SELECT statement. See SELECT Statement on
page 322 for details.

If the WHERE clause is omitted, all rows in the table are updated.

 | Impala SQL Language Reference | 416

The conditions in the WHERE clause can refer to any combination of primary key columns or other columns.
Referring to primary key columns in the WHERE clause is more efficient than referring to non-primary key columns.

Because Kudu currently does not enforce strong consistency during concurrent DML operations, be aware that the
results after this statement finishes might be different than you intuitively expect:

• If some rows cannot be updated because their some primary key columns are not found, due to their being deleted
by a concurrent DELETE operation, the statement succeeds but returns a warning.

• An UPDATE statement might also overlap with INSERT, UPDATE, or UPSERT statements running concurrently
on the same table. After the statement finishes, there might be more or fewer matching rows than expected in the
table because it is undefined whether the UPDATE applies to rows that are inserted or updated while the UPDATE
is in progress.

The number of affected rows is reported in an impala-shell message and in the query profile.

The optional FROM clause lets you restrict the updates to only the rows in the specified table that are part of the result
set for a join query. The join clauses can include non-Kudu tables, but the table from which the rows are deleted must
be a Kudu table.

Statement type: DML

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Examples:

The following examples show how to perform a simple update on a table, with or without a WHERE clause:

-- Set all rows to the same value for column c3.
-- In this case, c1 and c2 are primary key columns
-- and so cannot be updated.
UPDATE kudu_table SET c3 = 'not applicable';

-- Update only the rows that match the condition.
UPDATE kudu_table SET c3 = NULL WHERE c1 > 100 AND c3 IS NULL;

-- Does not update any rows, because the WHERE condition is always false.
UPDATE kudu_table SET c3 = 'impossible' WHERE 1 = 0;

-- Change the values of multiple columns in a single UPDATE statement.
UPDATE kudu_table SET c3 = upper(c3), c4 = FALSE, c5 = 0 WHERE c6 = TRUE;

The following examples show how to perform an update using the FROM keyword with a join clause:

-- Uppercase a column value, only for rows that have
-- an ID that matches the value from another table.
UPDATE kudu_table SET c3 = upper(c3)
 FROM kudu_table JOIN non_kudu_table
 ON kudu_table.id = non_kudu_table.id;

-- Same effect as previous statement.
-- Assign table aliases in FROM clause, then refer to
-- short names elsewhere in the statement.
UPDATE t1 SET c3 = upper(c3)
 FROM kudu_table t1 JOIN non_kudu_table t2
 ON t1.id = t2.id;

-- Same effect as previous statements, but more efficient.

 | Impala SQL Language Reference | 417

-- Use WHERE clause to skip updating values that are
-- already uppercase.
UPDATE t1 SET c3 = upper(c3)
 FROM kudu_table t1 JOIN non_kudu_table t2
 ON t1.id = t2.id
 WHERE c3 != upper(c3);

Related information:

Using Impala to Query Kudu Tables on page 724, INSERT Statement on page 301, DELETE Statement (Impala
2.8 or higher only) on page 273, UPSERT Statement (Impala 2.8 or higher only) on page 417

UPSERT Statement (Impala 2.8 or higher only)

Acts as a combination of the INSERT and UPDATE statements. For each row processed by the UPSERT statement:

• If another row already exists with the same set of primary key values, the other columns are updated to match the
values from the row being “UPSERTed”.

• If there is not any row with the same set of primary key values, the row is created, the same as if the INSERT
statement was used.

This statement only works for Impala tables that use the Kudu storage engine.

Syntax:

UPSERT INTO [TABLE] [db_name.]table_name
 [(column_list)]
{
 [hint_clause] select_statement
 | VALUES (value [, value ...]) [, (value [, value ...]) ...]
}

hint_clause ::= [SHUFFLE] | [NOSHUFFLE]
 (Note: the square brackets are part of the syntax.)

The select_statement clause can use the full syntax, such as WHERE and join clauses, as SELECT Statement on page
322.

Statement type: DML

Usage notes:

If you specify a column list, any omitted columns in the inserted or updated rows are set to their default value (if the
column has one) or NULL (if the column does not have a default value). Therefore, if a column is not nullable and has
no default value, it must be included in the column list for any UPSERT statement. Because all primary key columns
meet these conditions, all the primary key columns must be specified in every UPSERT statement.

Because Kudu tables can efficiently handle small incremental changes, the VALUES clause is more practical to use
with Kudu tables than with HDFS-based tables.

Important: After adding or replacing data in a table used in performance-critical queries, issue a COMPUTE STATS
statement to make sure all statistics are up-to-date. Consider updating statistics for a table after any INSERT, LOAD
DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data through Hive and doing a
REFRESH table_name in Impala. This technique is especially important for tables that are very large, used in join
queries, or both.

Examples:

UPSERT INTO kudu_table (pk, c1, c2, c3) VALUES (0, 'hello', 50, true), (1,
 'world', -1, false);
UPSERT INTO production_table SELECT * FROM staging_table;

 | Impala SQL Language Reference | 418

UPSERT INTO production_table SELECT * FROM staging_table WHERE c1 IS NOT
 NULL AND c2 > 0;

Related information:

Using Impala to Query Kudu Tables on page 724, INSERT Statement on page 301, UPDATE Statement (Impala
2.8 or higher only) on page 415

USE Statement

Switches the current session to a specified database. The current database is where any CREATE TABLE, INSERT,
SELECT, or other statements act when you specify a table or other object name, without prefixing it with a database
name. The new current database applies for the duration of the session or unti another USE statement is executed.

Syntax:

USE db_name

By default, when you connect to an Impala instance, you begin in a database named default.

Usage notes:

Switching the default database is convenient in the following situations:

• To avoid qualifying each reference to a table with the database name. For example, SELECT * FROM t1
JOIN t2 rather than SELECT * FROM db.t1 JOIN db.t2.

• To do a sequence of operations all within the same database, such as creating a table, inserting data, and querying
the table.

To start the impala-shell interpreter and automatically issue a USE statement for a particular database, specify
the option -d db_name for the impala-shell command. The -d option is useful to run SQL scripts, such as
setup or test scripts, against multiple databases without hardcoding a USE statement into the SQL source.

Examples:

See CREATE DATABASE Statement on page 247 for examples covering CREATE DATABASE, USE, and DROP
DATABASE.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

CREATE DATABASE Statement on page 247, DROP DATABASE Statement on page 286, SHOW DATABASES
on page 399

Impala Built-In Functions
Impala supports several categories of built-in functions. These functions let you perform mathematical calculations,
string manipulation, date calculations, and other kinds of data transformations directly in SELECT statements. The
built-in functions let a SQL query return results with all formatting, calculating, and type conversions applied, rather
than performing time-consuming postprocessing in another application. By applying function calls where practical,
you can make a SQL query that is as convenient as an expression in a procedural programming language or a formula
in a spreadsheet.

The categories of functions supported by Impala are:

• Impala Mathematical Functions on page 420
• Impala Type Conversion Functions on page 449
• Impala Date and Time Functions on page 453

 | Impala SQL Language Reference | 419

• Impala Conditional Functions on page 504
• Impala String Functions on page 510
• Aggregation functions, explained in Impala Aggregate Functions on page 537.

You call any of these functions through the SELECT statement. For most functions, you can omit the FROM clause
and supply literal values for any required arguments:

select abs(-1);
+---------+
| abs(-1) |
+---------+
| 1 |
+---------+

select concat('The rain ', 'in Spain');
+---------------------------------+
| concat('the rain ', 'in spain') |
+---------------------------------+
| The rain in Spain |
+---------------------------------+

select power(2,5);
+-------------+
| power(2, 5) |
+-------------+
| 32 |
+-------------+

When you use a FROM clause and specify a column name as a function argument, the function is applied for each item
in the result set:

select concat('Country = ',country_code) from all_countries where population
 > 100000000;
select round(price) as dollar_value from product_catalog where price between
 0.0 and 100.0;

Typically, if any argument to a built-in function is NULL, the result value is also NULL:

select cos(null);
+-----------+
| cos(null) |
+-----------+
| NULL |
+-----------+

select power(2,null);
+----------------+
| power(2, null) |
+----------------+
| NULL |
+----------------+

select concat('a',null,'b');
+------------------------+
| concat('a', null, 'b') |
+------------------------+
| NULL |
+------------------------+

 | Impala SQL Language Reference | 420

Aggregate functions are a special category with different rules. These functions calculate a return value across all the
items in a result set, so they require a FROM clause in the query:

select count(product_id) from product_catalog;
select max(height), avg(height) from census_data where age > 20;

Aggregate functions also ignore NULL values rather than returning a NULL result. For example, if some rows have
NULL for a particular column, those rows are ignored when computing the AVG() for that column. Likewise,
specifying COUNT(col_name) in a query counts only those rows where col_name contains a non-NULL value.

Aggregate functions are a special category with different rules. These functions calculate a return value across all the
items in a result set, so they do require a FROM clause in the query:

select count(product_id) from product_catalog;
select max(height), avg(height) from census_data where age > 20;

Aggregate functions also ignore NULL values rather than returning a NULL result. For example, if some rows have
NULL for a particular column, those rows are ignored when computing the AVG() for that column. Likewise,
specifying COUNT(col_name) in a query counts only those rows where col_name contains a non-NULL value.

Analytic functions are a variation on aggregate functions. Instead of returning a single value, or an identical value for
each group of rows, they can compute values that vary based on a “window” consisting of other rows around them in
the result set.

Impala Mathematical Functions

Mathematical functions, or arithmetic functions, perform numeric calculations that are typically more complex
than basic addition, subtraction, multiplication, and division. For example, these functions include trigonometric,
logarithmic, and base conversion operations.

Note: In Impala, exponentiation uses the pow() function rather than an exponentiation operator such as **.

Related information:

The mathematical functions operate mainly on these data types: INT Data Type on page 127, BIGINT Data Type
on page 111, SMALLINT Data Type on page 133, TINYINT Data Type on page 149, DOUBLE Data Type
on page 125, FLOAT Data Type on page 126, and DECIMAL Data Type (Impala 1.4 or higher only) on page
117. For the operators that perform the standard operations such as addition, subtraction, multiplication, and
division, see Arithmetic Operators on page 187.

Functions that perform bitwise operations are explained in Impala Bit Functions on page 437.

Function reference:

Impala supports the following mathematical functions:

 abs(numeric_type a) Purpose: Returns the absolute value of the argument.

Return type: Same as the input value

Usage notes: Use this function to ensure all return values
are positive. This is different than the positive()
function, which returns its argument unchanged (even if
the argument was negative).

 acos(double a) Purpose: Returns the arccosine of the argument.

Return type: double

 asin(double a) Purpose: Returns the arcsine of the argument.

Return type: double

 | Impala SQL Language Reference | 421

 atan(double a) Purpose: Returns the arctangent of the argument.

Return type: double

 atan2(double a, double b) Purpose: Returns the arctangent of the two arguments,
with the signs of the arguments used to determine the
quadrant of the result.

Return type: double

 bin(bigint a) Purpose: Returns the binary representation of an integer
value, that is, a string of 0 and 1 digits.

Return type: string

 ceil(double a), ceil(decimal(p,s) a),
ceiling(double a), ceiling(decimal(p,s)
a), dceil(double a), dceil(decimal(p,s)
a)

Purpose: Returns the smallest integer that is greater than
or equal to the argument.

Return type: int or decimal(p,s) depending on
the type of the input argument

 conv(bigint num, int from_base,
int to_base), conv(string num, int
from_base, int to_base)

Purpose: Returns a string representation of an integer
value in a particular base. The input value can be a string,
for example to convert a hexadecimal number such as
fce2 to decimal. To use the return value as a number
(for example, when converting to base 10), use CAST()
to convert to the appropriate type.

Return type: string

 cos(double a) Purpose: Returns the cosine of the argument.

Return type: double

 cosh(double a) Purpose: Returns the hyperbolic cosine of the argument.

Return type: double

 cot(double a) Purpose: Returns the cotangent of the argument.

Return type: double

Added in: Impala 2.3.0

 degrees(double a) Purpose: Converts argument value from radians to
degrees.

Return type: double

 e() Purpose: Returns the mathematical constant e.

Return type: double

 exp(double a), dexp(double a) Purpose: Returns the mathematical constant e raised to
the power of the argument.

Return type: double

 factorial(integer_type a) Purpose: Computes the factorial of an integer value. It
works with any integer type.

Added in: Impala 2.3.0

Usage notes: You can use either the factorial()
function or the ! operator. The factorial of 0 is 1.
Likewise, the factorial() function returns 1 for

https://en.wikipedia.org/wiki/E_(mathematical_constant
https://en.wikipedia.org/wiki/E_(mathematical_constant
https://en.wikipedia.org/wiki/Factorial

 | Impala SQL Language Reference | 422

any negative value. The maximum positive value for the
input argument is 20; a value of 21 or greater overflows
the range for a BIGINT and causes an error.

Return type: bigint

Added in: Impala 2.3.0

select factorial(5);
+--------------+
| factorial(5) |
+--------------+
| 120 |
+--------------+

select 5!;
+-----+
| 5! |
+-----+
| 120 |
+-----+

select factorial(0);
+--------------+
| factorial(0) |
+--------------+
| 1 |
+--------------+

select factorial(-100);
+-----------------+
| factorial(-100) |
+-----------------+
| 1 |
+-----------------+

 floor(double a), floor(decimal(p,s) a),
dfloor(double a), dfloor(decimal(p,s)
a)

Purpose: Returns the largest integer that is less than or
equal to the argument.

Return type: bigint or decimal(p,s) depending
on the type of the input argument

 fmod(double a, double b), fmod(float
a, float b)

Purpose: Returns the modulus of a floating-point
number. Equivalent to the % arithmetic operator.

Return type: float or double, depending on type of
arguments

Added in: Impala 1.1.1

Usage notes:

Because this function operates on DOUBLE or FLOAT
values, it is subject to potential rounding errors for values
that cannot be represented precisely. Prefer to use whole
numbers, or values that you know can be represented
precisely by the DOUBLE or FLOAT types.

Examples:

 | Impala SQL Language Reference | 423

The following examples show equivalent operations with
the fmod() function and the % arithmetic operator, for
values not subject to any rounding error.

select fmod(10,3);
+-------------+
| fmod(10, 3) |
+-------------+
| 1 |
+-------------+

select fmod(5.5,2);
+--------------+
| fmod(5.5, 2) |
+--------------+
| 1.5 |
+--------------+

select 10 % 3;
+--------+
| 10 % 3 |
+--------+
| 1 |
+--------+

select 5.5 % 2;
+---------+
| 5.5 % 2 |
+---------+
| 1.5 |
+---------+

The following examples show operations with the
fmod() function for values that cannot be represented
precisely by the DOUBLE or FLOAT types, and thus are
subject to rounding error. fmod(9.9,3.0) returns a
value slightly different than the expected 0.9 because
of rounding. fmod(9.9,3.3) returns a value quite
different from the expected value of 0 because of
rounding error during intermediate calculations.

select fmod(9.9,3.0);
+--------------------+
| fmod(9.9, 3.0) |
+--------------------+
| 0.8999996185302734 |
+--------------------+

select fmod(9.9,3.3);
+-------------------+
| fmod(9.9, 3.3) |
+-------------------+
| 3.299999713897705 |
+-------------------+

 fnv_hash(type v), Purpose: Returns a consistent 64-bit value derived from
the input argument, for convenience of implementing
hashing logic in an application.

Return type: BIGINT

 | Impala SQL Language Reference | 424

Usage notes:

You might use the return value in an application where
you perform load balancing, bucketing, or some other
technique to divide processing or storage.

Because the result can be any 64-bit value, to restrict
the value to a particular range, you can use an
expression that includes the ABS() function and the
% (modulo) operator. For example, to produce a hash
value in the range 0-9, you could use the expression
ABS(FNV_HASH(x)) % 10.

This function implements the same algorithm that Impala
uses internally for hashing, on systems where the CRC32
instructions are not available.

This function implements the Fowler–Noll–Vo hash
function, in particular the FNV-1a variation. This is not
a perfect hash function: some combinations of values
could produce the same result value. It is not suitable for
cryptographic use.

Similar input values of different types could produce
different hash values, for example the same numeric
value represented as SMALLINT or BIGINT, FLOAT or
DOUBLE, or DECIMAL(5,2) or DECIMAL(20,5).

Examples:

[localhost:21000] > create table h
 (x int, s string);
[localhost:21000] > insert into h
 values (0, 'hello'), (1,'world'),
 (1234567890,'antidisestablishmentarianism');
[localhost:21000] > select x,
 fnv_hash(x) from h;
+------------+----------------------
+
| x | fnv_hash(x)
 |
+------------+----------------------
+
| 0 | -2611523532599129963
 |
| 1 | 4307505193096137732
 |
| 1234567890 | 3614724209955230832
 |
+------------+----------------------
+
[localhost:21000] > select s,
 fnv_hash(s) from h;
+------------------------------
+---------------------+
| s |
 fnv_hash(s) |
+------------------------------
+---------------------+
| hello |
 6414202926103426347 |
| world |
 6535280128821139475 |

http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

 | Impala SQL Language Reference | 425

| antidisestablishmentarianism |
 -209330013948433970 |
+------------------------------
+---------------------+
[localhost:21000] > select s,
 abs(fnv_hash(s)) % 10 from h;
+------------------------------
+-------------------------+
| s |
 abs(fnv_hash(s)) % 10.0 |
+------------------------------
+-------------------------+
| hello | 8
 |
| world | 6
 |
| antidisestablishmentarianism | 4
 |
+------------------------------
+-------------------------+

For short argument values, the high-order bits of the
result have relatively low entropy:

[localhost:21000] > create table b
 (x boolean);
[localhost:21000] > insert into b
 values (true), (true), (false),
 (false);
[localhost:21000] > select x,
 fnv_hash(x) from b;
+-------+---------------------+
| x | fnv_hash(x) |
+-------+---------------------+
true	2062020650953872396
true	2062020650953872396
false	2062021750465500607
false	2062021750465500607
+-------+---------------------+

Added in: Impala 1.2.2

 greatest(bigint a[, bigint b ...]),
greatest(double a[, double b ...]),
greatest(decimal(p,s) a[, decimal(p,s)
b ...]), greatest(string a[, string
b ...]), greatest(timestamp a[,
timestamp b ...])

Purpose: Returns the largest value from a list of
expressions.

Return type: same as the initial argument value,
except that integer values are promoted to BIGINT
and floating-point values are promoted to DOUBLE; use
CAST() when inserting into a smaller numeric column

 hex(bigint a), hex(string a) Purpose: Returns the hexadecimal representation of an
integer value, or of the characters in a string.

Return type: string

 is_inf(double a), Purpose: Tests whether a value is equal to the special
value “inf”, signifying infinity.

Return type: boolean

Usage notes:

 | Impala SQL Language Reference | 426

Infinity and NaN can be specified in text data files as
inf and nan respectively, and Impala interprets them
as these special values. They can also be produced by
certain arithmetic expressions; for example, 1/0 returns
Infinity and pow(-1, 0.5) returns NaN. Or you
can cast the literal values, such as CAST('nan' AS
DOUBLE) or CAST('inf' AS DOUBLE).

 is_nan(double a), Purpose: Tests whether a value is equal to the special
value “NaN”, signifying “not a number”.

Return type: boolean

Usage notes:

Infinity and NaN can be specified in text data files as
inf and nan respectively, and Impala interprets them
as these special values. They can also be produced by
certain arithmetic expressions; for example, 1/0 returns
Infinity and pow(-1, 0.5) returns NaN. Or you
can cast the literal values, such as CAST('nan' AS
DOUBLE) or CAST('inf' AS DOUBLE).

 least(bigint a[, bigint b ...]),
least(double a[, double b ...]),
least(decimal(p,s) a[, decimal(p,s)
b ...]), least(string a[, string
b ...]), least(timestamp a[, timestamp
b ...])

Purpose: Returns the smallest value from a list of
expressions.

Return type: same as the initial argument value,
except that integer values are promoted to BIGINT
and floating-point values are promoted to DOUBLE; use
CAST() when inserting into a smaller numeric column

 ln(double a), dlog1(double a) Purpose: Returns the natural logarithm of the argument.

Return type: double

 log(double base, double a) Purpose: Returns the logarithm of the second argument
to the specified base.

Return type: double

 log10(double a), dlog10(double a) Purpose: Returns the logarithm of the argument to the
base 10.

Return type: double

 log2(double a) Purpose: Returns the logarithm of the argument to the
base 2.

Return type: double

 max_int(), max_tinyint(),
max_smallint(), max_bigint()

Purpose: Returns the largest value of the associated
integral type.

Return type: The same as the integral type being
checked.

Usage notes: Use the corresponding min_ and max_
functions to check if all values in a column are within the
allowed range, before copying data or altering column
definitions. If not, switch to the next higher integral type
or to a DECIMAL with sufficient precision.

https://en.wikipedia.org/wiki/Natural_logarithm

 | Impala SQL Language Reference | 427

 min_int(), min_tinyint(),
min_smallint(), min_bigint()

Purpose: Returns the smallest value of the associated
integral type (a negative number).

Return type: The same as the integral type being
checked.

Usage notes: Use the corresponding min_ and max_
functions to check if all values in a column are within the
allowed range, before copying data or altering column
definitions. If not, switch to the next higher integral type
or to a DECIMAL with sufficient precision.

 mod(numeric_type a, same_type b) Purpose: Returns the modulus of a number. Equivalent
to the % arithmetic operator. Works with any size integer
type, any size floating-point type, and DECIMAL with
any precision and scale.

Return type: Same as the input value

Added in: Impala 2.2.0

Usage notes:

Because this function works with DECIMAL values,
prefer it over fmod() when working with fractional
values. It is not subject to the rounding errors that make
fmod() problematic with floating-point numbers. The
% arithmetic operator now uses the mod() function
in cases where its arguments can be interpreted as
DECIMAL values, increasing the accuracy of that
operator.

Examples:

The following examples show how the mod() function
works for whole numbers and fractional values, and
how the % operator works the same way. In the case
of mod(9.9,3), the type conversion for the second
argument results in the first argument being interpreted
as DOUBLE, so to produce an accurate DECIMAL result
requires casting the second argument or writing it as a
DECIMAL literal, 3.0.

select mod(10,3);
+-------------+
| fmod(10, 3) |
+-------------+
| 1 |
+-------------+

select mod(5.5,2);
+--------------+
| fmod(5.5, 2) |
+--------------+
| 1.5 |
+--------------+

select 10 % 3;
+--------+
| 10 % 3 |
+--------+
| 1 |

 | Impala SQL Language Reference | 428

+--------+

select 5.5 % 2;
+---------+
| 5.5 % 2 |
+---------+
| 1.5 |
+---------+

select mod(9.9,3.3);
+---------------+
| mod(9.9, 3.3) |
+---------------+
| 0.0 |
+---------------+

select mod(9.9,3);
+--------------------+
| mod(9.9, 3) |
+--------------------+
| 0.8999996185302734 |
+--------------------+

select mod(9.9, cast(3 as
 decimal(2,1)));
+-----------------------------------
+
| mod(9.9, cast(3 as decimal(2,1)))
 |
+-----------------------------------
+
| 0.9
 |
+-----------------------------------
+

select mod(9.9,3.0);
+---------------+
| mod(9.9, 3.0) |
+---------------+
| 0.9 |
+---------------+

 negative(numeric_type a) Purpose: Returns the argument with the sign reversed;
returns a positive value if the argument was already
negative.

Return type: Same as the input value

Usage notes: Use -abs(a) instead if you need to
ensure all return values are negative.

 pi() Purpose: Returns the constant pi.

Return type: double

 pmod(bigint a, bigint b), pmod(double
a, double b)

Purpose: Returns the positive modulus of a number.
Primarily for HiveQL compatibility.

Return type: int or double, depending on type of
arguments

Examples:

https://issues.apache.org/jira/browse/HIVE-656

 | Impala SQL Language Reference | 429

The following examples show how the fmod() function
sometimes returns a negative value depending on the
sign of its arguments, and the pmod() function returns
the same value as fmod(), but sometimes with the sign
flipped.

select fmod(-5,2);
+-------------+
| fmod(-5, 2) |
+-------------+
| -1 |
+-------------+

select pmod(-5,2);
+-------------+
| pmod(-5, 2) |
+-------------+
| 1 |
+-------------+

select fmod(-5,-2);
+--------------+
| fmod(-5, -2) |
+--------------+
| -1 |
+--------------+

select pmod(-5,-2);
+--------------+
| pmod(-5, -2) |
+--------------+
| -1 |
+--------------+

select fmod(5,-2);
+-------------+
| fmod(5, -2) |
+-------------+
| 1 |
+-------------+

select pmod(5,-2);
+-------------+
| pmod(5, -2) |
+-------------+
| -1 |
+-------------+

 positive(numeric_type a) Purpose: Returns the original argument unchanged
(even if the argument is negative).

Return type: Same as the input value

Usage notes: Use abs() instead if you need to ensure
all return values are positive.

 pow(double a, double p), power(double
a, double p), dpow(double a, double p),
fpow(double a, double p)

Purpose: Returns the first argument raised to the power
of the second argument.

Return type: double

 | Impala SQL Language Reference | 430

 precision(numeric_expression) Purpose: Computes the precision (number of decimal
digits) needed to represent the type of the argument
expression as a DECIMAL value.

Usage notes:

Typically used in combination with the
scale() function, to determine the appropriate
DECIMAL(precision,scale) type to declare in a
CREATE TABLE statement or CAST() function.

Return type: int

Examples:

The following examples demonstrate how to check the
precision and scale of numeric literals or other numeric
expressions. Impala represents numeric literals in the
smallest appropriate type. 5 is a TINYINT value, which
ranges from -128 to 127, therefore 3 decimal digits are
needed to represent the entire range, and because it is
an integer value there are no fractional digits. 1.333 is
interpreted as a DECIMAL value, with 4 digits total and 3
digits after the decimal point.

[localhost:21000] > select
 precision(5), scale(5);
+--------------+----------+
| precision(5) | scale(5) |
+--------------+----------+
| 3 | 0 |
+--------------+----------+
[localhost:21000] > select
 precision(1.333), scale(1.333);
+------------------+--------------+
| precision(1.333) | scale(1.333) |
+------------------+--------------+
| 4 | 3 |
+------------------+--------------+
[localhost:21000] > with t1 as
 (select cast(12.34 as
 decimal(20,2)) x union select
 cast(1 as decimal(8,6)) x)
 select precision(x), scale(x) from
 t1 limit 1;
+--------------+----------+
| precision(x) | scale(x) |
+--------------+----------+
| 24 | 6 |
+--------------+----------+

 quotient(bigint numerator, bigint
denominator), quotient(double
numerator, double denominator)

Purpose: Returns the first argument divided by the
second argument, discarding any fractional part. Avoids
promoting integer arguments to DOUBLE as happens
with the / SQL operator. Also includes an overload
that accepts DOUBLE arguments, discards the fractional
part of each argument value before dividing, and again
returns BIGINT. With integer arguments, this function
works the same as the DIV operator.

Return type: bigint

 | Impala SQL Language Reference | 431

 radians(double a) Purpose: Converts argument value from degrees to
radians.

Return type: double

 rand(), rand(int seed), random(),
random(int seed)

Purpose: Returns a random value between 0 and 1. After
rand() is called with a seed argument, it produces a
consistent random sequence based on the seed value.

Return type: double

Usage notes: Currently, the random sequence is reset
after each query, and multiple calls to rand() within
the same query return the same value each time. For
different number sequences that are different for each
query, pass a unique seed value to each call to rand().
For example, select rand(unix_timestamp())
from ...

Examples:

The following examples show how rand() can produce
sequences of varying predictability, so that you can
reproduce query results involving random values or
generate unique sequences of random values for each
query. When rand() is called with no argument,
it generates the same sequence of values each time,
regardless of the ordering of the result set. When
rand() is called with a constant integer, it generates
a different sequence of values, but still always the
same sequence for the same seed value. If you pass in
a seed value that changes, such as the return value of
the expression unix_timestamp(now()), each
query will use a different sequence of random values,
potentially more useful in probability calculations
although more difficult to reproduce at a later time.
Therefore, the final two examples with an unpredictable
seed value also include the seed in the result set, to make
it possible to reproduce the same random sequence later.

select x, rand() from three_rows;
+---+-----------------------+
| x | rand() |
+---+-----------------------+
1	0.0004714746030380365
2	0.5895895192351144
3	0.4431900859080209
+---+-----------------------+

select x, rand() from three_rows
 order by x desc;
+---+-----------------------+
| x | rand() |
+---+-----------------------+
3	0.0004714746030380365
2	0.5895895192351144
1	0.4431900859080209
+---+-----------------------+

select x, rand(1234) from three_rows
 order by x;

 | Impala SQL Language Reference | 432

+---+----------------------+
| x | rand(1234) |
+---+----------------------+
1	0.7377511392057646
2	0.009428468537250751
3	0.208117277924026
+---+----------------------+

select x, rand(1234) from three_rows
 order by x desc;
+---+----------------------+
| x | rand(1234) |
+---+----------------------+
3	0.7377511392057646
2	0.009428468537250751
1	0.208117277924026
+---+----------------------+

select x, unix_timestamp(now()),
 rand(unix_timestamp(now()))
 from three_rows order by x;
+---+-----------------------
+-----------------------------+
| x | unix_timestamp(now()) |
 rand(unix_timestamp(now())) |
+---+-----------------------
+-----------------------------+
| 1 | 1440777752 |
 0.002051228658320023 |
| 2 | 1440777752 |
 0.5098743483004506 |
| 3 | 1440777752 |
 0.9517714925817081 |
+---+-----------------------
+-----------------------------+

select x, unix_timestamp(now()),
 rand(unix_timestamp(now()))
 from three_rows order by x desc;
+---+-----------------------
+-----------------------------+
| x | unix_timestamp(now()) |
 rand(unix_timestamp(now())) |
+---+-----------------------
+-----------------------------+
| 3 | 1440777761 |
 0.9985985015512437 |
| 2 | 1440777761 |
 0.3251255333074953 |
| 1 | 1440777761 |
 0.02422675025846192 |
+---+-----------------------
+-----------------------------+

 round(double a), round(double a,
int d), round(decimal a, int_type d),
dround(double a), dround(double a, int
d), dround(decimal(p,s) a, int_type d)

Purpose: Rounds a floating-point value. By default
(with a single argument), rounds to the nearest integer.
Values ending in .5 are rounded up for positive numbers,
down for negative numbers (that is, away from zero).
The optional second argument specifies how many digits
to leave after the decimal point; values greater than zero
produce a floating-point return value rounded to the

 | Impala SQL Language Reference | 433

requested number of digits to the right of the decimal
point.

Return type: bigint for single double argument.
double for two-argument signature when second
argument greater than zero. For DECIMAL values,
the smallest DECIMAL(p,s) type with appropriate
precision and scale.

 scale(numeric_expression) Purpose: Computes the scale (number of decimal digits
to the right of the decimal point) needed to represent the
type of the argument expression as a DECIMAL value.

Usage notes:

Typically used in combination with the
precision() function, to determine the appropriate
DECIMAL(precision,scale) type to declare in a
CREATE TABLE statement or CAST() function.

Return type: int

Examples:

The following examples demonstrate how to check the
precision and scale of numeric literals or other numeric
expressions. Impala represents numeric literals in the
smallest appropriate type. 5 is a TINYINT value, which
ranges from -128 to 127, therefore 3 decimal digits are
needed to represent the entire range, and because it is
an integer value there are no fractional digits. 1.333 is
interpreted as a DECIMAL value, with 4 digits total and 3
digits after the decimal point.

[localhost:21000] > select
 precision(5), scale(5);
+--------------+----------+
| precision(5) | scale(5) |
+--------------+----------+
| 3 | 0 |
+--------------+----------+
[localhost:21000] > select
 precision(1.333), scale(1.333);
+------------------+--------------+
| precision(1.333) | scale(1.333) |
+------------------+--------------+
| 4 | 3 |
+------------------+--------------+
[localhost:21000] > with t1 as
 (select cast(12.34 as
 decimal(20,2)) x union select
 cast(1 as decimal(8,6)) x)
 select precision(x), scale(x) from
 t1 limit 1;
+--------------+----------+
| precision(x) | scale(x) |
+--------------+----------+
| 24 | 6 |
+--------------+----------+

 sign(double a) Purpose: Returns -1, 0, or 1 to indicate the signedness of
the argument value.

 | Impala SQL Language Reference | 434

Return type: int

 sin(double a) Purpose: Returns the sine of the argument.

Return type: double

 sinh(double a) Purpose: Returns the hyperbolic sine of the argument.

Return type: double

 sqrt(double a), dsqrt(double a) Purpose: Returns the square root of the argument.

Return type: double

 tan(double a) Purpose: Returns the tangent of the argument.

Return type: double

 tanh(double a) Purpose: Returns the hyperbolic tangent of the
argument.

Return type: double

 truncate(double_or_decimal
a[, digits_to_leave]),
dtrunc(double_or_decimal
a[, digits_to_leave]),
trunc(double_or_decimal a[,
digits_to_leave])

Purpose: Removes some or all fractional digits from a
numeric value.

Arguments: With a single floating-point argument,
removes all fractional digits, leaving an integer value.
The optional second argument specifies the number of
fractional digits to include in the return value, and only
applies when the argument type is DECIMAL. A second
argument of 0 truncates to a whole integer value. A
second argument of negative N sets N digits to 0 on the
left side of the decimal

Scale argument: The scale argument applies only when
truncating DECIMAL values. It is an integer specifying
how many significant digits to leave to the right of the
decimal point. A scale argument of 0 truncates to a whole
integer value. A scale argument of negative N sets N
digits to 0 on the left side of the decimal point.

truncate(), dtrunc(), and trunc() are aliases
for the same function.

Return type: decimal for DECIMAL arguments;
bigint for DOUBLE arguments

Added in: The trunc() alias was added in Impala
2.10.

Usage notes:

You can also pass a DOUBLE argument, or DECIMAL
argument with optional scale, to the dtrunc() or
truncate functions. Using the trunc() function for
numeric values is common with other industry-standard
database systems, so you might find such trunc() calls
in code that you are porting to Impala.

The trunc() function also has a signature that applies
to TIMESTAMP values. See Impala Date and Time
Functions on page 453 for details.

Examples:

 | Impala SQL Language Reference | 435

The following examples demonstrate the truncate()
and dtrunc() signatures for this function:

select truncate(3.45);
+----------------+
| truncate(3.45) |
+----------------+
| 3 |
+----------------+

select truncate(-3.45);
+-----------------+
| truncate(-3.45) |
+-----------------+
| -3 |
+-----------------+

select truncate(3.456,1);
+--------------------+
| truncate(3.456, 1) |
+--------------------+
| 3.4 |
+--------------------+

select dtrunc(3.456,1);
+------------------+
| dtrunc(3.456, 1) |
+------------------+
| 3.4 |
+------------------+

select truncate(3.456,2);
+--------------------+
| truncate(3.456, 2) |
+--------------------+
| 3.45 |
+--------------------+

select truncate(3.456,7);
+--------------------+
| truncate(3.456, 7) |
+--------------------+
| 3.4560000 |
+--------------------+

The following examples demonstrate using trunc()
with DECIMAL or DOUBLE values, and with an optional
scale argument for DECIMAL values. (The behavior is
the same for the truncate() and dtrunc() aliases
also.)

create table t1 (d decimal(20,7));

-- By default, no digits to the
 right of the decimal point.
insert into t1 values (1.1), (2.22),
 (3.333), (4.4444), (5.55555);
select trunc(d) from t1 order by d;
+----------+
| trunc(d) |
+----------+

 | Impala SQL Language Reference | 436

| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
+----------+

-- 1 digit to the right of the
 decimal point.
select trunc(d,1) from t1 order by
 d;
+-------------+
| trunc(d, 1) |
+-------------+
| 1.1 |
| 2.2 |
| 3.3 |
| 4.4 |
| 5.5 |
+-------------+

-- 2 digits to the right of the
 decimal point,
-- including trailing zeroes if
 needed.
select trunc(d,2) from t1 order by
 d;
+-------------+
| trunc(d, 2) |
+-------------+
| 1.10 |
| 2.22 |
| 3.33 |
| 4.44 |
| 5.55 |
+-------------+

insert into t1 values (9999.9999),
 (8888.8888);

-- Negative scale truncates digits
 to the left
-- of the decimal point.
select trunc(d,-2) from t1 where d >
 100 order by d;
+--------------+
| trunc(d, -2) |
+--------------+
| 8800 |
| 9900 |
+--------------+

-- The scale of the result is
 adjusted to match the
-- scale argument.
select trunc(d,2),
 precision(trunc(d,2)) as p,
 scale(trunc(d,2)) as s
from t1 order by d;
+-------------+----+---+
| trunc(d, 2) | p | s |
+-------------+----+---+
| 1.10 | 15 | 2 |
| 2.22 | 15 | 2 |

 | Impala SQL Language Reference | 437

3.33	15	2
4.44	15	2
5.55	15	2
8888.88	15	2
9999.99	15	2
+-------------+----+---+

create table dbl (d double);

insert into dbl values
 (1.1), (2.22), (3.333), (4.4444),
 (5.55555),
 (8888.8888), (9999.9999);

-- With double values, there is no
 optional scale argument.
select trunc(d) from dbl order by d;
+----------+
| trunc(d) |
+----------+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 8888 |
| 9999 |
+----------+

 unhex(string a) Purpose: Returns a string of characters with ASCII
values corresponding to pairs of hexadecimal digits in
the argument.

Return type: string

Impala Bit Functions

Bit manipulation functions perform bitwise operations involved in scientific processing or computer science
algorithms. For example, these functions include setting, clearing, or testing bits within an integer value, or changing
the positions of bits with or without wraparound.

If a function takes two integer arguments that are required to be of the same type, the smaller argument is promoted
to the type of the larger one if required. For example, BITAND(1,4096) treats both arguments as SMALLINT,
because 1 can be represented as a TINYINT but 4096 requires a SMALLINT.

Remember that all Impala integer values are signed. Therefore, when dealing with binary values where the most
significant bit is 1, the specified or returned values might be negative when represented in base 10.

Whenever any argument is NULL, either the input value, bit position, or number of shift or rotate positions, the return
value from any of these functions is also NULL

Related information:

The bit functions operate on all the integral data types: INT Data Type on page 127, BIGINT Data Type on page
111, SMALLINT Data Type on page 133, and TINYINT Data Type on page 149.

Function reference:

Impala supports the following bit functions:

 bitand(integer_type a, same_type b) Purpose: Returns an integer value representing the
bits that are set to 1 in both of the arguments. If the

 | Impala SQL Language Reference | 438

arguments are of different sizes, the smaller is promoted
to the type of the larger.

Usage notes: The bitand() function is equivalent to
the & binary operator.

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

The following examples show the results of ANDing
integer values. 255 contains all 1 bits in its lowermost 7
bits. 32767 contains all 1 bits in its lowermost 15 bits.
You can use the bin() function to check the binary
representation of any integer value, although the result
is always represented as a 64-bit value. If necessary, the
smaller argument is promoted to the type of the larger
one.

select bitand(255, 32767); /*
 0000000011111111 & 0111111111111111
 */
+--------------------+
| bitand(255, 32767) |
+--------------------+
| 255 |
+--------------------+

select bitand(32767, 1); /*
 0111111111111111 & 0000000000000001
 */
+------------------+
| bitand(32767, 1) |
+------------------+
| 1 |
+------------------+

select bitand(32, 16); /* 00010000 &
 00001000 */
+----------------+
| bitand(32, 16) |
+----------------+
| 0 |
+----------------+

select bitand(12,5); /* 00001100 &
 00000101 */
+---------------+
| bitand(12, 5) |
+---------------+
| 4 |
+---------------+

select bitand(-1,15); /* 11111111 &
 00001111 */
+----------------+
| bitand(-1, 15) |
+----------------+
| 15 |
+----------------+

 | Impala SQL Language Reference | 439

 bitnot(integer_type a) Purpose: Inverts all the bits of the input argument.

Usage notes: The bitnot() function is equivalent to
the ~ unary operator.

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

These examples illustrate what happens when you flip
all the bits of an integer value. The sign always changes.
The decimal representation is one different between the
positive and negative values.

select bitnot(127); /* 01111111 ->
 10000000 */
+-------------+
| bitnot(127) |
+-------------+
| -128 |
+-------------+

select bitnot(16); /* 00010000 ->
 11101111 */
+------------+
| bitnot(16) |
+------------+
| -17 |
+------------+

select bitnot(0); /* 00000000 ->
 11111111 */
+-----------+
| bitnot(0) |
+-----------+
| -1 |
+-----------+

select bitnot(-128); /* 10000000 ->
 01111111 */
+--------------+
| bitnot(-128) |
+--------------+
| 127 |
+--------------+

 bitor(integer_type a, same_type b) Purpose: Returns an integer value representing the
bits that are set to 1 in either of the arguments. If the
arguments are of different sizes, the smaller is promoted
to the type of the larger.

Usage notes: The bitor() function is equivalent to the
| binary operator.

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

 | Impala SQL Language Reference | 440

The following examples show the results of ORing
integer values.

select bitor(1,4); /* 00000001 |
 00000100 */
+-------------+
| bitor(1, 4) |
+-------------+
| 5 |
+-------------+

select bitor(16,48); /* 00001000 |
 00011000 */
+---------------+
| bitor(16, 48) |
+---------------+
| 48 |
+---------------+

select bitor(0,7); /* 00000000 |
 00000111 */
+-------------+
| bitor(0, 7) |
+-------------+
| 7 |
+-------------+

 bitxor(integer_type a, same_type b) Purpose: Returns an integer value representing the bits
that are set to 1 in one but not both of the arguments.
If the arguments are of different sizes, the smaller is
promoted to the type of the larger.

Usage notes: The bitxor() function is equivalent to
the ^ binary operator.

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

The following examples show the results of XORing
integer values. XORing a non-zero value with zero
returns the non-zero value. XORing two identical
values returns zero, because all the 1 bits from the first
argument are also 1 bits in the second argument. XORing
different non-zero values turns off some bits and leaves
others turned on, based on whether the same bit is set in
both arguments.

select bitxor(0,15); /* 00000000 ^
 00001111 */
+---------------+
| bitxor(0, 15) |
+---------------+
| 15 |
+---------------+

select bitxor(7,7); /* 00000111 ^
 00000111 */
+--------------+
| bitxor(7, 7) |
+--------------+

 | Impala SQL Language Reference | 441

| 0 |
+--------------+

select bitxor(8,4); /* 00001000 ^
 00000100 */
+--------------+
| bitxor(8, 4) |
+--------------+
| 12 |
+--------------+

select bitxor(3,7); /* 00000011 ^
 00000111 */
+--------------+
| bitxor(3, 7) |
+--------------+
| 4 |
+--------------+

 countset(integer_type a [, int
zero_or_one])

Purpose: By default, returns the number of 1 bits in the
specified integer value. If the optional second argument
is set to zero, it returns the number of 0 bits instead.

Usage notes:

In discussions of information theory, this operation is
referred to as the “population count” or “popcount”.

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

The following examples show how to count the number
of 1 bits in an integer value.

select countset(1); /* 00000001 */
+-------------+
| countset(1) |
+-------------+
| 1 |
+-------------+

select countset(3); /* 00000011 */
+-------------+
| countset(3) |
+-------------+
| 2 |
+-------------+

select countset(16); /* 00010000 */
+--------------+
| countset(16) |
+--------------+
| 1 |
+--------------+

select countset(17); /* 00010001 */
+--------------+
| countset(17) |
+--------------+
| 2 |
+--------------+

https://en.wikipedia.org/wiki/Hamming_weight

 | Impala SQL Language Reference | 442

select countset(7,1); /* 00000111
 = 3 1 bits; the function counts 1
 bits by default */
+----------------+
| countset(7, 1) |
+----------------+
| 3 |
+----------------+

select countset(7,0); /* 00000111 =
 5 0 bits; third argument can only
 be 0 or 1 */
+----------------+
| countset(7, 0) |
+----------------+
| 5 |
+----------------+

 getbit(integer_type a, int position) Purpose: Returns a 0 or 1 representing the bit at a
specified position. The positions are numbered right to
left, starting at zero. The position argument cannot be
negative.

Usage notes:

When you use a literal input value, it is treated as an
8-bit, 16-bit, and so on value, the smallest type that is
appropriate. The type of the input value limits the range
of the positions. Cast the input value to the appropriate
type if you need to ensure it is treated as a 64-bit, 32-bit,
and so on value.

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

The following examples show how to test a specific bit
within an integer value.

select getbit(1,0); /* 00000001 */
+--------------+
| getbit(1, 0) |
+--------------+
| 1 |
+--------------+

select getbit(16,1) /* 00010000 */
+---------------+
| getbit(16, 1) |
+---------------+
| 0 |
+---------------+

select getbit(16,4) /* 00010000 */
+---------------+
| getbit(16, 4) |
+---------------+
| 1 |
+---------------+

 | Impala SQL Language Reference | 443

select getbit(16,5) /* 00010000 */
+---------------+
| getbit(16, 5) |
+---------------+
| 0 |
+---------------+

select getbit(-1,3); /* 11111111 */
+---------------+
| getbit(-1, 3) |
+---------------+
| 1 |
+---------------+

select getbit(-1,25); /* 11111111 */
ERROR: Invalid bit position: 25

select getbit(cast(-1 as int),25); /
* 11111111111111111111111111111111
 */
+-----------------------------+
| getbit(cast(-1 as int), 25) |
+-----------------------------+
| 1 |
+-----------------------------+

 rotateleft(integer_type a, int
positions)

Purpose: Rotates an integer value left by a specified
number of bits. As the most significant bit is taken out
of the original value, if it is a 1 bit, it is “rotated” back
to the least significant bit. Therefore, the final value
has the same number of 1 bits as the original value, just
in different positions. In computer science terms, this
operation is a “circular shift”.

Usage notes:

Specifying a second argument of zero leaves the original
value unchanged. Rotating a -1 value by any number of
positions still returns -1, because the original value has
all 1 bits and all the 1 bits are preserved during rotation.
Similarly, rotating a 0 value by any number of positions
still returns 0. Rotating a value by the same number
of bits as in the value returns the same value. Because
this is a circular operation, the number of positions is
not limited to the number of bits in the input value. For
example, rotating an 8-bit value by 1, 9, 17, and so on
positions returns an identical result in each case.

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

select rotateleft(1,4); /* 00000001
 -> 00010000 */
+------------------+
| rotateleft(1, 4) |
+------------------+
| 16 |
+------------------+

https://en.wikipedia.org/wiki/Circular_shift

 | Impala SQL Language Reference | 444

select rotateleft(-1,155); /*
 11111111 -> 11111111 */
+---------------------+
| rotateleft(-1, 155) |
+---------------------+
| -1 |
+---------------------+

select rotateleft(-128,1); /*
 10000000 -> 00000001 */
+---------------------+
| rotateleft(-128, 1) |
+---------------------+
| 1 |
+---------------------+

select rotateleft(-127,3); /*
 10000001 -> 00001100 */
+---------------------+
| rotateleft(-127, 3) |
+---------------------+
| 12 |
+---------------------+

 rotateright(integer_type a, int
positions)

Purpose: Rotates an integer value right by a specified
number of bits. As the least significant bit is taken out
of the original value, if it is a 1 bit, it is “rotated” back
to the most significant bit. Therefore, the final value
has the same number of 1 bits as the original value, just
in different positions. In computer science terms, this
operation is a “circular shift”.

Usage notes:

Specifying a second argument of zero leaves the original
value unchanged. Rotating a -1 value by any number of
positions still returns -1, because the original value has
all 1 bits and all the 1 bits are preserved during rotation.
Similarly, rotating a 0 value by any number of positions
still returns 0. Rotating a value by the same number
of bits as in the value returns the same value. Because
this is a circular operation, the number of positions is
not limited to the number of bits in the input value. For
example, rotating an 8-bit value by 1, 9, 17, and so on
positions returns an identical result in each case.

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

select rotateright(16,4); /*
 00010000 -> 00000001 */
+--------------------+
| rotateright(16, 4) |
+--------------------+
| 1 |
+--------------------+

https://en.wikipedia.org/wiki/Circular_shift

 | Impala SQL Language Reference | 445

select rotateright(-1,155); /*
 11111111 -> 11111111 */
+----------------------+
| rotateright(-1, 155) |
+----------------------+
| -1 |
+----------------------+

select rotateright(-128,1); /*
 10000000 -> 01000000 */
+----------------------+
| rotateright(-128, 1) |
+----------------------+
| 64 |
+----------------------+

select rotateright(-127,3); /*
 10000001 -> 00110000 */
+----------------------+
| rotateright(-127, 3) |
+----------------------+
| 48 |
+----------------------+

 setbit(integer_type a, int position [,
int zero_or_one])

Purpose: By default, changes a bit at a specified position
to a 1, if it is not already. If the optional third argument is
set to zero, the specified bit is set to 0 instead.

Usage notes:

If the bit at the specified position was already 1 (by
default) or 0 (with a third argument of zero), the return
value is the same as the first argument. The positions are
numbered right to left, starting at zero. (Therefore, the
return value could be different from the first argument
even if the position argument is zero.) The position
argument cannot be negative.

When you use a literal input value, it is treated as an
8-bit, 16-bit, and so on value, the smallest type that is
appropriate. The type of the input value limits the range
of the positions. Cast the input value to the appropriate
type if you need to ensure it is treated as a 64-bit, 32-bit,
and so on value.

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

select setbit(0,0); /* 00000000 ->
 00000001 */
+--------------+
| setbit(0, 0) |
+--------------+
| 1 |
+--------------+

select setbit(0,3); /* 00000000 ->
 00001000 */
+--------------+
| setbit(0, 3) |

 | Impala SQL Language Reference | 446

+--------------+
| 8 |
+--------------+

select setbit(7,3); /* 00000111 ->
 00001111 */
+--------------+
| setbit(7, 3) |
+--------------+
| 15 |
+--------------+

select setbit(15,3); /* 00001111 ->
 00001111 */
+---------------+
| setbit(15, 3) |
+---------------+
| 15 |
+---------------+

select setbit(0,32); /* By default,
 0 is a TINYINT with only 8 bits. */
ERROR: Invalid bit position: 32

select setbit(cast(0 as
 bigint),32); /* For BIGINT, the
 position can be 0..63. */
+-------------------------------+
| setbit(cast(0 as bigint), 32) |
+-------------------------------+
| 4294967296 |
+-------------------------------+

select setbit(7,3,1); /* 00000111
 -> 00001111; setting to 1 is the
 default */
+-----------------+
| setbit(7, 3, 1) |
+-----------------+
| 15 |
+-----------------+

select setbit(7,2,0); /* 00000111
 -> 00000011; third argument of 0
 clears instead of sets */
+-----------------+
| setbit(7, 2, 0) |
+-----------------+
| 3 |
+-----------------+

 shiftleft(integer_type a, int
positions)

Purpose: Shifts an integer value left by a specified
number of bits. As the most significant bit is taken out of
the original value, it is discarded and the least significant
bit becomes 0. In computer science terms, this operation
is a “logical shift”.

Usage notes:

The final value has either the same number of 1 bits as
the original value, or fewer. Shifting an 8-bit value by
8 positions, a 16-bit value by 16 positions, and so on
produces a result of zero.

https://en.wikipedia.org/wiki/Logical_shift

 | Impala SQL Language Reference | 447

Specifying a second argument of zero leaves the original
value unchanged. Shifting any value by 0 returns the
original value. Shifting any value by 1 is the same as
multiplying it by 2, as long as the value is small enough;
larger values eventually become negative when shifted,
as the sign bit is set. Starting with the value 1 and
shifting it left by N positions gives the same result as 2 to
the Nth power, or pow(2,N).

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

select shiftleft(1,0); /* 00000001 -
> 00000001 */
+-----------------+
| shiftleft(1, 0) |
+-----------------+
| 1 |
+-----------------+

select shiftleft(1,3); /* 00000001 -
> 00001000 */
+-----------------+
| shiftleft(1, 3) |
+-----------------+
| 8 |
+-----------------+

select shiftleft(8,2); /* 00001000 -
> 00100000 */
+-----------------+
| shiftleft(8, 2) |
+-----------------+
| 32 |
+-----------------+

select shiftleft(127,1); /* 01111111
 -> 11111110 */
+-------------------+
| shiftleft(127, 1) |
+-------------------+
| -2 |
+-------------------+

select shiftleft(127,5); /* 01111111
 -> 11100000 */
+-------------------+
| shiftleft(127, 5) |
+-------------------+
| -32 |
+-------------------+

select shiftleft(-1,4); /* 11111111
 -> 11110000 */
+------------------+
| shiftleft(-1, 4) |
+------------------+
| -16 |
+------------------+

 | Impala SQL Language Reference | 448

 shiftright(integer_type a, int
positions)

Purpose: Shifts an integer value right by a specified
number of bits. As the least significant bit is taken out of
the original value, it is discarded and the most significant
bit becomes 0. In computer science terms, this operation
is a “logical shift”.

Usage notes:

Therefore, the final value has either the same number of
1 bits as the original value, or fewer. Shifting an 8-bit
value by 8 positions, a 16-bit value by 16 positions, and
so on produces a result of zero.

Specifying a second argument of zero leaves the original
value unchanged. Shifting any value by 0 returns the
original value. Shifting any positive value right by 1 is
the same as dividing it by 2. Negative values become
positive when shifted right.

Return type: Same as the input value

Added in: Impala 2.3.0

Examples:

select shiftright(16,0); /* 00010000
 -> 00010000 */
+-------------------+
| shiftright(16, 0) |
+-------------------+
| 16 |
+-------------------+

select shiftright(16,4); /* 00010000
 -> 00000001 */
+-------------------+
| shiftright(16, 4) |
+-------------------+
| 1 |
+-------------------+

select shiftright(16,5); /* 00010000
 -> 00000000 */
+-------------------+
| shiftright(16, 5) |
+-------------------+
| 0 |
+-------------------+

select shiftright(-1,1); /* 11111111
 -> 01111111 */
+-------------------+
| shiftright(-1, 1) |
+-------------------+
| 127 |
+-------------------+

select shiftright(-1,5); /* 11111111
 -> 00000111 */
+-------------------+
| shiftright(-1, 5) |
+-------------------+
| 7 |

https://en.wikipedia.org/wiki/Logical_shift

 | Impala SQL Language Reference | 449

+-------------------+

Impala Type Conversion Functions

Conversion functions are usually used in combination with other functions, to explicitly pass the expected data types.
Impala has strict rules regarding data types for function parameters. For example, Impala does not automatically
convert a DOUBLE value to FLOAT, a BIGINT value to INT, or other conversion where precision could be lost or
overflow could occur. Also, for reporting or dealing with loosely defined schemas in big data contexts, you might
frequently need to convert values to or from the STRING type.

Note: Although in Impala 2.3, the SHOW FUNCTIONS output for database _IMPALA_BUILTINS contains some
function signatures matching the pattern castto*, these functions are not intended for public use and are expected
to be hidden in future.

Function reference:

Impala supports the following type conversion functions:

 cast(expr AS type) Purpose: Converts the value of an expression to any
other type. If the expression value is of a type that cannot
be converted to the target type, the result is NULL.

Usage notes: Use CAST when passing a column value
or literal to a function that expects a parameter with a
different type. Frequently used in SQL operations such
as CREATE TABLE AS SELECT and INSERT ...
VALUES to ensure that values from various sources
are of the appropriate type for the destination columns.
Where practical, do a one-time CAST() operation
during the ingestion process to make each column into
the appropriate type, rather than using many CAST()
operations in each query; doing type conversions for
each row during each query can be expensive for tables
with millions or billions of rows.

The way this function deals with time
zones when converting to or from
TIMESTAMP values is affected by the -
use_local_tz_for_unix_timestamp_conversions
startup flag for the impalad daemon. See TIMESTAMP
Data Type on page 141 for details about how Impala
handles time zone considerations for the TIMESTAMP
data type.

Examples:

select concat('Here are the first
 ',10,' results.'); -- Fails
select concat('Here are the first
 ',cast(10 as string),' results.');
 -- Succeeds

The following example starts with a text table where
every column has a type of STRING, which might be
how you ingest data of unknown schema until you can
verify the cleanliness of the underly values. Then it
uses CAST() to create a new Parquet table with the
same data, but using specific numeric data types for
the columns with numeric data. Using numeric types of

 | Impala SQL Language Reference | 450

appropriate sizes can result in substantial space savings
on disk and in memory, and performance improvements
in queries, over using strings or larger-than-necessary
numeric types.

create table t1 (name string, x
 string, y string, z string);

create table t2 stored as parquet
as select
 name,
 cast(x as bigint) x,
 cast(y as timestamp) y,
 cast(z as smallint) z
from t1;

describe t2;
+------+----------+---------+
| name | type | comment |
+------+----------+---------+
name	string	
x	bigint	
y	smallint	
z	tinyint	
+------+----------+---------+

Related information:

For details of casts from each kind of data type, see
the description of the appropriate type: TINYINT Data
Type on page 149, SMALLINT Data Type on page
133, INT Data Type on page 127, BIGINT Data
Type on page 111, FLOAT Data Type on page 126,
DOUBLE Data Type on page 125, DECIMAL Data
Type (Impala 1.4 or higher only) on page 117,
STRING Data Type on page 134, CHAR Data Type
(Impala 2.0 or higher only) on page 113, VARCHAR
Data Type (Impala 2.0 or higher only) on page 150,
TIMESTAMP Data Type on page 141, BOOLEAN
Data Type on page 112

 typeof(type value) Purpose: Returns the name of the data type
corresponding to an expression. For types with extra
attributes, such as length for CHAR and VARCHAR, or
precision and scale for DECIMAL, includes the full
specification of the type.

Return type: string

Usage notes: Typically used in interactive exploration of
a schema, or in application code that programmatically
generates schema definitions such as CREATE TABLE
statements. For example, previously, to understand
the type of an expression such as col1 / col2 or
concat(col1, col2, col3), you might have
created a dummy table with a single row, using syntax
such as CREATE TABLE foo AS SELECT 5 /
3.0, and then doing a DESCRIBE to see the type of
the row. Or you might have done a CREATE TABLE
AS SELECT operation to create a table and copy data

 | Impala SQL Language Reference | 451

into it, only learning the types of the columns by doing
a DESCRIBE afterward. This technique is especially
useful for arithmetic expressions involving DECIMAL
types, because the precision and scale of the result is
typically different than that of the operands.

Added in: Impala 2.3.0

Examples:

These examples show how to check the type of a simple
literal or function value. Notice how adding even tiny
integers together changes the data type of the result
to avoid overflow, and how the results of arithmetic
operations on DECIMAL values have specific precision
and scale attributes.

select typeof(2)
+-----------+
| typeof(2) |
+-----------+
| TINYINT |
+-----------+

select typeof(2+2)
+---------------+
| typeof(2 + 2) |
+---------------+
| SMALLINT |
+---------------+

select typeof('xyz')
+---------------+
| typeof('xyz') |
+---------------+
| STRING |
+---------------+

select typeof(now())
+---------------+
| typeof(now()) |
+---------------+
| TIMESTAMP |
+---------------+

select typeof(5.3 / 2.1)
+-------------------+
| typeof(5.3 / 2.1) |
+-------------------+
| DECIMAL(6,4) |
+-------------------+

select typeof(5.30001 / 2342.1);
+--------------------------+
| typeof(5.30001 / 2342.1) |
+--------------------------+
| DECIMAL(13,11) |
+--------------------------+

select typeof(typeof(2+2))
+-----------------------+
| typeof(typeof(2 + 2)) |
+-----------------------+

 | Impala SQL Language Reference | 452

| STRING |
+-----------------------+

This example shows how even if you do not have a
record of the type of a column, for example because the
type was changed by ALTER TABLE after the original
CREATE TABLE, you can still find out the type in a
more compact form than examining the full DESCRIBE
output. Remember to use LIMIT 1 in such cases, to
avoid an identical result value for every row in the table.

create table typeof_example (a int,
 b tinyint, c smallint, d bigint);

/* Empty result set if there is no
 data in the table. */
select typeof(a) from
 typeof_example;

/* OK, now we have some data but the
 type of column A is being changed.
 */
insert into typeof_example values
 (1, 2, 3, 4);
alter table typeof_example change a
 a bigint;

/* We can always find out the
 current type of that column without
 doing a full DESCRIBE. */
select typeof(a) from typeof_example
 limit 1;
+-----------+
| typeof(a) |
+-----------+
| BIGINT |
+-----------+

This example shows how you might programmatically
generate a CREATE TABLE statement with the
appropriate column definitions to hold the result values
of arbitrary expressions. The typeof() function lets
you construct a detailed CREATE TABLE statement
without actually creating the table, as opposed to
CREATE TABLE AS SELECT operations where you
create the destination table but only learn the column
data types afterward through DESCRIBE.

describe typeof_example;
+------+----------+---------+
| name | type | comment |
+------+----------+---------+
a	bigint	
b	tinyint	
c	smallint	
d	bigint	
+------+----------+---------+

/* An ETL or business intelligence
 tool might create variations on a
 table with different file formats,

 | Impala SQL Language Reference | 453

 different sets of columns, and so
 on. TYPEOF() lets an application
 introspect the types of the
 original columns. */
select concat('create table
 derived_table (a ', typeof(a), ', b
 ', typeof(b), ', c ',
 typeof(c), ', d ', typeof(d), ')
 stored as parquet;')
 as 'create table statement'
from typeof_example limit 1;
+---
+
| create table statement

 |
+---
+
| create table derived_table (a
 BIGINT, b TINYINT, c SMALLINT, d
 BIGINT) stored as parquet; |
+---
+

Impala Date and Time Functions

The underlying Impala data type for date and time data is TIMESTAMP, which has both a date and a time portion.
Functions that extract a single field, such as hour() or minute(), typically return an integer value. Functions that
format the date portion, such as date_add() or to_date(), typically return a string value.

You can also adjust a TIMESTAMP value by adding or subtracting an INTERVAL expression. See TIMESTAMP
Data Type on page 141 for details. INTERVAL expressions are also allowed as the second argument for the
date_add() and date_sub() functions, rather than integers.

Some of these functions are affected by the setting of the -
use_local_tz_for_unix_timestamp_conversions startup flag for the impalad daemon. This setting
is off by default, meaning that functions such as from_unixtime() and unix_timestamp() consider the
input values to always represent the UTC time zone. This setting also applies when you CAST() a BIGINT value
to TIMESTAMP, or a TIMESTAMP value to BIGINT. When this setting is enabled, these functions and operations
convert to and from values representing the local time zone. See TIMESTAMP Data Type on page 141 for details
about how Impala handles time zone considerations for the TIMESTAMP data type.

Function reference:

Impala supports the following data and time functions:

 add_months(timestamp date, int
months), add_months(timestamp date,
bigint months)

Purpose: Returns the specified date and time plus some
number of months.

Return type: timestamp

Usage notes:

Same as months_add(). Available in Impala 1.4 and
higher. For compatibility when porting code with vendor
extensions.

Examples:

The following examples demonstrate adding months to
construct the same day of the month in a different month;
how if the current day of the month does not exist in the
target month, the last day of that month is substituted;

 | Impala SQL Language Reference | 454

and how a negative argument produces a return value
from a previous month.

select now(), add_months(now(), 2);
+-------------------------------
+-------------------------------+
| now() |
 add_months(now(), 2) |
+-------------------------------
+-------------------------------+
| 2016-05-31 10:47:00.429109000 |
 2016-07-31 10:47:00.429109000 |
+-------------------------------
+-------------------------------+

select now(), add_months(now(), 1);
+-------------------------------
+-------------------------------+
| now() |
 add_months(now(), 1) |
+-------------------------------
+-------------------------------+
| 2016-05-31 10:47:14.540226000 |
 2016-06-30 10:47:14.540226000 |
+-------------------------------
+-------------------------------+

select now(), add_months(now(), -1);
+-------------------------------
+-------------------------------+
| now() |
 add_months(now(), -1) |
+-------------------------------
+-------------------------------+
| 2016-05-31 10:47:31.732298000 |
 2016-04-30 10:47:31.732298000 |
+-------------------------------
+-------------------------------+

 adddate(timestamp startdate, int
days), adddate(timestamp startdate,
bigint days),

Purpose: Adds a specified number of days to a
TIMESTAMP value. Similar to date_add(), but starts
with an actual TIMESTAMP value instead of a string that
is converted to a TIMESTAMP.

Return type: timestamp

Examples:

The following examples show how to add a number
of days to a TIMESTAMP. The number of days can
also be negative, which gives the same effect as the
subdate() function.

select now() as right_now,
 adddate(now(), 30) as now_plus_30;
+-------------------------------
+-------------------------------+
| right_now |
 now_plus_30 |
+-------------------------------
+-------------------------------+

 | Impala SQL Language Reference | 455

| 2016-05-20 10:23:08.640111000 |
 2016-06-19 10:23:08.640111000 |
+-------------------------------
+-------------------------------+

select now() as right_now,
 adddate(now(), -15) as
 now_minus_15;
+-------------------------------
+-------------------------------+
| right_now |
 now_minus_15 |
+-------------------------------
+-------------------------------+
| 2016-05-20 10:23:38.214064000 |
 2016-05-05 10:23:38.214064000 |
+-------------------------------
+-------------------------------+

 current_timestamp() Purpose: Alias for the now() function.

Return type: timestamp

Examples:

select now(), current_timestamp();
+-------------------------------
+-------------------------------+
| now() |
 current_timestamp() |
+-------------------------------
+-------------------------------+
| 2016-05-19 16:10:14.237849000 |
 2016-05-19 16:10:14.237849000 |
+-------------------------------
+-------------------------------+

select current_timestamp() as
 right_now,
 current_timestamp() + interval 3
 hours as in_three_hours;
+-------------------------------
+-------------------------------+
| right_now |
 in_three_hours |
+-------------------------------
+-------------------------------+
| 2016-05-19 16:13:20.017117000 |
 2016-05-19 19:13:20.017117000 |
+-------------------------------
+-------------------------------+

 date_add(timestamp startdate, int
days), date_add(timestamp startdate,
interval_expression)

Purpose: Adds a specified number of days to a
TIMESTAMP value. With an INTERVAL expression
as the second argument, you can calculate a delta value
using other units such as weeks, years, hours, seconds,
and so on; see TIMESTAMP Data Type on page 141
for details.

Return type: timestamp

Examples:

 | Impala SQL Language Reference | 456

The following example shows the simplest usage, of
adding a specified number of days to a TIMESTAMP
value:

select now() as right_now,
 date_add(now(), 7) as next_week;
+-------------------------------
+-------------------------------+
| right_now |
 next_week |
+-------------------------------
+-------------------------------+
| 2016-05-20 11:03:48.687055000 |
 2016-05-27 11:03:48.687055000 |
+-------------------------------
+-------------------------------+

The following examples show the shorthand notation
of an INTERVAL expression, instead of specifying the
precise number of days. The INTERVAL notation also
lets you work with units smaller than a single day.

select now() as right_now,
 date_add(now(), interval 3 weeks)
 as in_3_weeks;
+-------------------------------
+-------------------------------+
| right_now |
 in_3_weeks |
+-------------------------------
+-------------------------------+
| 2016-05-20 11:05:39.173331000 |
 2016-06-10 11:05:39.173331000 |
+-------------------------------
+-------------------------------+

select now() as right_now,
 date_add(now(), interval 6 hours)
 as in_6_hours;
+-------------------------------
+-------------------------------+
| right_now |
 in_6_hours |
+-------------------------------
+-------------------------------+
| 2016-05-20 11:13:51.492536000 |
 2016-05-20 17:13:51.492536000 |
+-------------------------------
+-------------------------------+

Like all date/time functions that deal with months,
date_add() handles nonexistent dates past the end of
a month by setting the date to the last day of the month.
The following example shows how the nonexistent date
April 31st is normalized to April 30th:

 | Impala SQL Language Reference | 457

select date_add(cast('2016-01-31' as
 timestamp), interval 3 months) as
 'april_31st';
+---------------------+
| april_31st |
+---------------------+
| 2016-04-30 00:00:00 |
+---------------------+

 date_part(string, timestamp) Purpose: Similar to EXTRACT(), with the argument
order reversed. Supports the same date and time units
as EXTRACT(). For compatibility with SQL code
containing vendor extensions.

Return type: int

Examples:

select date_part('year',now()) as
 current_year;
+--------------+
| current_year |
+--------------+
| 2016 |
+--------------+

select date_part('hour',now()) as
 hour_of_day;
+-------------+
| hour_of_day |
+-------------+
| 11 |
+-------------+

 date_sub(timestamp startdate, int
days), date_sub(timestamp startdate,
interval_expression)

Purpose: Subtracts a specified number of days from a
TIMESTAMP value. With an INTERVAL expression
as the second argument, you can calculate a delta value
using other units such as weeks, years, hours, seconds,
and so on; see TIMESTAMP Data Type on page 141
for details.

Return type: timestamp

Examples:

The following example shows the simplest usage,
of subtracting a specified number of days from a
TIMESTAMP value:

select now() as right_now,
 date_sub(now(), 7) as last_week;
+-------------------------------
+-------------------------------+
| right_now |
 last_week |
+-------------------------------
+-------------------------------+
| 2016-05-20 11:21:30.491011000 |
 2016-05-13 11:21:30.491011000 |

 | Impala SQL Language Reference | 458

+-------------------------------
+-------------------------------+

The following examples show the shorthand notation
of an INTERVAL expression, instead of specifying the
precise number of days. The INTERVAL notation also
lets you work with units smaller than a single day.

select now() as right_now,
 date_sub(now(), interval 3 weeks)
 as 3_weeks_ago;
+-------------------------------
+-------------------------------+
| right_now |
 3_weeks_ago |
+-------------------------------
+-------------------------------+
| 2016-05-20 11:23:05.176953000 |
 2016-04-29 11:23:05.176953000 |
+-------------------------------
+-------------------------------+

select now() as right_now,
 date_sub(now(), interval 6 hours)
 as 6_hours_ago;
+-------------------------------
+-------------------------------+
| right_now |
 6_hours_ago |
+-------------------------------
+-------------------------------+
| 2016-05-20 11:23:35.439631000 |
 2016-05-20 05:23:35.439631000 |
+-------------------------------
+-------------------------------+

Like all date/time functions that deal with months,
date_add() handles nonexistent dates past the end of
a month by setting the date to the last day of the month.
The following example shows how the nonexistent date
April 31st is normalized to April 30th:

select date_sub(cast('2016-05-31' as
 timestamp), interval 1 months) as
 'april_31st';
+---------------------+
| april_31st |
+---------------------+
| 2016-04-30 00:00:00 |
+---------------------+

 date_trunc(string unit, timestamp) Purpose: Truncates a TIMESTAMP value to the
specified precision.

Unit argument: The unit argument value for
truncating TIMESTAMP values is not case-sensitive. This
argument string can be one of:

• microseconds

 | Impala SQL Language Reference | 459

• milliseconds
• second
• minute
• hour
• day
• week
• month
• year
• decade
• century
• millennium

For example, calling date_trunc('hour',ts)
truncates ts to the beginning of the corresponding hour,
with all minutes, seconds, milliseconds, and so on set to
zero. Calling date_trunc('milliseconds',ts)
truncates ts to the beginning of the corresponding
millisecond, with all microseconds and nanoseconds set
to zero.

Note: The sub-second units are specified in plural form.
All units representing one second or more are specified
in singular form.

Added in: Impala 2.11.0

Usage notes:

Although this function is similar to calling TRUNC()
with a TIMESTAMP argument, the order of arguments
and the recognized units are different between TRUNC()
and DATE_TRUNC(). Therefore, these functions are not
interchangeable.

This function is typically used in GROUP BY queries to
aggregate results from the same hour, day, week, month,
quarter, and so on. You can also use this function in
an INSERT ... SELECT into a partitioned table to
divide TIMESTAMP values into the correct partition.

Because the return value is a TIMESTAMP, if you cast
the result of DATE_TRUNC() to STRING, you will
often see zeroed-out portions such as 00:00:00 in the
time field. If you only need the individual units such as
hour, day, month, or year, use the EXTRACT() function
instead. If you need the individual units from a truncated
TIMESTAMP value, run the TRUNCATE() function on
the original value, then run EXTRACT() on the result.

Return type: timestamp

Examples:

The following examples show how to call
DATE_TRUNC() with different unit values:

select now(), date_trunc('second',
 now());

 | Impala SQL Language Reference | 460

+-------------------------------
+-----------------------------------
+
| now() |
 date_trunc('second', now()) |
+-------------------------------
+-----------------------------------
+
| 2017-12-05 13:58:04.565403000 |
 2017-12-05 13:58:04 |
+-------------------------------
+-----------------------------------
+

select now(), date_trunc('hour',
 now());
+-------------------------------
+---------------------------+
| now() |
 date_trunc('hour', now()) |
+-------------------------------
+---------------------------+
| 2017-12-05 13:59:01.884459000 |
 2017-12-05 13:00:00 |
+-------------------------------
+---------------------------+

select now(),
 date_trunc('millennium', now());
+-------------------------------
+---------------------------------+
| now() |
 date_trunc('millennium', now()) |
+-------------------------------
+---------------------------------+
| 2017-12-05 14:00:30.296812000 |
 2000-01-01 00:00:00 |
+-------------------------------
+---------------------------------+

 datediff(timestamp enddate, timestamp
startdate)

Purpose: Returns the number of days between two
TIMESTAMP values.

Return type: int

Usage notes:

If the first argument represents a later date than the
second argument, the return value is positive. If both
arguments represent the same date, the return value
is zero. The time portions of the TIMESTAMP values
are irrelevant. For example, 11:59 PM on one day and
12:01 on the next day represent a datediff() of -1
because the date/time values represent different days,
even though the TIMESTAMP values differ by only 2
minutes.

Examples:

The following example shows how comparing a “late”
value with an “earlier” value produces a positive number.

 | Impala SQL Language Reference | 461

In this case, the result is (365 * 5) + 1, because one of the
intervening years is a leap year.

select now() as right_now,
 datediff(now() + interval 5 years,
 now()) as in_5_years;
+-------------------------------
+------------+
| right_now |
 in_5_years |
+-------------------------------
+------------+
| 2016-05-20 13:43:55.873826000 |
 1826 |
+-------------------------------
+------------+

The following examples show how the return
value represent the number of days between the
associated dates, regardless of the time portion of each
TIMESTAMP. For example, different times on the same
day produce a date_diff() of 0, regardless of which
one is earlier or later. But if the arguments represent
different dates, date_diff() returns a non-zero
integer value, regardless of the time portions of the dates.

select now() as right_now,
 datediff(now(), now() + interval 4
 hours) as in_4_hours;
+-------------------------------
+------------+
| right_now |
 in_4_hours |
+-------------------------------
+------------+
| 2016-05-20 13:42:05.302747000 | 0
 |
+-------------------------------
+------------+

select now() as right_now,
 datediff(now(), now() - interval 4
 hours) as 4_hours_ago;
+-------------------------------
+-------------+
| right_now |
 4_hours_ago |
+-------------------------------
+-------------+
| 2016-05-20 13:42:21.134958000 | 0
 |
+-------------------------------
+-------------+

select now() as right_now,
 datediff(now(), now() + interval 12
 hours) as in_12_hours;
+-------------------------------
+-------------+

 | Impala SQL Language Reference | 462

| right_now |
 in_12_hours |
+-------------------------------
+-------------+
| 2016-05-20 13:42:44.765873000 | -1
 |
+-------------------------------
+-------------+

select now() as right_now,
 datediff(now(), now() - interval 18
 hours) as 18_hours_ago;
+-------------------------------
+--------------+
| right_now |
 18_hours_ago |
+-------------------------------
+--------------+
| 2016-05-20 13:54:38.829827000 | 1
 |
+-------------------------------
+--------------+

 day(timestamp date),
dayofmonth(timestamp date)

Purpose: Returns the day field from the date portion of a
TIMESTAMP. The value represents the day of the month,
therefore is in the range 1-31, or less for months without
31 days.

Return type: int

Examples:

The following examples show how the day value
corresponds to the day of the month, resetting back to 1
at the start of each month.

select now(), day(now());
+-------------------------------
+------------+
| now() |
 day(now()) |
+-------------------------------
+------------+
| 2016-05-20 15:01:51.042185000 | 20
 |
+-------------------------------
+------------+

select now() + interval 11 days,
 day(now() + interval 11 days);
+-------------------------------
+-------------------------------+
| now() + interval 11 days |
 day(now() + interval 11 days) |
+-------------------------------
+-------------------------------+
| 2016-05-31 15:05:56.843139000 | 31
 |
+-------------------------------
+-------------------------------+

 | Impala SQL Language Reference | 463

select now() + interval 12 days,
 day(now() + interval 12 days);
+-------------------------------
+-------------------------------+
| now() + interval 12 days |
 day(now() + interval 12 days) |
+-------------------------------
+-------------------------------+
| 2016-06-01 15:06:05.074236000 | 1
 |
+-------------------------------
+-------------------------------+

The following examples show how the day value is
NULL for nonexistent dates or misformatted date strings.

-- 2016 is a leap year, so it has a
 Feb. 29.
select day('2016-02-29');
+-------------------+
| day('2016-02-29') |
+-------------------+
| 29 |
+-------------------+

-- 2015 is not a leap year, so Feb.
 29 is nonexistent.
select day('2015-02-29');
+-------------------+
| day('2015-02-29') |
+-------------------+
| NULL |
+-------------------+

-- A string that does not match the
 expected YYYY-MM-DD format
-- produces an invalid TIMESTAMP,
 causing day() to return NULL.
select day('2016-02-028');
+--------------------+
| day('2016-02-028') |
+--------------------+
| NULL |
+--------------------+

 dayname(timestamp date) Purpose: Returns the day field from a TIMESTAMP
value, converted to the string corresponding to that
day name. The range of return values is 'Sunday' to
'Saturday'. Used in report-generating queries, as
an alternative to calling dayofweek() and turning
that numeric return value into a string using a CASE
expression.

Return type: string

Examples:

The following examples show the day name associated
with TIMESTAMP values representing different days.

 | Impala SQL Language Reference | 464

select now() as right_now,
 dayofweek(now()) as
 todays_day_of_week,
 dayname(now()) as todays_day_name;
+-------------------------------
+--------------------
+-----------------+
| right_now
 | todays_day_of_week |
 todays_day_name |
+-------------------------------
+--------------------
+-----------------+
| 2016-05-31 10:57:03.953670000 | 3
 | Tuesday |
+-------------------------------
+--------------------
+-----------------+

select now() + interval 1 day as
 tomorrow,
 dayname(now() + interval 1 day) as
 tomorrows_day_name;
+-------------------------------
+--------------------+
| tomorrow |
 tomorrows_day_name |
+-------------------------------
+--------------------+
| 2016-06-01 10:58:53.945761000 |
 Wednesday |
+-------------------------------
+--------------------+

 dayofweek(timestamp date) Purpose: Returns the day field from the date portion of a
TIMESTAMP, corresponding to the day of the week. The
range of return values is 1 (Sunday) to 7 (Saturday).

Return type: int

Examples:

select now() as right_now,
 dayofweek(now()) as
 todays_day_of_week,
 dayname(now()) as todays_day_name;
+-------------------------------
+--------------------
+-----------------+
| right_now
 | todays_day_of_week |
 todays_day_name |
+-------------------------------
+--------------------
+-----------------+
| 2016-05-31 10:57:03.953670000 | 3
 | Tuesday |
+-------------------------------
+--------------------
+-----------------+

 | Impala SQL Language Reference | 465

 dayofyear(timestamp date) Purpose: Returns the day field from a TIMESTAMP
value, corresponding to the day of the year. The range of
return values is 1 (January 1) to 366 (December 31 of a
leap year).

Return type: int

Examples:

The following examples show return values from the
dayofyear() function. The same date in different
years returns a different day number for all dates after
February 28, because 2016 is a leap year while 2015 is
not a leap year.

select now() as right_now,
 dayofyear(now()) as
 today_day_of_year;
+-------------------------------
+-------------------+
| right_now |
 today_day_of_year |
+-------------------------------
+-------------------+
| 2016-05-31 11:05:48.314932000 |
 152 |
+-------------------------------
+-------------------+

select now() - interval 1 year as
 last_year,
 dayofyear(now() - interval 1 year)
 as year_ago_day_of_year;
+-------------------------------
+----------------------+
| last_year |
 year_ago_day_of_year |
+-------------------------------
+----------------------+
| 2015-05-31 11:07:03.733689000 |
 151 |
+-------------------------------
+----------------------+

 days_add(timestamp startdate, int
days), days_add(timestamp startdate,
bigint days)

Purpose: Adds a specified number of days to a
TIMESTAMP value. Similar to date_add(), but starts
with an actual TIMESTAMP value instead of a string that
is converted to a TIMESTAMP.

Return type: timestamp

Examples:

select now() as right_now,
 days_add(now(), 31) as
 31_days_later;
+-------------------------------
+-------------------------------+
| right_now |
 31_days_later |

 | Impala SQL Language Reference | 466

+-------------------------------
+-------------------------------+
| 2016-05-31 11:12:32.216764000 |
 2016-07-01 11:12:32.216764000 |
+-------------------------------
+-------------------------------+

 days_sub(timestamp startdate, int
days), days_sub(timestamp startdate,
bigint days)

Purpose: Subtracts a specified number of days from a
TIMESTAMP value. Similar to date_sub(), but starts
with an actual TIMESTAMP value instead of a string that
is converted to a TIMESTAMP.

Return type: timestamp

Examples:

select now() as right_now,
 days_sub(now(), 31) as 31_days_ago;
+-------------------------------
+-------------------------------+
| right_now |
 31_days_ago |
+-------------------------------
+-------------------------------+
| 2016-05-31 11:13:42.163905000 |
 2016-04-30 11:13:42.163905000 |
+-------------------------------
+-------------------------------+

 extract(timestamp, string
unit)extract(unit FROM timestamp)

Purpose: Returns one of the numeric date or time fields
from a TIMESTAMP value.

Unit argument: The unit string can be one of epoch,
year, month, day, hour, minute, second, or
millisecond. This argument value is case-insensitive.

In Impala 2.0 and higher, you can use special syntax
rather than a regular function call, for compatibility
with code that uses the SQL-99 format with the FROM
keyword. With this style, the unit names are identifiers
rather than STRING literals. For example, the following
calls are both equivalent:

extract(year from now());
extract(now(), "year");

Usage notes:

Typically used in GROUP BY queries to arrange results
by hour, day, month, and so on. You can also use this
function in an INSERT ... SELECT into a partitioned
table to split up TIMESTAMP values into individual
parts, if the partitioned table has separate partition key
columns representing year, month, day, and so on. If you
need to divide by more complex units of time, such as by
week or by quarter, use the TRUNC() function instead.

Return type: int

 | Impala SQL Language Reference | 467

Examples:

select now() as right_now,
 extract(year from now()) as
 this_year,
 extract(month from now()) as
 this_month;
+-------------------------------
+-----------+------------+
| right_now |
 this_year | this_month |
+-------------------------------
+-----------+------------+
| 2016-05-31 11:18:43.310328000 |
 2016 | 5 |
+-------------------------------
+-----------+------------+

select now() as right_now,
 extract(day from now()) as
 this_day,
 extract(hour from now()) as
 this_hour;
+-------------------------------
+----------+-----------+
| right_now |
 this_day | this_hour |
+-------------------------------
+----------+-----------+
| 2016-05-31 11:19:24.025303000 | 31
 | 11 |
+-------------------------------
+----------+-----------+

 from_timestamp(datetime timestamp,
pattern string)

Purpose: Converts a TIMESTAMP value into a string
representing the same value.

Return type: string

Added in: Impala 2.3.0

Usage notes:

The from_timestamp() function provides a flexible
way to convert TIMESTAMP values into arbitrary string
formats for reporting purposes.

Because Impala implicitly converts string values
into TIMESTAMP, you can pass date/time values
represented as strings (in the standard yyyy-MM-dd
HH:mm:ss.SSS format) to this function. The result is a
string using different separator characters, order of fields,
spelled-out month names, or other variation of the date/
time string representation.

The allowed tokens for the pattern string are the same as
for the from_unixtime() function.

Examples:

 | Impala SQL Language Reference | 468

The following examples show different ways to format a
TIMESTAMP value as a string:

-- Reformat arbitrary TIMESTAMP
 value.
select from_timestamp(now(), 'yyyy/
MM/dd');
+-------------------------------------
+
| from_timestamp(now(), 'yyyy/mm/
dd') |
+-------------------------------------
+
| 2017/10/01
 |
+-------------------------------------
+

-- Reformat string literal
 representing date/time.
select from_timestamp('1984-09-25',
 'yyyy/MM/dd');
+--
+
| from_timestamp('1984-09-25',
 'yyyy/mm/dd') |
+--
+
| 1984/09/25
 |
+--
+

-- Alternative format for reporting
 purposes.
select from_timestamp('1984-09-25
 16:45:30.125', 'MMM dd, yyyy
 HH:mm:ss.SSS');
+--
+
| from_timestamp('1984-09-25
 16:45:30.125', 'mmm dd, yyyy
 hh:mm:ss.sss') |
+--
+
| Sep 25, 1984 16:45:30.125

 |
+--
+

 from_unixtime(bigint unixtime[, string
format])

Purpose: Converts the number of seconds from the Unix
epoch to the specified time into a string in the local time
zone.

Return type: string

In Impala 2.2.0 and higher, built-in functions that accept
or return integers representing TIMESTAMP values
use the BIGINT type for parameters and return values,
rather than INT. This change lets the date and time

 | Impala SQL Language Reference | 469

functions avoid an overflow error that would otherwise
occur on January 19th, 2038 (known as the “Year 2038
problem” or “Y2K38 problem”). This change affects
the from_unixtime() and unix_timestamp()
functions. You might need to change application code
that interacts with these functions, change the types of
columns that store the return values, or add CAST()
calls to SQL statements that call these functions.

Usage notes:

The format string accepts the variations allowed for the
TIMESTAMP data type: date plus time, date by itself,
time by itself, and optional fractional seconds for the
time. See TIMESTAMP Data Type on page 141 for
details.

Currently, the format string is case-sensitive, especially
to distinguish m for minutes and M for months. In Impala
1.3 and later, you can switch the order of elements,
use alternative separator characters, and use a different
number of placeholders for each unit. Adding more
instances of y, d, H, and so on produces output strings
zero-padded to the requested number of characters. The
exception is M for months, where M produces a non-
padded value such as 3, MM produces a zero-padded
value such as 03, MMM produces an abbreviated month
name such as Mar, and sequences of 4 or more M are
not allowed. A date string including all fields could be
"yyyy-MM-dd HH:mm:ss.SSSSSS", "dd/MM/
yyyy HH:mm:ss.SSSSSS", "MMM dd, yyyy
HH.mm.ss (SSSSSS)" or other combinations of
placeholders and separator characters.

The way this function deals with time
zones when converting to or from
TIMESTAMP values is affected by the -
use_local_tz_for_unix_timestamp_conversions
startup flag for the impalad daemon. See TIMESTAMP
Data Type on page 141 for details about how Impala
handles time zone considerations for the TIMESTAMP
data type.

Note:

The more flexible format strings allowed with the built-
in functions do not change the rules about using CAST()
to convert from a string to a TIMESTAMP value. Strings
being converted through CAST() must still have the
elements in the specified order and use the specified
delimiter characters, as described in TIMESTAMP Data
Type on page 141.

Examples:

select
 from_unixtime(1392394861,"yyyy-MM-
dd HH:mm:ss.SSSS");
+---
+

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

 | Impala SQL Language Reference | 470

| from_unixtime(1392394861, 'yyyy-
mm-dd hh:mm:ss.ssss') |
+---
+
| 2014-02-14 16:21:01.0000
 |
+---
+

select
 from_unixtime(1392394861,"yyyy-MM-
dd");
+---
+
| from_unixtime(1392394861, 'yyyy-
mm-dd') |
+---
+
| 2014-02-14
 |
+---
+

select
 from_unixtime(1392394861,"HH:mm:ss.SSSS");
+--
+
| from_unixtime(1392394861,
 'hh:mm:ss.ssss') |
+--
+
| 16:21:01.0000
 |
+--
+

select
 from_unixtime(1392394861,"HH:mm:ss");
+---------------------------------------
+
| from_unixtime(1392394861,
 'hh:mm:ss') |
+---------------------------------------
+
| 16:21:01
 |
+---------------------------------------
+

unix_timestamp() and from_unixtime() are
often used in combination to convert a TIMESTAMP
value into a particular string format. For example:

select
 from_unixtime(unix_timestamp(now()
 + interval 3 days),
 'yyyy/MM/dd HH:mm') as
 yyyy_mm_dd_hh_mm;
+------------------+
| yyyy_mm_dd_hh_mm |
+------------------+
| 2016/06/03 11:38 |

 | Impala SQL Language Reference | 471

+------------------+

 from_utc_timestamp(timestamp, string
timezone)

Purpose: Converts a specified UTC timestamp value
into the appropriate value for a specified time zone.

Return type: timestamp

Usage notes: Often used to translate UTC time zone
data stored in a table back to the local date and time for
reporting. The opposite of the to_utc_timestamp()
function.

To determine the time zone of the server you are
connected to, in Impala 2.3 and higher you can call the
timeofday() function, which includes the time zone
specifier in its return value. Remember that with cloud
computing, the server you interact with might be in a
different time zone than you are, or different sessions
might connect to servers in different time zones, or a
cluster might include servers in more than one time zone.

Examples:

See discussion of time zones in TIMESTAMP Data Type
on page 141 for information about using this function
for conversions between the local time zone and UTC.

The following example shows how when TIMESTAMP
values representing the UTC time zone are stored in a
table, a query can display the equivalent local date and
time for a different time zone.

with t1 as (select cast('2016-06-02
 16:25:36.116143000' as timestamp)
 as utc_datetime)
 select utc_datetime as 'Date/time
 in Greenwich UK',
 from_utc_timestamp(utc_datetime,
 'PDT')
 as 'Equivalent in California
 USA'
 from t1;
+-------------------------------
+-------------------------------+
| date/time in greenwich uk |
 equivalent in california usa |
+-------------------------------
+-------------------------------+
| 2016-06-02 16:25:36.116143000 |
 2016-06-02 09:25:36.116143000 |
+-------------------------------
+-------------------------------+

The following example shows that for a date and time
when daylight savings is in effect (PDT), the UTC time
is 7 hours ahead of the local California time; while when
daylight savings is not in effect (PST), the UTC time is 8
hours ahead of the local California time.

select now() as local_datetime,

 | Impala SQL Language Reference | 472

 to_utc_timestamp(now(), 'PDT') as
 utc_datetime;
+-------------------------------
+-------------------------------+
| local_datetime |
 utc_datetime |
+-------------------------------
+-------------------------------+
| 2016-05-31 11:50:02.316883000 |
 2016-05-31 18:50:02.316883000 |
+-------------------------------
+-------------------------------+

select '2016-01-05' as
 local_datetime,
 to_utc_timestamp('2016-01-05',
 'PST') as utc_datetime;
+----------------
+---------------------+
| local_datetime | utc_datetime
 |
+----------------
+---------------------+
| 2016-01-05 | 2016-01-05
 08:00:00 |
+----------------
+---------------------+

 hour(timestamp date) Purpose: Returns the hour field from a TIMESTAMP
field.

Return type: int

Examples:

select now() as right_now,
 hour(now()) as current_hour;
+-------------------------------
+--------------+
| right_now |
 current_hour |
+-------------------------------
+--------------+
| 2016-06-01 14:14:12.472846000 | 14
 |
+-------------------------------
+--------------+

select now() + interval 12 hours as
 12_hours_from_now,
 hour(now() + interval 12 hours) as
 hour_in_12_hours;
+-------------------------------
+-------------------+
| 12_hours_from_now |
 hour_in_12_hours |
+-------------------------------
+-------------------+
| 2016-06-02 02:15:32.454750000 | 2
 |

 | Impala SQL Language Reference | 473

+-------------------------------
+-------------------+

 hours_add(timestamp date, int hours),
hours_add(timestamp date, bigint
hours)

Purpose: Returns the specified date and time plus some
number of hours.

Return type: timestamp

Examples:

select now() as right_now,
 hours_add(now(), 12) as
 in_12_hours;
+-------------------------------
+-------------------------------+
| right_now |
 in_12_hours |
+-------------------------------
+-------------------------------+
| 2016-06-01 14:19:48.948107000 |
 2016-06-02 02:19:48.948107000 |
+-------------------------------
+-------------------------------+

 hours_sub(timestamp date, int hours),
hours_sub(timestamp date, bigint
hours)

Purpose: Returns the specified date and time minus
some number of hours.

Return type: timestamp

Examples:

select now() as right_now,
 hours_sub(now(), 18) as
 18_hours_ago;
+-------------------------------
+-------------------------------+
| right_now |
 18_hours_ago |
+-------------------------------
+-------------------------------+
| 2016-06-01 14:23:13.868150000 |
 2016-05-31 20:23:13.868150000 |
+-------------------------------
+-------------------------------+

 int_months_between(timestamp newer,
timestamp older)

Purpose: Returns the number of months between the
date portions of two TIMESTAMP values, as an INT
representing only the full months that passed.

Return type: int

Added in: Impala 2.3.0

Usage notes:

Typically used in business contexts, for example to
determine whether a specified number of months have
passed or whether some end-of-month deadline was
reached.

 | Impala SQL Language Reference | 474

The method of determining the number of elapsed
months includes some special handling of months
with different numbers of days that creates edge cases
for dates between the 28th and 31st days of certain
months. See months_between() for details. The
int_months_between() result is essentially the
floor() of the months_between() result.

If either value is NULL, which could happen for example
when converting a nonexistent date string such as
'2015-02-29' to a TIMESTAMP, the result is also
NULL.

If the first argument represents an earlier time than the
second argument, the result is negative.

Examples:

/* Less than a full month = 0. */
select
 int_months_between('2015-02-28',
 '2015-01-29');
+--
+
| int_months_between('2015-02-28',
 '2015-01-29') |
+--
+
| 0
 |
+--
+

/* Last day of month to last day of
 next month = 1. */
select
 int_months_between('2015-02-28',
 '2015-01-31');
+--
+
| int_months_between('2015-02-28',
 '2015-01-31') |
+--
+
| 1
 |
+--
+

/* Slightly less than 2 months = 1.
 */
select
 int_months_between('2015-03-28',
 '2015-01-31');
+--
+
| int_months_between('2015-03-28',
 '2015-01-31') |
+--
+
| 1
 |

 | Impala SQL Language Reference | 475

+--
+

/* 2 full months (identical days of
 the month) = 2. */
select
 int_months_between('2015-03-31',
 '2015-01-31');
+--
+
| int_months_between('2015-03-31',
 '2015-01-31') |
+--
+
| 2
 |
+--
+

/* Last day of month to last day of
 month-after-next = 2. */
select
 int_months_between('2015-03-31',
 '2015-01-30');
+--
+
| int_months_between('2015-03-31',
 '2015-01-30') |
+--
+
| 2
 |
+--
+

 last_day(timestamp t) Purpose: Returns a TIMESTAMP corresponding to the
beginning of the last calendar day in the same month as
the TIMESTAMP argument.

Return type: timestamp

Added in: Impala 2.9.0

Usage notes:

If the input argument does not represent a valid Impala
TIMESTAMP including both date and time portions,
the function returns NULL. For example, if the input
argument is a string that cannot be implicitly cast to
TIMESTAMP, does not include a date portion, or is out
of the allowed range for Impala TIMESTAMP values, the
function returns NULL.

Examples:

The following example shows how to examine the
current date, and dates around the end of the month, as
TIMESTAMP values with any time portion removed:

select
 now() as right_now
 , trunc(now(),'dd') as today

 | Impala SQL Language Reference | 476

 , last_day(now()) as
 last_day_of_month
 , last_day(now()) + interval 1 day
 as first_of_next_month;
+-------------------------------
+---------------------
+---------------------
+---------------------+
| right_now
 | today
 | last_day_of_month |
 first_of_next_month |
+-------------------------------
+---------------------
+---------------------
+---------------------+
| 2017-08-15 15:07:58.823812000 |
 2017-08-15 00:00:00 | 2017-08-31
 00:00:00 | 2017-09-01 00:00:00 |
+-------------------------------
+---------------------
+---------------------
+---------------------+

The following example shows how to examine the
current date and dates around the end of the month as
integers representing the day of the month:

select
 now() as right_now
 , dayofmonth(now()) as day
 , extract(day from now()) as
 also_day
 , dayofmonth(last_day(now())) as
 last_day
 , extract(day from
 last_day(now())) as also_last_day;
+-------------------------------
+-----+----------+----------
+---------------+
| right_now
 | day | also_day | last_day |
 also_last_day |
+-------------------------------
+-----+----------+----------
+---------------+
| 2017-08-15 15:07:59.417755000 | 15
 | 15 | 31 | 31
 |
+-------------------------------
+-----+----------+----------
+---------------+

 microseconds_add(timestamp
date, int microseconds),
microseconds_add(timestamp date,
bigint microseconds)

Purpose: Returns the specified date and time plus some
number of microseconds.

Return type: timestamp

Examples:

select now() as right_now,

 | Impala SQL Language Reference | 477

 microseconds_add(now(), 500000) as
 half_a_second_from_now;
+-------------------------------
+-------------------------------+
| right_now |
 half_a_second_from_now |
+-------------------------------
+-------------------------------+
| 2016-06-01 14:25:11.455051000 |
 2016-06-01 14:25:11.955051000 |
+-------------------------------
+-------------------------------+

 microseconds_sub(timestamp
date, int microseconds),
microseconds_sub(timestamp date,
bigint microseconds)

Purpose: Returns the specified date and time minus
some number of microseconds.

Return type: timestamp

Examples:

select now() as right_now,
 microseconds_sub(now(), 500000) as
 half_a_second_ago;
+-------------------------------
+-------------------------------+
| right_now |
 half_a_second_ago |
+-------------------------------
+-------------------------------+
| 2016-06-01 14:26:16.509990000 |
 2016-06-01 14:26:16.009990000 |
+-------------------------------
+-------------------------------+

 millisecond(timestamp) Purpose: Returns the millisecond portion of a
TIMESTAMP value.

Return type: int

Added in: Impala 2.5.0

Usage notes:

The millisecond value is truncated, not rounded, if the
TIMESTAMP value contains more than 3 significant
digits to the right of the decimal point.

Examples:

252.4 milliseconds truncated to 252.

select now(), millisecond(now());
+-------------------------------
+--------------------+
| now() |
 millisecond(now()) |
+-------------------------------
+--------------------+
| 2016-03-14 22:30:25.252400000 |
 252 |
+-------------------------------
+--------------------+

 | Impala SQL Language Reference | 478

761.767 milliseconds truncated to
 761.

select now(), millisecond(now());
+-------------------------------
+--------------------+
| now() |
 millisecond(now()) |
+-------------------------------
+--------------------+
| 2016-03-14 22:30:58.761767000 |
 761 |
+-------------------------------
+--------------------+

 milliseconds_add(timestamp
date, int milliseconds),
milliseconds_add(timestamp date,
bigint milliseconds)

Purpose: Returns the specified date and time plus some
number of milliseconds.

Return type: timestamp

Examples:

select now() as right_now,
 milliseconds_add(now(), 1500) as
 1_point_5_seconds_from_now;
+-------------------------------
+-------------------------------+
| right_now |
 1_point_5_seconds_from_now |
+-------------------------------
+-------------------------------+
| 2016-06-01 14:30:30.067366000 |
 2016-06-01 14:30:31.567366000 |
+-------------------------------
+-------------------------------+

 milliseconds_sub(timestamp
date, int milliseconds),
milliseconds_sub(timestamp date,
bigint milliseconds)

Purpose: Returns the specified date and time minus
some number of milliseconds.

Return type: timestamp

Examples:

select now() as right_now,
 milliseconds_sub(now(), 1500) as
 1_point_5_seconds_ago;
+-------------------------------
+-------------------------------+
| right_now |
 1_point_5_seconds_ago |
+-------------------------------
+-------------------------------+
| 2016-06-01 14:30:53.467140000 |
 2016-06-01 14:30:51.967140000 |
+-------------------------------
+-------------------------------+

 minute(timestamp date) Purpose: Returns the minute field from a TIMESTAMP
value.

 | Impala SQL Language Reference | 479

Return type: int

Examples:

select now() as right_now,
 minute(now()) as current_minute;
+-------------------------------
+----------------+
| right_now |
 current_minute |
+-------------------------------
+----------------+
| 2016-06-01 14:34:08.051702000 | 34
 |
+-------------------------------
+----------------+

 minutes_add(timestamp date, int
minutes), minutes_add(timestamp date,
bigint minutes)

Purpose: Returns the specified date and time plus some
number of minutes.

Return type: timestamp

Examples:

select now() as right_now,
 minutes_add(now(), 90) as
 90_minutes_from_now;
+-------------------------------
+-------------------------------+
| right_now |
 90_minutes_from_now |
+-------------------------------
+-------------------------------+
| 2016-06-01 14:36:04.887095000 |
 2016-06-01 16:06:04.887095000 |
+-------------------------------
+-------------------------------+

 minutes_sub(timestamp date, int
minutes), minutes_sub(timestamp date,
bigint minutes)

Purpose: Returns the specified date and time minus
some number of minutes.

Return type: timestamp

Examples:

select now() as right_now,
 minutes_sub(now(), 90) as
 90_minutes_ago;
+-------------------------------
+-------------------------------+
| right_now |
 90_minutes_ago |
+-------------------------------
+-------------------------------+
| 2016-06-01 14:36:32.643061000 |
 2016-06-01 13:06:32.643061000 |
+-------------------------------
+-------------------------------+

 | Impala SQL Language Reference | 480

 month(timestamp date) Purpose: Returns the month field, represented as an
integer, from the date portion of a TIMESTAMP.

Return type: int

Examples:

select now() as right_now,
 month(now()) as current_month;
+-------------------------------
+---------------+
| right_now |
 current_month |
+-------------------------------
+---------------+
| 2016-06-01 14:43:37.141542000 | 6
 |
+-------------------------------
+---------------+

 months_add(timestamp date, int
months), months_add(timestamp date,
bigint months)

Purpose: Returns the specified date and time plus some
number of months.

Return type: timestamp

Examples:

The following example shows the effects of adding some
number of months to a TIMESTAMP value, using both
the months_add() function and its add_months()
alias. These examples use trunc() to strip off the time
portion and leave just the date.

with t1 as (select trunc(now(),
 'dd') as today)
 select today, months_add(today,1)
 as next_month from t1;
+---------------------
+---------------------+
| today | next_month
 |
+---------------------
+---------------------+
| 2016-05-19 00:00:00 | 2016-06-19
 00:00:00 |
+---------------------
+---------------------+

with t1 as (select trunc(now(),
 'dd') as today)
 select today, add_months(today,1)
 as next_month from t1;
+---------------------
+---------------------+
| today | next_month
 |
+---------------------
+---------------------+
| 2016-05-19 00:00:00 | 2016-06-19
 00:00:00 |

 | Impala SQL Language Reference | 481

+---------------------
+---------------------+

The following examples show how if months_add()
would return a nonexistent date, due to different months
having different numbers of days, the function returns
a TIMESTAMP from the last day of the relevant month.
For example, adding one month to January 31 produces a
date of February 29th in the year 2016 (a leap year), and
February 28th in the year 2015 (a non-leap year).

with t1 as (select cast('2016-01-31'
 as timestamp) as jan_31)
 select jan_31,
 months_add(jan_31,1) as feb_31 from
 t1;
+---------------------
+---------------------+
| jan_31 | feb_31
 |
+---------------------
+---------------------+
| 2016-01-31 00:00:00 | 2016-02-29
 00:00:00 |
+---------------------
+---------------------+

with t1 as (select cast('2015-01-31'
 as timestamp) as jan_31)
 select jan_31,
 months_add(jan_31,1) as feb_31 from
 t1;
+---------------------
+---------------------+
| jan_31 | feb_31
 |
+---------------------
+---------------------+
| 2015-01-31 00:00:00 | 2015-02-28
 00:00:00 |
+---------------------
+---------------------+

 months_between(timestamp newer,
timestamp older)

Purpose: Returns the number of months between the
date portions of two TIMESTAMP values. Can include a
fractional part representing extra days in addition to the
full months between the dates. The fractional component
is computed by dividing the difference in days by 31
(regardless of the month).

Return type: double

Added in: Impala 2.3.0

Usage notes:

Typically used in business contexts, for example to
determine whether a specified number of months have
passed or whether some end-of-month deadline was
reached.

 | Impala SQL Language Reference | 482

If the only consideration is the number of full months
and any fractional value is not significant, use
int_months_between() instead.

The method of determining the number of elapsed
months includes some special handling of months with
different numbers of days that creates edge cases for
dates between the 28th and 31st days of certain months.

If either value is NULL, which could happen for example
when converting a nonexistent date string such as
'2015-02-29' to a TIMESTAMP, the result is also
NULL.

If the first argument represents an earlier time than the
second argument, the result is negative.

Examples:

The following examples show how dates that are on the
same day of the month are considered to be exactly N
months apart, even if the months have different numbers
of days.

select months_between('2015-02-28',
 '2015-01-28');
+--
+
| months_between('2015-02-28',
 '2015-01-28') |
+--
+
| 1
 |
+--
+

select months_between(now(), now() +
 interval 1 month);
+---
+
| months_between(now(), now() +
 interval 1 month) |
+---
+
| -1
 |
+---
+

select months_between(now() +
 interval 1 year, now());
+--
+
| months_between(now() + interval 1
 year, now()) |
+--
+
| 12
 |
+--
+

 | Impala SQL Language Reference | 483

The following examples show how dates that are on
the last day of the month are considered to be exactly N
months apart, even if the months have different numbers
of days. For example, from January 28th to February
28th is exactly one month because the day of the month
is identical; January 31st to February 28th is exactly
one month because in both cases it is the last day of the
month; but January 29th or 30th to February 28th is
considered a fractional month.

select months_between('2015-02-28',
 '2015-01-31');
+--
+
| months_between('2015-02-28',
 '2015-01-31') |
+--
+
| 1
 |
+--
+

select months_between('2015-02-28',
 '2015-01-29');
+--
+
| months_between('2015-02-28',
 '2015-01-29') |
+--
+
| 0.967741935483871
 |
+--
+

select months_between('2015-02-28',
 '2015-01-30');;
+--
+
| months_between('2015-02-28',
 '2015-01-30') |
+--
+
| 0.935483870967742
 |
+--
+

The following examples show how dates that are not
a precise number of months apart result in a fractional
return value.

select months_between('2015-03-01',
 '2015-01-28');
+--
+
| months_between('2015-03-01',
 '2015-01-28') |
+--
+

 | Impala SQL Language Reference | 484

| 1.129032258064516
 |
+--
+

select months_between('2015-03-01',
 '2015-02-28');
+--
+
| months_between('2015-03-01',
 '2015-02-28') |
+--
+
| 0.1290322580645161
 |
+--
+

select months_between('2015-06-02',
 '2015-05-29');
+--
+
| months_between('2015-06-02',
 '2015-05-29') |
+--
+
| 0.1290322580645161
 |
+--
+

select months_between('2015-03-01',
 '2015-01-25');
+--
+
| months_between('2015-03-01',
 '2015-01-25') |
+--
+
| 1.225806451612903
 |
+--
+

select months_between('2015-03-01',
 '2015-02-25');
+--
+
| months_between('2015-03-01',
 '2015-02-25') |
+--
+
| 0.2258064516129032
 |
+--
+

select months_between('2015-02-28',
 '2015-02-01');
+--
+
| months_between('2015-02-28',
 '2015-02-01') |

 | Impala SQL Language Reference | 485

+--
+
| 0.8709677419354839
 |
+--
+

select months_between('2015-03-28',
 '2015-03-01');
+--
+
| months_between('2015-03-28',
 '2015-03-01') |
+--
+
| 0.8709677419354839
 |
+--
+

The following examples show how the time portion of
the TIMESTAMP values are irrelevant for calculating
the month interval. Even the fractional part of the result
only depends on the number of full days between the
argument values, regardless of the time portion.

select months_between('2015-05-28
 23:00:00', '2015-04-28 11:45:00');
+--
+
| months_between('2015-05-28
 23:00:00', '2015-04-28 11:45:00') |
+--
+
| 1
 |
+--
+

select months_between('2015-03-28',
 '2015-03-01');
+--
+
| months_between('2015-03-28',
 '2015-03-01') |
+--
+
| 0.8709677419354839
 |
+--
+

select months_between('2015-03-28
 23:00:00', '2015-03-01 11:45:00');
+--
+
| months_between('2015-03-28
 23:00:00', '2015-03-01 11:45:00') |
+--
+
| 0.8709677419354839
 |

 | Impala SQL Language Reference | 486

+--
+

 months_sub(timestamp date, int
months), months_sub(timestamp date,
bigint months)

Purpose: Returns the specified date and time minus
some number of months.

Return type: timestamp

Examples:

with t1 as (select trunc(now(),
 'dd') as today)
 select today, months_sub(today,1)
 as last_month from t1;
+---------------------
+---------------------+
| today | last_month
 |
+---------------------
+---------------------+
| 2016-06-01 00:00:00 | 2016-05-01
 00:00:00 |
+---------------------
+---------------------+

 nanoseconds_add(timestamp date, int
nanoseconds), nanoseconds_add(timestamp
date, bigint nanoseconds)

Purpose: Returns the specified date and time plus some
number of nanoseconds.

Return type: timestamp

Kudu considerations:

The nanosecond portion of an Impala TIMESTAMP value
is rounded to the nearest microsecond when that value is
stored in a Kudu table.

Examples:

select now() as right_now,
 nanoseconds_add(now(), 1) as
 1_nanosecond_later;
+-------------------------------
+-------------------------------+
| right_now |
 1_nanosecond_later |
+-------------------------------
+-------------------------------+
| 2016-06-01 15:42:00.361026000 |
 2016-06-01 15:42:00.361026001 |
+-------------------------------
+-------------------------------+

-- 1 billion nanoseconds = 1 second.
select now() as right_now,
 nanoseconds_add(now(), 1e9) as
 1_second_later;
+-------------------------------
+-------------------------------+
| right_now |
 1_second_later |

 | Impala SQL Language Reference | 487

+-------------------------------
+-------------------------------+
| 2016-06-01 15:42:52.926706000 |
 2016-06-01 15:42:53.926706000 |
+-------------------------------
+-------------------------------+

 nanoseconds_sub(timestamp date, int
nanoseconds), nanoseconds_sub(timestamp
date, bigint nanoseconds)

Purpose: Returns the specified date and time minus
some number of nanoseconds.

Return type: timestamp

Kudu considerations:

The nanosecond portion of an Impala TIMESTAMP value
is rounded to the nearest microsecond when that value is
stored in a Kudu table.

select now() as right_now,
 nanoseconds_sub(now(), 1) as
 1_nanosecond_earlier;
+-------------------------------
+-------------------------------+
| right_now |
 1_nanosecond_earlier |
+-------------------------------
+-------------------------------+
| 2016-06-01 15:44:14.355837000 |
 2016-06-01 15:44:14.355836999 |
+-------------------------------
+-------------------------------+

-- 1 billion nanoseconds = 1 second.
select now() as right_now,
 nanoseconds_sub(now(), 1e9) as
 1_second_earlier;
+-------------------------------
+-------------------------------+
| right_now |
 1_second_earlier |
+-------------------------------
+-------------------------------+
| 2016-06-01 15:44:54.474929000 |
 2016-06-01 15:44:53.474929000 |
+-------------------------------
+-------------------------------+

 now() Purpose: Returns the current date and time (in the local
time zone) as a TIMESTAMP value.

Return type: timestamp

Usage notes:

To find a date/time value in the future or the past
relative to the current date and time, add or subtract an
INTERVAL expression to the return value of now().
See TIMESTAMP Data Type on page 141 for
examples.

To produce a TIMESTAMP representing the current
date and time that can be shared or stored without

 | Impala SQL Language Reference | 488

interoperability problems due to time zone differences,
use the to_utc_timestamp() function and specify
the time zone of the server. When TIMESTAMP data
is stored in UTC form, any application that queries
those values can convert them to the appropriate
local time zone by calling the inverse function,
from_utc_timestamp().

To determine the time zone of the server you are
connected to, in Impala 2.3 and higher you can call the
timeofday() function, which includes the time zone
specifier in its return value. Remember that with cloud
computing, the server you interact with might be in a
different time zone than you are, or different sessions
might connect to servers in different time zones, or a
cluster might include servers in more than one time zone.

Any references to the now() function are evaluated
at the start of a query. All calls to now() within the
same query return the same value, and the value does not
depend on how long the query takes.

Examples:

select now() as 'Current time in
 California USA',
 to_utc_timestamp(now(), 'PDT') as
 'Current time in Greenwich UK';
+--------------------------------
+-------------------------------+
| current time in california usa |
 current time in greenwich uk |
+--------------------------------
+-------------------------------+
| 2016-06-01 15:52:08.980072000 |
 2016-06-01 22:52:08.980072000 |
+--------------------------------
+-------------------------------+

select now() as right_now,
 now() + interval 1 day as
 tomorrow,
 now() + interval 1 week - interval
 3 hours as almost_a_week_from_now;
+-------------------------------
+-------------------------------
+-------------------------------+
| right_now |
 tomorrow |
 almost_a_week_from_now |
+-------------------------------
+-------------------------------
+-------------------------------+
| 2016-06-01 15:55:39.671690000 |
 2016-06-02 15:55:39.671690000 |
 2016-06-08 12:55:39.671690000 |
+-------------------------------
+-------------------------------
+-------------------------------+

 | Impala SQL Language Reference | 489

 second(timestamp date) Purpose: Returns the second field from a TIMESTAMP
value.

Return type: int

Examples:

select now() as right_now,
 second(now()) as
 seconds_in_current_minute;
+-------------------------------
+---------------------------+
| right_now |
 seconds_in_current_minute |
+-------------------------------
+---------------------------+
| 2016-06-01 16:03:57.006603000 | 57
 |
+-------------------------------
+---------------------------+

 seconds_add(timestamp date, int
seconds), seconds_add(timestamp date,
bigint seconds)

Purpose: Returns the specified date and time plus some
number of seconds.

Return type: timestamp

Examples:

select now() as right_now,
 seconds_add(now(), 10) as
 10_seconds_from_now;
+-------------------------------
+-------------------------------+
| right_now |
 10_seconds_from_now |
+-------------------------------
+-------------------------------+
| 2016-06-01 16:05:21.573935000 |
 2016-06-01 16:05:31.573935000 |
+-------------------------------
+-------------------------------+

 seconds_sub(timestamp date, int
seconds), seconds_sub(timestamp date,
bigint seconds)

Purpose: Returns the specified date and time minus
some number of seconds.

Return type: timestamp

Examples:

select now() as right_now,
 seconds_sub(now(), 10) as
 10_seconds_ago;
+-------------------------------
+-------------------------------+
| right_now |
 10_seconds_ago |
+-------------------------------
+-------------------------------+
| 2016-06-01 16:06:03.467931000 |
 2016-06-01 16:05:53.467931000 |

 | Impala SQL Language Reference | 490

+-------------------------------
+-------------------------------+

 subdate(timestamp startdate, int
days), subdate(timestamp startdate,
bigint days),

Purpose: Subtracts a specified number of days from a
TIMESTAMP value. Similar to date_sub(), but starts
with an actual TIMESTAMP value instead of a string that
is converted to a TIMESTAMP.

Return type: timestamp

Examples:

The following examples show how to subtract a number
of days from a TIMESTAMP. The number of days can
also be negative, which gives the same effect as the
adddate() function.

select now() as right_now,
 subdate(now(), 30) as now_minus_30;
+-------------------------------
+-------------------------------+
| right_now |
 now_minus_30 |
+-------------------------------
+-------------------------------+
| 2016-05-20 11:00:15.084991000 |
 2016-04-20 11:00:15.084991000 |
+-------------------------------
+-------------------------------+

select now() as right_now,
 subdate(now(), -15) as now_plus_15;
+-------------------------------
+-------------------------------+
| right_now |
 now_plus_15 |
+-------------------------------
+-------------------------------+
| 2016-05-20 11:00:44.766091000 |
 2016-06-04 11:00:44.766091000 |
+-------------------------------
+-------------------------------+

 timeofday() Purpose: Returns a string representation of the current
date and time, according to the time of the local system,
including any time zone designation.

Return type: string

Added in: Impala 2.3.0

Usage notes: The result value represents similar
information as the now() function, only as a STRING
type and with somewhat different formatting. For
example, the day of the week and the time zone identifier
are included. This function is intended primarily for
compatibility with SQL code from other systems that
also have a timeofday() function. Prefer to use
now() if practical for any new Impala code.

Examples:

 | Impala SQL Language Reference | 491

The following examples show the format of the
timeofday() return value, illustrate how that value
is represented as a STRING that you can manipulate
with string processing functions, and how the format
compares with the return value from the now()
function.

/* Date and time fields in a STRING
 return value. */
select timeofday();
+------------------------------+
| timeofday() |
+------------------------------+
| Tue Sep 01 15:13:18 2015 PDT |
+------------------------------+

/* The return value can be processed
 by other string functions. */
select upper(timeofday());
+------------------------------+
| upper(timeofday()) |
+------------------------------+
| TUE SEP 01 15:13:38 2015 PDT |
+------------------------------+

/* The TIMEOFDAY() result is
 formatted differently than NOW().
 NOW() returns a TIMESTAMP. */
select now(), timeofday();
+-------------------------------
+------------------------------+
| now() |
 timeofday() |
+-------------------------------
+------------------------------+
| 2015-09-01 15:15:25.930021000 |
 Tue Sep 01 15:15:25 2015 PDT |
+-------------------------------
+------------------------------+

/* You can strip out the time
 zone field to use in calls to
 from_utc_timestamp(). */
select regexp_replace(timeofday(),
 '.* ([A-Z]+)$', '\\1') as
 current_timezone;
+------------------+
| current_timezone |
+------------------+
| PDT |
+------------------+

 timestamp_cmp(timestamp t1, timestamp
t2)

Purpose: Tests if one TIMESTAMP value is newer than,
older than, or identical to another TIMESTAMP

Return type: int (either -1, 0, 1, or NULL)

Added in: Impala 2.3.0

Usage notes:

Usage notes: A comparison function for TIMESTAMP
values that only tests whether the date and time increases,

 | Impala SQL Language Reference | 492

decreases, or stays the same. Similar to the sign()
function for numeric values.

Examples:

The following examples show all the possible return
values for timestamp_cmp(). If the first argument
represents a later point in time than the second argument,
the result is 1. The amount of the difference is irrelevant,
only the fact that one argument is greater than or less
than the other. If the first argument represents an earlier
point in time than the second argument, the result is -1. If
the first and second arguments represent identical points
in time, the result is 0. If either argument is NULL, the
result is NULL.

/* First argument 'later' than
 second argument. */

select timestamp_cmp(now() +
 interval 70 minutes, now())
 as now_vs_in_70_minutes;
+----------------------+
| now_vs_in_70_minutes |
+----------------------+
| 1 |
+----------------------+

select timestamp_cmp(now() +
 interval 3 days +
 interval 5 hours, now())
 as now_vs_days_from_now;
+----------------------+
| now_vs_days_from_now |
+----------------------+
| 1 |
+----------------------+

/* First argument 'earlier' than
 second argument. */
select timestamp_cmp(now(), now() +
 interval 2 hours)
 as now_vs_2_hours_ago;
+--------------------+
| now_vs_2_hours_ago |
+--------------------+
| -1 |
+--------------------+

/* Both arguments represent the same
 point in time. */

select timestamp_cmp(now(), now())
 as identical_timestamps;
+----------------------+
| identical_timestamps |
+----------------------+
| 0 |
+----------------------+

select timestamp_cmp
(
 now() + interval 1 hour,

 | Impala SQL Language Reference | 493

 now() + interval 60 minutes
) as equivalent_date_times;
+-----------------------+
| equivalent_date_times |
+-----------------------+
| 0 |
+-----------------------+

/* Either argument NULL. */

select timestamp_cmp(now(), null)
 as now_vs_null;
+-------------+
| now_vs_null |
+-------------+
| NULL |
+-------------+

 to_date(timestamp) Purpose: Returns a string representation of the date field
from a timestamp value.

Return type: string

Examples:

select now() as right_now,
 concat('The date today is
 ',to_date(now()),'.') as
 date_announcement;
+-------------------------------
+-------------------------------+
| right_now |
 date_announcement |
+-------------------------------
+-------------------------------+
| 2016-06-01 16:30:36.890325000 |
 The date today is 2016-06-01. |
+-------------------------------
+-------------------------------+

 to_timestamp(bigint unixtime),
to_timestamp(string date, string
pattern)

Purpose: Converts an integer or string representing a
date/time value into the corresponding TIMESTAMP
value.

Return type: timestamp

Added in: Impala 2.3.0

Usage notes:

An integer argument represents the number of seconds
past the epoch (midnight on January 1, 1970). It is the
converse of the unix_timestamp() function, which
produces a BIGINT representing the number of seconds
past the epoch.

A string argument, plus another string argument
representing the pattern, turns an arbitrary string
representation of a date and time into a true TIMESTAMP
value. The ability to parse many kinds of date and time
formats allows you to deal with temporal data from
diverse sources, and if desired to convert to efficient

 | Impala SQL Language Reference | 494

TIMESTAMP values during your ETL process. Using
TIMESTAMP directly in queries and expressions lets you
perform date and time calculations without the overhead
of extra function calls and conversions each time you
reference the applicable columns.

Examples:

The following examples demonstrate how to convert an
arbitrary string representation to TIMESTAMP based on a
pattern string:

select to_timestamp('Sep 25, 1984',
 'MMM dd, yyyy');
+--
+
| to_timestamp('sep 25, 1984', 'mmm
 dd, yyyy') |
+--
+
| 1984-09-25 00:00:00
 |
+--
+

select to_timestamp('1984/09/25',
 'yyyy/MM/dd');
+--
+
| to_timestamp('1984/09/25', 'yyyy/
mm/dd') |
+--
+
| 1984-09-25 00:00:00
 |
+--
+

The following examples show how to convert a BIGINT
representing seconds past epoch into a TIMESTAMP
value:

-- One day past the epoch.
select to_timestamp(24 * 60 * 60);
+----------------------------+
| to_timestamp(24 * 60 * 60) |
+----------------------------+
| 1970-01-02 00:00:00 |
+----------------------------+

-- 60 seconds in the past.
select now() as 'current date/time',
 unix_timestamp(now()) 'now in
 seconds',
 to_timestamp(unix_timestamp(now())
 - 60) as '60 seconds ago';
+-------------------------------
+----------------
+---------------------+

 | Impala SQL Language Reference | 495

| current date/time |
 now in seconds | 60 seconds ago
 |
+-------------------------------
+----------------
+---------------------+
| 2017-10-01 22:03:46.885624000
 | 1506895426 | 2017-10-01
 22:02:46 |
+-------------------------------
+----------------
+---------------------+

 to_utc_timestamp(timestamp, string
timezone)

Purpose: Converts a specified timestamp value in a
specified time zone into the corresponding value for the
UTC time zone.

Return type: timestamp

Usage notes:

Often used in combination with the now() function, to
translate local date and time values to the UTC time zone
for consistent representation on disk. The opposite of the
from_utc_timestamp() function.

See discussion of time zones in TIMESTAMP Data Type
on page 141 for information about using this function
for conversions between the local time zone and UTC.

Examples:

The simplest use of this function is to turn a local date/
time value to one with the standardized UTC time zone.
Because the time zone specifier is not saved as part of
the Impala TIMESTAMP value, all applications that refer
to such data must agree in advance which time zone the
values represent. If different parts of the ETL cycle, or
different instances of the application, occur in different
time zones, the ideal reference point is to convert all
TIMESTAMP values to UTC for storage.

select now() as 'Current time in
 California USA',
 to_utc_timestamp(now(), 'PDT') as
 'Current time in Greenwich UK';
+--------------------------------
+-------------------------------+
| current time in california usa |
 current time in greenwich uk |
+--------------------------------
+-------------------------------+
| 2016-06-01 15:52:08.980072000 |
 2016-06-01 22:52:08.980072000 |
+--------------------------------
+-------------------------------+

Once a value is converted to the UTC time zone by
to_utc_timestamp(), it can be converted back to
the local time zone with from_utc_timestamp().
You can combine these functions using different time

 | Impala SQL Language Reference | 496

zone identifiers to convert a TIMESTAMP between any
two time zones. This example starts with a TIMESTAMP
value representing Pacific Daylight Time, converts it to
UTC, and converts it to the equivalent value in Eastern
Daylight Time.

select now() as 'Current time in
 California USA',
 from_utc_timestamp
 (
 to_utc_timestamp(now(), 'PDT'),
 'EDT'
) as 'Current time in New York,
 USA';
+--------------------------------
+-------------------------------+
| current time in california usa |
 current time in new york, usa |
+--------------------------------
+-------------------------------+
| 2016-06-01 18:14:12.743658000 |
 2016-06-01 21:14:12.743658000 |
+--------------------------------
+-------------------------------+

 trunc(timestamp, string unit) Purpose: Strips off fields from a TIMESTAMP value.

Unit argument: The unit argument value for
truncating TIMESTAMP values is case-sensitive. This
argument string can be one of:

• SYYYY, YYYY, YEAR, SYEAR, YYY, YY, Y: Year.
• Q: Quarter.
• MONTH, MON, MM, RM: Month.
• WW, W: Same day of the week as the first day of the

month.
• DDD, DD, J: Day.
• DAY, DY, D: Starting day of the week. (Not

necessarily the current day.)
• HH, HH12, HH24: Hour. A TIMESTAMP value

truncated to the hour is always represented in 24-hour
notation, even for the HH12 argument string.

• MI: Minute.

Added in: The ability to truncate numeric values is new
starting in Impala 2.10.

Usage notes:

The TIMESTAMP form is typically used in GROUP BY
queries to aggregate results from the same hour, day,
week, month, quarter, and so on. You can also use this
function in an INSERT ... SELECT into a partitioned
table to divide TIMESTAMP values into the correct
partition.

Because the return value is a TIMESTAMP, if you cast
the result of TRUNC() to STRING, you will often see
zeroed-out portions such as 00:00:00 in the time

 | Impala SQL Language Reference | 497

field. If you only need the individual units such as hour,
day, month, or year, use the EXTRACT() function
instead. If you need the individual units from a truncated
TIMESTAMP value, run the TRUNCATE() function on
the original value, then run EXTRACT() on the result.

The trunc() function also has a signature that applies
to DOUBLE or DECIMALvalues. truncate(),
trunc(), and dtrunc() are all aliased to the same
function. See truncate() under Impala Mathematical
Functions on page 420 for details.

Return type: timestamp

Examples:

The following example shows how the argument 'Q'
returns a TIMESTAMP representing the beginning of
the appropriate calendar quarter. This return value is
the same for input values that could be separated by
weeks or months. If you stored the trunc() result in a
partition key column, the table would have four partitions
per year.

select now() as right_now,
 trunc(now(), 'Q') as
 current_quarter;
+-------------------------------
+---------------------+
| right_now |
 current_quarter |
+-------------------------------
+---------------------+
| 2016-06-01 18:32:02.097202000 |
 2016-04-01 00:00:00 |
+-------------------------------
+---------------------+

select now() + interval 2 weeks as
 2_weeks_from_now,
 trunc(now() + interval 2 weeks,
 'Q') as still_current_quarter;
+-------------------------------
+-----------------------+
| 2_weeks_from_now |
 still_current_quarter |
+-------------------------------
+-----------------------+
| 2016-06-15 18:36:19.584257000 |
 2016-04-01 00:00:00 |
+-------------------------------
+-----------------------+

 unix_timestamp(),
unix_timestamp(string datetime),
unix_timestamp(string datetime, string
format), unix_timestamp(timestamp
datetime)

Purpose: Returns an integer value representing the
current date and time as a delta from the Unix epoch, or
converts from a specified date and time value represented
as a TIMESTAMP or STRING.

Return type: bigint

Usage notes:

 | Impala SQL Language Reference | 498

See from_unixtime() for details about the patterns
you can use in the format string to represent the
position of year, month, day, and so on in the date
string. In Impala 1.3 and higher, you have more
flexibility to switch the positions of elements and use
different separator characters.

In Impala 2.2.3 and higher, you can include a trailing
uppercase Z qualifier to indicate “Zulu” time, a synonym
for UTC.

In Impala 2.3 and higher, you can include a timezone
offset specified as minutes and hours, provided you also
specify the details in the format string argument. The
offset is specified in the format string as a plus or minus
sign followed by hh:mm, hhmm, or hh. The hh must
be lowercase, to distinguish it from the HH represent
hours in the actual time value. Currently, only numeric
timezone offsets are allowed, not symbolic names.

In Impala 2.2.0 and higher, built-in functions that accept
or return integers representing TIMESTAMP values
use the BIGINT type for parameters and return values,
rather than INT. This change lets the date and time
functions avoid an overflow error that would otherwise
occur on January 19th, 2038 (known as the “Year 2038
problem” or “Y2K38 problem”). This change affects
the from_unixtime() and unix_timestamp()
functions. You might need to change application code
that interacts with these functions, change the types of
columns that store the return values, or add CAST()
calls to SQL statements that call these functions.

unix_timestamp() and from_unixtime() are
often used in combination to convert a TIMESTAMP
value into a particular string format. For example:

select
 from_unixtime(unix_timestamp(now()
 + interval 3 days),
 'yyyy/MM/dd HH:mm') as
 yyyy_mm_dd_hh_mm;
+------------------+
| yyyy_mm_dd_hh_mm |
+------------------+
| 2016/06/03 11:38 |
+------------------+

The way this function deals with time
zones when converting to or from
TIMESTAMP values is affected by the -
use_local_tz_for_unix_timestamp_conversions
startup flag for the impalad daemon. See TIMESTAMP
Data Type on page 141 for details about how Impala
handles time zone considerations for the TIMESTAMP
data type.

Examples:

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

 | Impala SQL Language Reference | 499

The following examples show different ways of turning
the same date and time into an integer value. A format
string that Impala recognizes by default is interpreted as
a UTC date and time. The trailing Z is a confirmation
that the timezone is UTC. If the date and time string is
formatted differently, a second argument specifies the
position and units for each of the date and time values.

The final two examples show how to specify a timezone
offset of Pacific Daylight Saving Time, which is 7
hours earlier than UTC. You can use the numeric offset
-07:00 and the equivalent suffix of -hh:mm in the
format string, or specify the mnemonic name for the
time zone in a call to to_utc_timestamp(). This
particular date and time expressed in PDT translates to a
different number than the same date and time expressed
in UTC.

-- 3 ways of expressing the same
 date/time in UTC and converting to
 an integer.

select unix_timestamp('2015-05-15
 12:00:00');
+---------------------------------------
+
| unix_timestamp('2015-05-15
 12:00:00') |
+---------------------------------------
+
| 1431691200
 |
+---------------------------------------
+

select unix_timestamp('2015-05-15
 12:00:00Z');
+--
+
| unix_timestamp('2015-05-15
 12:00:00z') |
+--
+
| 1431691200
 |
+--
+

select unix_timestamp
(
 'May 15, 2015 12:00:00',
 'MMM dd, yyyy HH:mm:ss'
) as may_15_month_day_year;
+-----------------------+
| may_15_month_day_year |
+-----------------------+
| 1431691200 |
+-----------------------+

 | Impala SQL Language Reference | 500

-- 2 ways of expressing the same
 date and time but in a different
 timezone.
-- The resulting integer is
 different from the previous
 examples.

select unix_timestamp
(
 '2015-05-15 12:00:00-07:00',
 'yyyy-MM-dd HH:mm:ss-hh:mm'
) as may_15_year_month_day;
+-----------------------+
| may_15_year_month_day |
+-----------------------+
| 1431716400 |
+-----------------------+

select unix_timestamp
 (to_utc_timestamp(
 '2015-05-15 12:00:00',
 'PDT')
) as may_15_pdt;
+------------+
| may_15_pdt |
+------------+
| 1431716400 |
+------------+

 utc_timestamp() Purpose: Returns a TIMESTAMP corresponding to the
current date and time in the UTC time zone.

Return type: timestamp

Added in: Impala 2.10

Usage notes:

Similar to the now() or current_timestamp()
functions, but does not use the local time zone as those
functions do. Use utc_timestamp() to record
TIMESTAMP values that are interoperable with servers
around the world, in arbitrary time zones, without the
need for additional conversion functions to standardize
the time zone of each value representing a date/time.

For working with date/time values represented
as integer values, you can convert back and forth
between TIMESTAMP and BIGINT with the
unix_micros_to_utc_timestamp() and
utc_to_unix_micros() functions. The integer
values represent the number of microseconds since the
Unix epoch (midnight on January 1, 1970).

Examples:

The following example shows how now() and
current_timestamp() represent the current date/
time in the local time zone (in this case, UTC-7), while
utc_timestamp() represents the same date/time in
the standardized UTC time zone:

 | Impala SQL Language Reference | 501

select now(), utc_timestamp();
+-------------------------------
+-------------------------------+
| now() |
 utc_timestamp() |
+-------------------------------
+-------------------------------+
| 2017-10-01 23:33:58.919688000 |
 2017-10-02 06:33:58.919688000 |
+-------------------------------
+-------------------------------+

select current_timestamp(),
 utc_timestamp();
+-------------------------------
+-------------------------------+
| current_timestamp() |
 utc_timestamp() |
+-------------------------------
+-------------------------------+
| 2017-10-01 23:34:07.400642000 |
 2017-10-02 06:34:07.400642000 |
+-------------------------------
+-------------------------------+

 weekofyear(timestamp date) Purpose: Returns the corresponding week (1-53) from
the date portion of a TIMESTAMP.

Return type: int

Examples:

select now() as right_now,
 weekofyear(now()) as this_week;
+-------------------------------
+-----------+
| right_now |
 this_week |
+-------------------------------
+-----------+
| 2016-06-01 22:40:06.763771000 | 22
 |
+-------------------------------
+-----------+

select now() + interval 2 weeks as
 in_2_weeks,
 weekofyear(now() + interval 2
 weeks) as week_after_next;
+-------------------------------
+-----------------+
| in_2_weeks |
 week_after_next |
+-------------------------------
+-----------------+
| 2016-06-15 22:41:22.098823000 | 24
 |
+-------------------------------
+-----------------+

 | Impala SQL Language Reference | 502

 weeks_add(timestamp date, int weeks),
weeks_add(timestamp date, bigint
weeks)

Purpose: Returns the specified date and time plus some
number of weeks.

Return type: timestamp

Examples:

select now() as right_now,
 weeks_add(now(), 2) as
 week_after_next;
+-------------------------------
+-------------------------------+
| right_now |
 week_after_next |
+-------------------------------
+-------------------------------+
| 2016-06-01 22:43:20.973834000 |
 2016-06-15 22:43:20.973834000 |
+-------------------------------
+-------------------------------+

 weeks_sub(timestamp date, int weeks),
weeks_sub(timestamp date, bigint
weeks)

Purpose: Returns the specified date and time minus
some number of weeks.

Return type: timestamp

Examples:

select now() as right_now,
 weeks_sub(now(), 2) as
 week_before_last;
+-------------------------------
+-------------------------------+
| right_now |
 week_before_last |
+-------------------------------
+-------------------------------+
| 2016-06-01 22:44:21.291913000 |
 2016-05-18 22:44:21.291913000 |
+-------------------------------
+-------------------------------+

 year(timestamp date) Purpose: Returns the year field from the date portion of
a TIMESTAMP.

Return type: int

Examples:

select now() as right_now,
 year(now()) as this_year;
+-------------------------------
+-----------+
| right_now |
 this_year |
+-------------------------------
+-----------+
| 2016-06-01 22:46:23.647925000 |
 2016 |

 | Impala SQL Language Reference | 503

+-------------------------------
+-----------+

 years_add(timestamp date, int years),
years_add(timestamp date, bigint
years)

Purpose: Returns the specified date and time plus some
number of years.

Return type: timestamp

Examples:

select now() as right_now,
 years_add(now(), 1) as next_year;
+-------------------------------
+-------------------------------+
| right_now |
 next_year |
+-------------------------------
+-------------------------------+
| 2016-06-01 22:47:45.556851000 |
 2017-06-01 22:47:45.556851000 |
+-------------------------------
+-------------------------------+

The following example shows how if the equivalent date
does not exist in the year of the result due to a leap year,
the date is changed to the last day of the appropriate
month.

-- Spoiler alert: there is no Feb.
 29, 2017
select cast('2016-02-29' as
 timestamp) as feb_29_2016,
 years_add('2016-02-29', 1) as
 feb_29_2017;
+---------------------
+---------------------+
| feb_29_2016 | feb_29_2017
 |
+---------------------
+---------------------+
| 2016-02-29 00:00:00 | 2017-02-28
 00:00:00 |
+---------------------
+---------------------+

 years_sub(timestamp date, int years),
years_sub(timestamp date, bigint
years)

Purpose: Returns the specified date and time minus
some number of years.

Return type: timestamp

Examples:

select now() as right_now,
 years_sub(now(), 1) as last_year;
+-------------------------------
+-------------------------------+
| right_now |
 last_year |

 | Impala SQL Language Reference | 504

+-------------------------------
+-------------------------------+
| 2016-06-01 22:48:11.851780000 |
 2015-06-01 22:48:11.851780000 |
+-------------------------------
+-------------------------------+

The following example shows how if the equivalent date
does not exist in the year of the result due to a leap year,
the date is changed to the last day of the appropriate
month.

-- Spoiler alert: there is no Feb.
 29, 2015
select cast('2016-02-29' as
 timestamp) as feb_29_2016,
 years_sub('2016-02-29', 1) as
 feb_29_2015;
+---------------------
+---------------------+
| feb_29_2016 | feb_29_2015
 |
+---------------------
+---------------------+
| 2016-02-29 00:00:00 | 2015-02-28
 00:00:00 |
+---------------------
+---------------------+

Impala Conditional Functions

Impala supports the following conditional functions for testing equality, comparison operators, and nullity:

 CASE a WHEN b THEN c [WHEN d THEN
e]... [ELSE f] END

Purpose: Compares an expression to one or more
possible values, and returns a corresponding result when
a match is found.

Return type: same as the initial argument value,
except that integer values are promoted to BIGINT
and floating-point values are promoted to DOUBLE; use
CAST() when inserting into a smaller numeric column

Usage notes:

In this form of the CASE expression, the initial value
A being evaluated for each row it typically a column
reference, or an expression involving a column. This
form can only compare against a set of specified values,
not ranges, multi-value comparisons such as BETWEEN
or IN, regular expressions, or NULL.

Examples:

Although this example is split across multiple lines, you
can put any or all parts of a CASE expression on a single
line, with no punctuation or other separators between the
WHEN, ELSE, and END clauses.

select case x
 when 1 then 'one'

 | Impala SQL Language Reference | 505

 when 2 then 'two'
 when 0 then 'zero'
 else 'out of range'
 end
 from t1;

 CASE WHEN a THEN b [WHEN c THEN d]...
[ELSE e] END

Purpose: Tests whether any of a sequence of expressions
is true, and returns a corresponding result for the first
true expression.

Return type: same as the initial argument value,
except that integer values are promoted to BIGINT
and floating-point values are promoted to DOUBLE; use
CAST() when inserting into a smaller numeric column

Usage notes:

CASE expressions without an initial test value have
more flexibility. For example, they can test different
columns in different WHEN clauses, or use comparison
operators such as BETWEEN, IN and IS NULL rather
than comparing against discrete values.

CASE expressions are often the foundation of long
queries that summarize and format results for easy-
to-read reports. For example, you might use a CASE
function call to turn values from a numeric column into
category strings corresponding to integer values, or
labels such as “Small”, “Medium” and “Large” based
on ranges. Then subsequent parts of the query might
aggregate based on the transformed values, such as how
many values are classified as small, medium, or large.
You can also use CASE to signal problems with out-of-
bounds values, NULL values, and so on.

By using operators such as OR, IN, REGEXP, and so
on in CASE expressions, you can build extensive tests
and transformations into a single query. Therefore,
applications that construct SQL statements often rely
heavily on CASE calls in the generated SQL code.

Because this flexible form of the CASE expressions
allows you to perform many comparisons and call
multiple functions when evaluating each row, be careful
applying elaborate CASE expressions to queries that
process large amounts of data. For example, when
practical, evaluate and transform values through CASE
after applying operations such as aggregations that
reduce the size of the result set; transform numbers to
strings after performing joins with the original numeric
values.

Examples:

Although this example is split across multiple lines, you
can put any or all parts of a CASE expression on a single
line, with no punctuation or other separators between the
WHEN, ELSE, and END clauses.

select case

 | Impala SQL Language Reference | 506

 when dayname(now()) in
 ('Saturday','Sunday') then 'result
 undefined on weekends'
 when x > y then 'x greater than
 y'
 when x = y then 'x and y are
 equal'
 when x is null or y is null then
 'one of the columns is null'
 else null
 end
 from t1;

 coalesce(type v1, type v2, ...) Purpose: Returns the first specified argument that is not
NULL, or NULL if all arguments are NULL.

Return type: same as the initial argument value,
except that integer values are promoted to BIGINT
and floating-point values are promoted to DOUBLE; use
CAST() when inserting into a smaller numeric column

 decode(type expression, type search1,
type result1 [, type search2, type
result2 ...] [, type default])

Purpose: Compares an expression to one or more
possible values, and returns a corresponding result when
a match is found.

Return type: same as the initial argument value,
except that integer values are promoted to BIGINT
and floating-point values are promoted to DOUBLE; use
CAST() when inserting into a smaller numeric column

Usage notes:

Can be used as shorthand for a CASE expression.

The original expression and the search expressions
must of the same type or convertible types. The
result expression can be a different type, but all result
expressions must be of the same type.

Returns a successful match If the original expression is
NULL and a search expression is also NULL. the

Returns NULL if the final default value is omitted
and none of the search expressions match the original
expression.

Examples:

The following example translates numeric day values
into descriptive names:

SELECT event, decode(day_of_week,
 1, "Monday", 2, "Tuesday", 3,
 "Wednesday",
 4, "Thursday", 5, "Friday", 6,
 "Saturday", 7, "Sunday", "Unknown
 day")
 FROM calendar;

 if(boolean condition, type ifTrue,
type ifFalseOrNull)

Purpose: Tests an expression and returns a
corresponding result depending on whether the result is
true, false, or NULL.

 | Impala SQL Language Reference | 507

Return type: Same as the ifTrue argument value

 ifnull(type a, type ifNull) Purpose: Alias for the isnull() function, with the
same behavior. To simplify porting SQL with vendor
extensions to Impala.

Added in: Impala 1.3.0

 isfalse(boolean) Purpose: Tests if a Boolean expression is false or not.
Returns true if so. If the argument is NULL, returns
false. Identical to isnottrue(), except it returns
the opposite value for a NULL argument.

Return type: BOOLEAN

Added in: Impala 2.2.0

Usage notes:

In Impala 2.11 and higher, you can use the operators IS
[NOT] TRUE and IS [NOT] FALSE as equivalents
for the built-in functions istrue(), isnottrue(),
isfalse(), and isnotfalse().

 isnotfalse(boolean) Purpose: Tests if a Boolean expression is not false
(that is, either true or NULL). Returns true if so.
If the argument is NULL, returns true. Identical to
istrue(), except it returns the opposite value for a
NULL argument.

Return type: BOOLEAN

Usage notes: Primarily for compatibility with code
containing industry extensions to SQL.

Added in: Impala 2.2.0

Usage notes:

In Impala 2.11 and higher, you can use the operators IS
[NOT] TRUE and IS [NOT] FALSE as equivalents
for the built-in functions istrue(), isnottrue(),
isfalse(), and isnotfalse().

 isnottrue(boolean) Purpose: Tests if a Boolean expression is not true
(that is, either false or NULL). Returns true if so.
If the argument is NULL, returns true. Identical to
isfalse(), except it returns the opposite value for a
NULL argument.

Return type: BOOLEAN

Added in: Impala 2.2.0

Usage notes:

In Impala 2.11 and higher, you can use the operators IS
[NOT] TRUE and IS [NOT] FALSE as equivalents
for the built-in functions istrue(), isnottrue(),
isfalse(), and isnotfalse().

 isnull(type a, type ifNull) Purpose: Tests if an expression is NULL, and returns
the expression result value if not. If the first argument is
NULL, returns the second argument.

 | Impala SQL Language Reference | 508

Compatibility notes: Equivalent to the nvl() function
from Oracle Database or ifnull() from MySQL. The
nvl() and ifnull() functions are also available in
Impala.

Return type: Same as the first argument value

 istrue(boolean) Purpose: Tests if a Boolean expression is true or not.
Returns true if so. If the argument is NULL, returns
false. Identical to isnotfalse(), except it returns
the opposite value for a NULL argument.

Return type: BOOLEAN

Usage notes: Primarily for compatibility with code
containing industry extensions to SQL.

Added in: Impala 2.2.0

Usage notes:

In Impala 2.11 and higher, you can use the operators IS
[NOT] TRUE and IS [NOT] FALSE as equivalents
for the built-in functions istrue(), isnottrue(),
isfalse(), and isnotfalse().

 nonnullvalue(expression) Purpose: Tests if an expression (of any type) is
NULL or not. Returns false if so. The converse of
nullvalue().

Return type: BOOLEAN

Usage notes: Primarily for compatibility with code
containing industry extensions to SQL.

Added in: Impala 2.2.0

 nullif(expr1,expr2) Purpose: Returns NULL if the two specified arguments
are equal. If the specified arguments are not equal,
returns the value of expr1. The data types of the
expressions must be compatible, according to the
conversion rules from Data Types on page 107. You
cannot use an expression that evaluates to NULL for
expr1; that way, you can distinguish a return value of
NULL from an argument value of NULL, which would
never match expr2.

Usage notes: This function is effectively shorthand for a
CASE expression of the form:

CASE
 WHEN expr1 = expr2 THEN NULL
 ELSE expr1
END

It is commonly used in division expressions, to produce
a NULL result instead of a divide-by-zero error when the
divisor is equal to zero:

select 1.0 / nullif(c1,0) as
 reciprocal from t1;

 | Impala SQL Language Reference | 509

You might also use it for compatibility with other
database systems that support the same NULLIF()
function.

Return type: same as the initial argument value,
except that integer values are promoted to BIGINT
and floating-point values are promoted to DOUBLE; use
CAST() when inserting into a smaller numeric column

Added in: Impala 1.3.0

 nullifzero(numeric_expr) Purpose: Returns NULL if the numeric expression
evaluates to 0, otherwise returns the result of the
expression.

Usage notes: Used to avoid error conditions such
as divide-by-zero in numeric calculations. Serves as
shorthand for a more elaborate CASE expression, to
simplify porting SQL with vendor extensions to Impala.

Return type: same as the initial argument value,
except that integer values are promoted to BIGINT
and floating-point values are promoted to DOUBLE; use
CAST() when inserting into a smaller numeric column

Added in: Impala 1.3.0

 nullvalue(expression) Purpose: Tests if an expression (of any type) is
NULL or not. Returns true if so. The converse of
nonnullvalue().

Return type: BOOLEAN

Usage notes: Primarily for compatibility with code
containing industry extensions to SQL.

Added in: Impala 2.2.0

 nvl(type a, type ifNull) Purpose: Alias for the isnull() function. Tests if an
expression is NULL, and returns the expression result
value if not. If the first argument is NULL, returns the
second argument. Equivalent to the nvl() function
from Oracle Database or ifnull() from MySQL.

Return type: Same as the first argument value

Added in: Impala 1.1

 nvl2(type a, type ifNull, type
ifNotNull)

Purpose: Enhanced variant of the nvl() function.
Tests an expression and returns different result values
depending on whether it is NULL or not. If the first
argument is NULL, returns the second argument. If the
first argument is not NULL, returns the third argument.
Equivalent to the nvl2() function from Oracle
Database.

Return type: Same as the first argument value

Added in: Impala 2.9.0

Examples:

The following examples show how a query can use
special indicator values to represent null and not-null

 | Impala SQL Language Reference | 510

expression values. The first example tests an INT
column and so uses special integer values. The second
example tests a STRING column and so uses special
string values.

select x, nvl2(x, 999, 0) from
 nvl2_demo;
+------+---------------------------+
| x | if(x is not null, 999, 0) |
+------+---------------------------+
NULL	0
1	999
NULL	0
2	999
+------+---------------------------+

select s, nvl2(s, 'is not null', 'is
 null') from nvl2_demo;
+------
+---
+
| s | if(s is not null, 'is not
 null', 'is null') |
+------
+---
+
| NULL | is null
 |
| one | is not null
 |
| NULL | is null
 |
| two | is not null
 |
+------
+---
+

 zeroifnull(numeric_expr) Purpose: Returns 0 if the numeric expression evaluates
to NULL, otherwise returns the result of the expression.

Usage notes: Used to avoid unexpected results due to
unexpected propagation of NULL values in numeric
calculations. Serves as shorthand for a more elaborate
CASE expression, to simplify porting SQL with vendor
extensions to Impala.

Return type: same as the initial argument value,
except that integer values are promoted to BIGINT
and floating-point values are promoted to DOUBLE; use
CAST() when inserting into a smaller numeric column

Added in: Impala 1.3.0

Impala String Functions

String functions are classified as those primarily accepting or returning STRING, VARCHAR, or CHAR data types, for
example to measure the length of a string or concatenate two strings together.

 | Impala SQL Language Reference | 511

• All the functions that accept STRING arguments also accept the VARCHAR and CHAR types introduced in Impala
2.0.

• Whenever VARCHAR or CHAR values are passed to a function that returns a string value, the return type is
normalized to STRING. For example, a call to concat() with a mix of STRING, VARCHAR, and CHAR
arguments produces a STRING result.

Related information:

The string functions operate mainly on these data types: STRING Data Type on page 134, VARCHAR Data Type
(Impala 2.0 or higher only) on page 150, and CHAR Data Type (Impala 2.0 or higher only) on page 113.

Function reference:

Impala supports the following string functions:

 ascii(string str) Purpose: Returns the numeric ASCII code of the first
character of the argument.

Return type: int

 base64decode(string str) Purpose:

Return type: string

Usage notes:

For general information about Base64 encoding, see
Base64 article on Wikipedia.

The functions base64encode() and
base64decode() are typically used in combination,
to store in an Impala table string data that is problematic
to store or transmit. For example, you could use these
functions to store string data that uses an encoding other
than UTF-8, or to transform the values in contexts that
require ASCII values, such as for partition key columns.
Keep in mind that base64-encoded values produce
different results for string functions such as LENGTH(),
MAX(), and MIN() than when those functions are called
with the unencoded string values.

The set of characters that can be generated as output
from base64encode(), or specified in the argument
string to base64decode(), are the ASCII uppercase
and lowercase letters (A-Z, a-z), digits (0-9), and the
punctuation characters +, /, and =.

All return values produced by base64encode() are
a multiple of 4 bytes in length. All argument values
supplied to base64decode() must also be a multiple
of 4 bytes in length. If a base64-encoded value would
otherwise have a different length, it can be padded with
trailing = characters to reach a length that is a multiple of
4 bytes.

If the argument string to base64decode() does not
represent a valid base64-encoded value, subject to the
constraints of the Impala implementation such as the
allowed character set, the function returns NULL.

Examples:

https://en.wikipedia.org/wiki/Base64

 | Impala SQL Language Reference | 512

The following examples show how to use
base64encode() and base64decode() together
to store and retrieve string values:

-- An arbitrary string can be
 encoded in base 64.
-- The length of the output is a
 multiple of 4 bytes,
-- padded with trailing = characters
 if necessary.
select base64encode('hello world')
 as encoded,
 length(base64encode('hello
 world')) as length;
+------------------+--------+
| encoded | length |
+------------------+--------+
| aGVsbG8gd29ybGQ= | 16 |
+------------------+--------+

-- Passing an encoded value to
 base64decode() produces
-- the original value.
select
 base64decode('aGVsbG8gd29ybGQ=') as
 decoded;
+-------------+
| decoded |
+-------------+
| hello world |
+-------------+

These examples demonstrate incorrect encoded values
that produce NULL return values when decoded:

-- The input value to base64decode()
 must be a multiple of 4 bytes.
-- In this case, leaving off the
 trailing = padding character
-- produces a NULL return value.
select
 base64decode('aGVsbG8gd29ybGQ') as
 decoded;
+---------+
| decoded |
+---------+
| NULL |
+---------+
WARNINGS: UDF WARNING: Invalid
 base64 string; input length is 15,
 which is not a multiple of 4.

-- The input to base64decode() can
 only contain certain characters.
-- The $ character in this case
 causes a NULL return value.
select base64decode('abc$');
+----------------------+
| base64decode('abc$') |
+----------------------+

 | Impala SQL Language Reference | 513

| NULL |
+----------------------+
WARNINGS: UDF WARNING: Could not
 base64 decode input in space 4;
 actual output length 0

These examples demonstrate “round-tripping” of an
original string to an encoded string, and back again.
This technique is applicable if the original source
is in an unknown encoding, or if some intermediate
processing stage might cause national characters to be
misrepresented:

select 'circumflex accents: â, ê, î,
 ô, û' as original,
 base64encode('circumflex accents:
 â, ê, î, ô, û') as encoded;
+-----------------------------------
+--
+
| original
 | encoded
 |
+-----------------------------------
+--
+
| circumflex accents:
 â, ê, î, ô, û |
 Y2lyY3VtZmxleCBhY2NlbnRzOiDDoiwgw6osIMOuLCDDtCwgw7s=
 |
+-----------------------------------
+--
+

select base64encode('circumflex
 accents: â, ê, î, ô, û') as
 encoded,

 base64decode(base64encode('circumflex
 accents: â, ê, î, ô, û')) as
 decoded;
+--
+-----------------------------------
+
| encoded
 | decoded
 |
+--
+-----------------------------------
+
|
 Y2lyY3VtZmxleCBhY2NlbnRzOiDDoiwgw6osIMOuLCDDtCwgw7s=
 | circumflex accents: â, ê, î, ô, û
 |
+--
+-----------------------------------
+

 base64encode(string str) Purpose:

Return type: string

 | Impala SQL Language Reference | 514

Usage notes:

For general information about Base64 encoding, see
Base64 article on Wikipedia.

The functions base64encode() and
base64decode() are typically used in combination,
to store in an Impala table string data that is problematic
to store or transmit. For example, you could use these
functions to store string data that uses an encoding other
than UTF-8, or to transform the values in contexts that
require ASCII values, such as for partition key columns.
Keep in mind that base64-encoded values produce
different results for string functions such as LENGTH(),
MAX(), and MIN() than when those functions are called
with the unencoded string values.

The set of characters that can be generated as output
from base64encode(), or specified in the argument
string to base64decode(), are the ASCII uppercase
and lowercase letters (A-Z, a-z), digits (0-9), and the
punctuation characters +, /, and =.

All return values produced by base64encode() are
a multiple of 4 bytes in length. All argument values
supplied to base64decode() must also be a multiple
of 4 bytes in length. If a base64-encoded value would
otherwise have a different length, it can be padded with
trailing = characters to reach a length that is a multiple of
4 bytes.

Examples:

The following examples show how to use
base64encode() and base64decode() together
to store and retrieve string values:

-- An arbitrary string can be
 encoded in base 64.
-- The length of the output is a
 multiple of 4 bytes,
-- padded with trailing = characters
 if necessary.
select base64encode('hello world')
 as encoded,
 length(base64encode('hello
 world')) as length;
+------------------+--------+
| encoded | length |
+------------------+--------+
| aGVsbG8gd29ybGQ= | 16 |
+------------------+--------+

-- Passing an encoded value to
 base64decode() produces
-- the original value.
select
 base64decode('aGVsbG8gd29ybGQ=') as
 decoded;
+-------------+
| decoded |

https://en.wikipedia.org/wiki/Base64

 | Impala SQL Language Reference | 515

+-------------+
| hello world |
+-------------+

These examples demonstrate incorrect encoded values
that produce NULL return values when decoded:

-- The input value to base64decode()
 must be a multiple of 4 bytes.
-- In this case, leaving off the
 trailing = padding character
-- produces a NULL return value.
select
 base64decode('aGVsbG8gd29ybGQ') as
 decoded;
+---------+
| decoded |
+---------+
| NULL |
+---------+
WARNINGS: UDF WARNING: Invalid
 base64 string; input length is 15,
 which is not a multiple of 4.

-- The input to base64decode() can
 only contain certain characters.
-- The $ character in this case
 causes a NULL return value.
select base64decode('abc$');
+----------------------+
| base64decode('abc$') |
+----------------------+
| NULL |
+----------------------+
WARNINGS: UDF WARNING: Could not
 base64 decode input in space 4;
 actual output length 0

These examples demonstrate “round-tripping” of an
original string to an encoded string, and back again.
This technique is applicable if the original source
is in an unknown encoding, or if some intermediate
processing stage might cause national characters to be
misrepresented:

select 'circumflex accents: â, ê, î,
 ô, û' as original,
 base64encode('circumflex accents:
 â, ê, î, ô, û') as encoded;
+-----------------------------------
+--
+
| original
 | encoded
 |
+-----------------------------------
+--
+
| circumflex accents:
 â, ê, î, ô, û |

 | Impala SQL Language Reference | 516

 Y2lyY3VtZmxleCBhY2NlbnRzOiDDoiwgw6osIMOuLCDDtCwgw7s=
 |
+-----------------------------------
+--
+

select base64encode('circumflex
 accents: â, ê, î, ô, û') as
 encoded,

 base64decode(base64encode('circumflex
 accents: â, ê, î, ô, û')) as
 decoded;
+--
+-----------------------------------
+
| encoded
 | decoded
 |
+--
+-----------------------------------
+
|
 Y2lyY3VtZmxleCBhY2NlbnRzOiDDoiwgw6osIMOuLCDDtCwgw7s=
 | circumflex accents: â, ê, î, ô, û
 |
+--
+-----------------------------------
+

 btrim(string a), btrim(string a, string
chars_to_trim)

Purpose: Removes all instances of one or more
characters from the start and end of a STRING value. By
default, removes only spaces. If a non-NULL optional
second argument is specified, the function removes all
occurrences of characters in that second argument from
the beginning and end of the string.

Return type: string

Added in: Impala 2.3.0

Examples:

The following examples show the default btrim()
behavior, and what changes when you specify the
optional second argument. All the examples bracket the
output value with [] so that you can see any leading
or trailing spaces in the btrim() result. By default,
the function removes and number of both leading and
trailing spaces. When the second argument is specified,
any number of occurrences of any character in the second
argument are removed from the start and end of the input
string; in this case, spaces are not removed (unless they
are part of the second argument) and any instances of the
characters are not removed if they do not come right at
the beginning or end of the string.

-- Remove multiple spaces before and
 one space after.
select concat('[',btrim(' hello
 '),']');

 | Impala SQL Language Reference | 517

+---------------------------------------
+
| concat('[', btrim(' hello '),
 ']') |
+---------------------------------------
+
| [hello]
 |
+---------------------------------------
+

-- Remove any instances of x or y or
 z at beginning or end. Leave spaces
 alone.
select concat('[',btrim('xy hello
 zyzzxx','xyz'),']');
+--
+
| concat('[', btrim('xy hello
 zyzzxx', 'xyz'), ']') |
+--
+
| [hello]
 |
+--
+

-- Remove any instances of x or y or
 z at beginning or end.
-- Leave x, y, z alone in the middle
 of the string.
select
 concat('[',btrim('xyhelxyzlozyzzxx','xyz'),']');
+--
+
| concat('[',
 btrim('xyhelxyzlozyzzxx', 'xyz'),
 ']') |
+--
+
| [helxyzlo]
 |
+--
+

 char_length(string a),
character_length(string a)

Purpose: Returns the length in characters of the
argument string, including any trailing spaces that pad a
CHAR value.

Return type: int

Usage notes:

When applied to a STRING value, it returns the same
result as the length() function. When applied
to a CHAR value, it might return a larger value than
length() does, to account for trailing spaces in the
CHAR.

Examples:

The following example demonstrates how length()
and char_length() sometimes produce the

 | Impala SQL Language Reference | 518

same result, and sometimes produce different results
depending on the type of the argument and the presence
of trailing spaces for CHAR values. The S and C values
are displayed with enclosing quotation marks to show
any trailing spaces.

create table length_demo (s string,
 c char(5));
insert into length_demo values
 ('a',cast('a' as char(5))),
 ('abc',cast('abc' as char(5))),
 ('hello',cast('hello' as
 char(5)));

select concat('"',s,'"') as s,
 concat('"',c,'"') as c,
 length(s), length(c),
 char_length(s), char_length(c)
from length_demo;
+---------+---------+-----------
+-----------+----------------
+----------------+
| s | c | length(s)
 | length(c) | char_length(s) |
 char_length(c) |
+---------+---------+-----------
+-----------+----------------
+----------------+
| "a" | "a " | 1 | 1
 | 1 | 5
 |
| "abc" | "abc " | 3 | 3
 | 3 | 5
 |
| "hello" | "hello" | 5 | 5
 | 5 | 5
 |
+---------+---------+-----------
+-----------+----------------
+----------------+

 chr(int character_code) Purpose: Returns a character specified by a decimal
code point value. The interpretation and display of
the resulting character depends on your system locale.
Because consistent processing of Impala string values
is only guaranteed for values within the ASCII range,
only use this function for values corresponding to ASCII
characters. In particular, parameter values greater than
255 return an empty string.

Return type: string

Usage notes: Can be used as the inverse of the
ascii() function, which converts a character to its
numeric ASCII code.

Added in: Impala 2.3.0

Examples:

SELECT chr(65);
+---------+

 | Impala SQL Language Reference | 519

| chr(65) |
+---------+
| A |
+---------+

SELECT chr(97);
+---------+
| chr(97) |
+---------+
| a |
+---------+

 concat(string a, string b...) Purpose: Returns a single string representing all the
argument values joined together.

Return type: string

Usage notes: concat() and concat_ws()
are appropriate for concatenating the values of
multiple columns within the same row, while
group_concat() joins together values from different
rows.

 concat_ws(string sep, string a, string
b...)

Purpose: Returns a single string representing the second
and following argument values joined together, delimited
by a specified separator.

Return type: string

Usage notes: concat() and concat_ws()
are appropriate for concatenating the values of
multiple columns within the same row, while
group_concat() joins together values from different
rows.

 find_in_set(string str, string
strList)

Purpose: Returns the position (starting from 1) of the
first occurrence of a specified string within a comma-
separated string. Returns NULL if either argument is
NULL, 0 if the search string is not found, or 0 if the
search string contains a comma.

Return type: int

 group_concat(string s [, string sep]) Purpose: Returns a single string representing the
argument value concatenated together for each row of
the result set. If the optional separator string is specified,
the separator is added between each pair of concatenated
values.

Return type: string

Usage notes: concat() and concat_ws()
are appropriate for concatenating the values of
multiple columns within the same row, while
group_concat() joins together values from different
rows.

By default, returns a single string covering the whole
result set. To include other columns or values in the
result set, or to produce multiple concatenated strings
for subsets of rows, include a GROUP BY clause in the
query.

 | Impala SQL Language Reference | 520

Strictly speaking, group_concat() is an aggregate
function, not a scalar function like the others in
this list. For additional details and examples, see
GROUP_CONCAT Function on page 548.

 initcap(string str) Purpose: Returns the input string with the first letter
capitalized.

Return type: string

 instr(string str, string substr
[, bigint position [, bigint
occurrence]])

Purpose: Returns the position (starting from 1) of the
first occurrence of a substring within a longer string.

Return type: int

Usage notes:

If the substring is not present in the string, the function
returns 0:

select instr('foo bar bletch', 'z');
+------------------------------+
| instr('foo bar bletch', 'z') |
+------------------------------+
| 0 |
+------------------------------+

The optional third and fourth arguments let you find
instances of the substring other than the first instance
starting from the left:

• The third argument lets you specify a starting point
within the string other than 1:

-- Restricting the search to
 positions 7..end,
-- the first occurrence of 'b' is
 at position 9.
select instr('foo bar bletch',
 'b', 7);
+---------------------------------
+
| instr('foo bar bletch', 'b', 7)
 |
+---------------------------------
+
| 9
 |
+---------------------------------
+

-- If there are no more
 occurrences after the
-- specified position, the result
 is 0.
select instr('foo bar bletch',
 'b', 10);
+----------------------------------
+
| instr('foo bar bletch', 'b', 10)
 |

 | Impala SQL Language Reference | 521

+----------------------------------
+
| 0
 |
+----------------------------------
+

If the third argument is negative, the search works
right-to-left starting that many characters from the
right. The return value still represents the position
starting from the left side of the string.

-- Scanning right to left, the
 first occurrence of 'o'
-- is at position 8. (8th
 character from the left.)
select instr('hello
 world','o',-1);
+-------------------------------+
| instr('hello world', 'o', -1) |
+-------------------------------+
| 8 |
+-------------------------------+

-- Scanning right to left,
 starting from the 6th character
-- from the right, the first
 occurrence of 'o' is at
-- position 5 (5th character from
 the left).
select instr('hello
 world','o',-6);
+-------------------------------+
| instr('hello world', 'o', -6) |
+-------------------------------+
| 5 |
+-------------------------------+

-- If there are no more
 occurrences after the
-- specified position, the result
 is 0.
select instr('hello
 world','o',-10);
+--------------------------------+
| instr('hello world', 'o', -10) |
+--------------------------------+
| 0 |
+--------------------------------+

• The fourth argument lets you specify an occurrence
other than the first:

-- 2nd occurrence of 'b' is at
 position 9.
select instr('foo bar bletch',
 'b', 1, 2);
+------------------------------------
+
| instr('foo bar bletch', 'b', 1,
 2) |

 | Impala SQL Language Reference | 522

+------------------------------------
+
| 9
 |
+------------------------------------
+

-- Negative position argument
 means scan right-to-left.
-- This example finds second
 instance of 'b' from the right.
select instr('foo bar bletch',
 'b', -1, 2);
+-------------------------------------
+
| instr('foo bar bletch', 'b', -1,
 2) |
+-------------------------------------
+
| 5
 |
+-------------------------------------
+

If the fourth argument is greater than the number of
matching occurrences, the function returns 0:

-- There is no 3rd occurrence
 within the string.
select instr('foo bar bletch',
 'b', 1, 3);
+------------------------------------
+
| instr('foo bar bletch', 'b', 1,
 3) |
+------------------------------------
+
| 0
 |
+------------------------------------
+

-- There is not even 1 occurrence
 when scanning
-- the string starting at position
 10.
select instr('foo bar bletch',
 'b', 10, 1);
+-------------------------------------
+
| instr('foo bar bletch', 'b', 10,
 1) |
+-------------------------------------
+
| 0
 |
+-------------------------------------
+

 | Impala SQL Language Reference | 523

The fourth argument cannot be negative or zero. A
non-positive value for this argument causes an error:

select instr('foo bar bletch',
 'b', 1, 0);
ERROR: UDF ERROR: Invalid
 occurrence parameter to instr
 function: 0

select instr('aaaaaaaaa','aa', 1,
 -1);
ERROR: UDF ERROR: Invalid
 occurrence parameter to instr
 function: -1

• If either of the optional arguments is NULL, the
function also returns NULL:

select instr('foo bar bletch',
 'b', null);
+------------------------------------
+
| instr('foo bar bletch', 'b',
 null) |
+------------------------------------
+
| NULL
 |
+------------------------------------
+

select instr('foo bar bletch',
 'b', 1, null);
+---------------------------------------
+
| instr('foo bar bletch', 'b', 1,
 null) |
+---------------------------------------
+
| NULL
 |
+---------------------------------------
+

 length(string a) Purpose: Returns the length in characters of the
argument string, ignoring any trailing spaces in CHAR
values.

Return type: int

Usage notes:

When applied to a STRING value, it returns the same
result as the char_length() function. When applied
to a CHAR value, it might return a smaller value than
char_length() does, because length() ignores
any trailing spaces in the CHAR.

Note: Because the behavior of length() with CHAR
values containing trailing spaces is not standardized

 | Impala SQL Language Reference | 524

across the industry, when porting code from other
database systems, evaluate the behavior of length()
on the source system and switch to char_length()
for Impala if necessary.

Examples:

The following example demonstrates how length()
and char_length() sometimes produce the
same result, and sometimes produce different results
depending on the type of the argument and the presence
of trailing spaces for CHAR values. The S and C values
are displayed with enclosing quotation marks to show
any trailing spaces.

create table length_demo (s string,
 c char(5));
insert into length_demo values
 ('a',cast('a' as char(5))),
 ('abc',cast('abc' as char(5))),
 ('hello',cast('hello' as
 char(5)));

select concat('"',s,'"') as s,
 concat('"',c,'"') as c,
 length(s), length(c),
 char_length(s), char_length(c)
from length_demo;
+---------+---------+-----------
+-----------+----------------
+----------------+
| s | c | length(s)
 | length(c) | char_length(s) |
 char_length(c) |
+---------+---------+-----------
+-----------+----------------
+----------------+
| "a" | "a " | 1 | 1
 | 1 | 5
 |
| "abc" | "abc " | 3 | 3
 | 3 | 5
 |
| "hello" | "hello" | 5 | 5
 | 5 | 5
 |
+---------+---------+-----------
+-----------+----------------
+----------------+

 locate(string substr, string str[, int
pos])

Purpose: Returns the position (starting from 1) of the
first occurrence of a substring within a longer string,
optionally after a particular position.

Return type: int

 lower(string a), lcase(string a) Purpose: Returns the argument string converted to all-
lowercase.

Return type: string

Usage notes:

 | Impala SQL Language Reference | 525

In Impala 2.5 and higher, you can simplify queries
that use many UPPER() and LOWER() calls to do
case-insensitive comparisons, by using the ILIKE or
IREGEXP operators instead. See ILIKE Operator on
page 196 and IREGEXP Operator on page 200 for
details.

 lpad(string str, int len, string pad) Purpose: Returns a string of a specified length, based
on the first argument string. If the specified string is too
short, it is padded on the left with a repeating sequence
of the characters from the pad string. If the specified
string is too long, it is truncated on the right.

Return type: string

 ltrim(string a) Purpose: Returns the argument string with any leading
spaces removed from the left side.

Return type: string

 parse_url(string urlString, string
partToExtract [, string keyToExtract])

Purpose: Returns the portion of a URL corresponding
to a specified part. The part argument can be
'PROTOCOL', 'HOST', 'PATH', 'REF',
'AUTHORITY', 'FILE', 'USERINFO', or
'QUERY'. Uppercase is required for these literal values.
When requesting the QUERY portion of the URL, you
can optionally specify a key to retrieve just the associated
value from the key-value pairs in the query string.

Return type: string

Usage notes: This function is important for the
traditional Hadoop use case of interpreting web logs.
For example, if the web traffic data features raw URLs
not divided into separate table columns, you can count
visitors to a particular page by extracting the 'PATH' or
'FILE' field, or analyze search terms by extracting the
corresponding key from the 'QUERY' field.

 regexp_extract(string subject, string
pattern, int index)

Purpose: Returns the specified () group from a string
based on a regular expression pattern. Group 0 refers to
the entire extracted string, while group 1, 2, and so on
refers to the first, second, and so on (...) portion.

Return type: string

In Impala 2.0 and later, the Impala regular expression
syntax conforms to the POSIX Extended Regular
Expression syntax used by the Google RE2 library. For
details, see the RE2 documentation. It has most idioms
familiar from regular expressions in Perl, Python, and so
on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying
regular expression library could cause changes in the
way regular expressions are interpreted by this function.
Test any queries that use regular expressions and adjust
the expression patterns if necessary. See Incompatible
Changes Introduced in Impala 2.0.0 on page 810 for
details.

https://code.google.com/p/re2/

 | Impala SQL Language Reference | 526

Because the impala-shell interpreter uses the \
character for escaping, use \\ to represent the regular
expression escape character in any regular expressions
that you submit through impala-shell . You might
prefer to use the equivalent character class names, such
as [[:digit:]] instead of \d which you would have
to escape as \\d.

Examples:

This example shows how group 0 matches the full
pattern string, including the portion outside any ()
group:

[localhost:21000] > select
 regexp_extract('abcdef123ghi456jkl','.*?
(\\d+)',0);
+--
+
|
 regexp_extract('abcdef123ghi456jkl',
 '.*?(\\d+)', 0) |
+--
+
| abcdef123ghi456
 |
+--
+
Returned 1 row(s) in 0.11s

This example shows how group 1 matches just the
contents inside the first () group in the pattern string:

[localhost:21000] > select
 regexp_extract('abcdef123ghi456jkl','.*?
(\\d+)',1);
+--
+
|
 regexp_extract('abcdef123ghi456jkl',
 '.*?(\\d+)', 1) |
+--
+
| 456
 |
+--
+
Returned 1 row(s) in 0.11s

Unlike in earlier Impala releases, the regular expression
library used in Impala 2.0 and later supports the .*?
idiom for non-greedy matches. This example shows
how a pattern string starting with .*? matches the
shortest possible portion of the source string, returning
the rightmost set of lowercase letters. A pattern string
both starting and ending with .*? finds two potential

 | Impala SQL Language Reference | 527

matches of equal length, and returns the first one found
(the leftmost set of lowercase letters).

[localhost:21000] > select
 regexp_extract('AbcdBCdefGHI','.*?
([[:lower:]]+)',1);
+--
+
| regexp_extract('abcdbcdefghi',
 '.*?([[:lower:]]+)', 1) |
+--
+
| def
 |
+--
+
[localhost:21000] > select
 regexp_extract('AbcdBCdefGHI','.*?
([[:lower:]]+).*?',1);
+---
+
| regexp_extract('abcdbcdefghi',
 '.*?([[:lower:]]+).*?', 1) |
+---
+
| bcd
 |
+---
+

 regexp_like(string source, string
pattern[, string options])

Purpose: Returns true or false to indicate whether
the source string contains anywhere inside it the regular
expression given by the pattern. The optional third
argument consists of letter flags that change how the
match is performed, such as i for case-insensitive
matching.

Syntax:

The flags that you can include in the optional third
argument are:

• c: Case-sensitive matching (the default).
• i: Case-insensitive matching. If multiple instances of

c and i are included in the third argument, the last
such option takes precedence.

• m: Multi-line matching. The ^ and $ operators match
the start or end of any line within the source string,
not the start and end of the entire string.

• n: Newline matching. The . operator can match the
newline character. A repetition operator such as .*
can match a portion of the source string that spans
multiple lines.

Return type: boolean

In Impala 2.0 and later, the Impala regular expression
syntax conforms to the POSIX Extended Regular
Expression syntax used by the Google RE2 library. For
details, see the RE2 documentation. It has most idioms

https://code.google.com/p/re2/

 | Impala SQL Language Reference | 528

familiar from regular expressions in Perl, Python, and so
on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying
regular expression library could cause changes in the
way regular expressions are interpreted by this function.
Test any queries that use regular expressions and adjust
the expression patterns if necessary. See Incompatible
Changes Introduced in Impala 2.0.0 on page 810 for
details.

Because the impala-shell interpreter uses the \
character for escaping, use \\ to represent the regular
expression escape character in any regular expressions
that you submit through impala-shell . You might
prefer to use the equivalent character class names, such
as [[:digit:]] instead of \d which you would have
to escape as \\d.

Examples:

This example shows how regexp_like() can test
for the existence of various kinds of regular expression
patterns within a source string:

-- Matches because the 'f' appears
 somewhere in 'foo'.
select regexp_like('foo','f');
+-------------------------+
| regexp_like('foo', 'f') |
+-------------------------+
| true |
+-------------------------+

-- Does not match because the
 comparison is case-sensitive by
 default.
select regexp_like('foo','F');
+-------------------------+
| regexp_like('foo', 'f') |
+-------------------------+
| false |
+-------------------------+

-- The 3rd argument can change the
 matching logic, such as 'i' meaning
 case-insensitive.
select regexp_like('foo','F','i');
+------------------------------+
| regexp_like('foo', 'f', 'i') |
+------------------------------+
| true |
+------------------------------+

-- The familiar regular expression
 notations work, such as ^ and $
 anchors...
select regexp_like('foo','f$');
+--------------------------+
| regexp_like('foo', 'f$') |
+--------------------------+

 | Impala SQL Language Reference | 529

| false |
+--------------------------+

select regexp_like('foo','o$');
+--------------------------+
| regexp_like('foo', 'o$') |
+--------------------------+
| true |
+--------------------------+

-- ...and repetition operators such
 as * and +
select regexp_like('foooooobar','fo
+b');
+-----------------------------------
+
| regexp_like('foooooobar', 'fo+b')
 |
+-----------------------------------
+
| true
 |
+-----------------------------------
+

select
 regexp_like('foooooobar','fx*y*o*b');
+---------------------------------------
+
| regexp_like('foooooobar',
 'fx*y*o*b') |
+---------------------------------------
+
| true
 |
+---------------------------------------
+

 regexp_replace(string initial, string
pattern, string replacement)

Purpose: Returns the initial argument with the regular
expression pattern replaced by the final argument string.

Return type: string

In Impala 2.0 and later, the Impala regular expression
syntax conforms to the POSIX Extended Regular
Expression syntax used by the Google RE2 library. For
details, see the RE2 documentation. It has most idioms
familiar from regular expressions in Perl, Python, and so
on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying
regular expression library could cause changes in the
way regular expressions are interpreted by this function.
Test any queries that use regular expressions and adjust
the expression patterns if necessary. See Incompatible
Changes Introduced in Impala 2.0.0 on page 810 for
details.

Because the impala-shell interpreter uses the \
character for escaping, use \\ to represent the regular
expression escape character in any regular expressions

https://code.google.com/p/re2/

 | Impala SQL Language Reference | 530

that you submit through impala-shell . You might
prefer to use the equivalent character class names, such
as [[:digit:]] instead of \d which you would have
to escape as \\d.

Examples:

These examples show how you can replace parts of a
string matching a pattern with replacement text, which
can include backreferences to any () groups in the
pattern string. The backreference numbers start at 1, and
any \ characters must be escaped as \\.

Replace a character pattern with new text:

[localhost:21000] > select
 regexp_replace('aaabbbaaa','b
+','xyz');
+--
+
| regexp_replace('aaabbbaaa', 'b+',
 'xyz') |
+--
+
| aaaxyzaaa
 |
+--
+
Returned 1 row(s) in 0.11s

Replace a character pattern with substitution text that
includes the original matching text:

[localhost:21000] > select
 regexp_replace('aaabbbaaa','(b
+)','<\\1>');
+--
+
| regexp_replace('aaabbbaaa', '(b
+)', '<\\1>') |
+--
+
| aaa<bbb>aaa
 |
+--
+
Returned 1 row(s) in 0.11s

Remove all characters that are not digits:

[localhost:21000] > select
 regexp_replace('123-456-789','[^[:digit:]]','');
+---
+
| regexp_replace('123-456-789',
 '[^[:digit:]]', '') |
+---
+
| 123456789
 |
+---
+

 | Impala SQL Language Reference | 531

Returned 1 row(s) in 0.12s

 repeat(string str, int n) Purpose: Returns the argument string repeated a
specified number of times.

Return type: string

 replace(string initial, string target,
string replacement)

Purpose: Returns the initial argument with all
occurrences of the target string replaced by the
replacement string.

Return type: string

Usage notes:

Because this function does not use any regular
expression patterns, it is typically faster than
regexp_replace() for simple string substitutions.

If any argument is NULL, the return value is NULL.

Matching is case-sensitive.

If the replacement string contains another instance of
the target string, the expansion is only performed once,
instead of applying again to the newly constructed string.

Added in: Impala 2.9.0

Examples:

-- Replace one string with another.
select replace('hello
 world','world','earth');
+--
+
| replace('hello world', 'world',
 'earth') |
+--
+
| hello earth
 |
+--
+

-- All occurrences of the target
 string are replaced.
select replace('hello
 world','o','0');
+----------------------------------+
| replace('hello world', 'o', '0') |
+----------------------------------+
| hell0 w0rld |
+----------------------------------+

-- If no match is found, the
 original string is returned
 unchanged.
select replace('hello
 world','xyz','abc');
+--------------------------------------
+
| replace('hello world', 'xyz',
 'abc') |

 | Impala SQL Language Reference | 532

+--------------------------------------
+
| hello world
 |
+--------------------------------------
+

 reverse(string a) Purpose: Returns the argument string with characters in
reversed order.

Return type: string

 rpad(string str, int len, string pad) Purpose: Returns a string of a specified length, based
on the first argument string. If the specified string is too
short, it is padded on the right with a repeating sequence
of the characters from the pad string. If the specified
string is too long, it is truncated on the right.

Return type: string

 rtrim(string a) Purpose: Returns the argument string with any trailing
spaces removed from the right side.

Return type: string

 space(int n) Purpose: Returns a concatenated string of the specified
number of spaces. Shorthand for repeat(' ',n).

Return type: string

 split_part(string source, string
delimiter, bigint n)

Purpose: Returns the nth field within a delimited string.
The fields are numbered starting from 1. The delimiter
can consist of multiple characters, not just a single
character. All matching of the delimiter is done exactly,
not using any regular expression patterns.

Return type: string

In Impala 2.0 and later, the Impala regular expression
syntax conforms to the POSIX Extended Regular
Expression syntax used by the Google RE2 library. For
details, see the RE2 documentation. It has most idioms
familiar from regular expressions in Perl, Python, and so
on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying
regular expression library could cause changes in the
way regular expressions are interpreted by this function.
Test any queries that use regular expressions and adjust
the expression patterns if necessary. See Incompatible
Changes Introduced in Impala 2.0.0 on page 810 for
details.

Because the impala-shell interpreter uses the \
character for escaping, use \\ to represent the regular
expression escape character in any regular expressions
that you submit through impala-shell . You might
prefer to use the equivalent character class names, such
as [[:digit:]] instead of \d which you would have
to escape as \\d.

Examples:

https://code.google.com/p/re2/

 | Impala SQL Language Reference | 533

These examples show how to retrieve the nth field from a
delimited string:

select split_part('x,y,z',',',1);
+-----------------------------+
| split_part('x,y,z', ',', 1) |
+-----------------------------+
| x |
+-----------------------------+

select split_part('x,y,z',',',2);
+-----------------------------+
| split_part('x,y,z', ',', 2) |
+-----------------------------+
| y |
+-----------------------------+

select split_part('x,y,z',',',3);
+-----------------------------+
| split_part('x,y,z', ',', 3) |
+-----------------------------+
| z |
+-----------------------------+
</codeblock>

 <p>
 These examples show what
 happens for out-of-range field
 positions.
 Specifying a value
 less than 1 produces an error.
 Specifying a value
 greater than the number
 of fields returns a zero-length
 string
 (which is not the same
 as <codeph>NULL</codeph>).
 </p>
<codeblock><![CDATA[
select split_part('x,y,z',',',0);
ERROR: Invalid field position: 0

with t1 as (select
 split_part('x,y,z',',',4)
 nonexistent_field)
 select
 nonexistent_field
 ,
 concat('[',nonexistent_field,']')
 , length(nonexistent_field);
from t1
+-------------------
+-------------------------------------
+---------------------------+
| nonexistent_field | concat('[',
 nonexistent_field, ']') |
 length(nonexistent_field) |
+-------------------
+-------------------------------------
+---------------------------+

 | Impala SQL Language Reference | 534

| | []
 | 0
 |
+-------------------
+-------------------------------------
+---------------------------+
</codeblock>

 <p>
 These examples show
 how the delimiter can be a multi-
character value:
 </p>
<codeblock><![CDATA[
select
 split_part('one***two***three','***',2);
+---
+
| split_part('one***two***three',
 '***', 2) |
+---
+
| two
 |
+---
+

select split_part('one\|/two\|/
three','\|/',3);
+---
+
| split_part('one\|/two\|/three',
 '\|/', 3) |
+---
+
| three
 |
+---
+

 strleft(string a, int num_chars) Purpose: Returns the leftmost characters of the string.
Shorthand for a call to substr() with 2 arguments.

Return type: string

 strright(string a, int num_chars) Purpose: Returns the rightmost characters of the string.
Shorthand for a call to substr() with 2 arguments.

Return type: string

 substr(string a, int start [, int
len]), substring(string a, int start
[, int len])

Purpose: Returns the portion of the string starting at a
specified point, optionally with a specified maximum
length. The characters in the string are indexed starting at
1.

Return type: string

 translate(string input, string from,
string to)

Purpose: Returns the input string with a set of characters
replaced by another set of characters.

Return type: string

 | Impala SQL Language Reference | 535

 trim(string a) Purpose: Returns the input string with both leading and
trailing spaces removed. The same as passing the string
through both ltrim() and rtrim().

Usage notes: Often used during data cleansing
operations during the ETL cycle, if input values might
still have surrounding spaces. For a more general-
purpose function that can remove other leading and
trailing characters besides spaces, see btrim().

Return type: string

 upper(string a), ucase(string a) Purpose: Returns the argument string converted to all-
uppercase.

Return type: string

Usage notes:

In Impala 2.5 and higher, you can simplify queries
that use many UPPER() and LOWER() calls to do
case-insensitive comparisons, by using the ILIKE or
IREGEXP operators instead. See ILIKE Operator on
page 196 and IREGEXP Operator on page 200 for
details.

Impala Miscellaneous Functions

Impala supports the following utility functions that do not operate on a particular column or data type:

 current_database() Purpose: Returns the database that the session is
currently using, either default if no database has been
selected, or whatever database the session switched to
through a USE statement or the impalad-d option.

Return type: string

 effective_user() Purpose: Typically returns the same value as user(),
except if delegation is enabled, in which case it returns
the ID of the delegated user.

Return type: string

Added in: Impala 2.2.5

 pid() Purpose: Returns the process ID of the impalad
daemon that the session is connected to. You can use it
during low-level debugging, to issue Linux commands
that trace, show the arguments, and so on the impalad
process.

Return type: int

 user() Purpose: Returns the username of the Linux user who
is connected to the impalad daemon. Typically called
a single time, in a query without any FROM clause, to
understand how authorization settings apply in a security
context; once you know the logged-in username, you can
check which groups that user belongs to, and from the
list of groups you can check which roles are available to
those groups through the authorization policy file.

 | Impala SQL Language Reference | 536

In Impala 2.0 and later, user() returns
the full Kerberos principal string, such as
user@example.com, in a Kerberized environment.

When delegation is enabled, consider calling the
effective_user() function instead.

Return type: string

 uuid() Purpose: Returns a universal unique identifier, a 128-
bit value encoded as a string with groups of hexadecimal
digits separated by dashes.

Return type: string

Added in: Impala 2.5.0

Usage notes:

Ascending numeric sequences of type BIGINT are often
used as identifiers within a table, and as join keys across
multiple tables. The uuid() value is a convenient
alternative that does not require storing or querying the
highest sequence number. For example, you can use
it to quickly construct new unique identifiers during a
data import job, or to combine data from different tables
without the likelihood of ID collisions.

Examples:

-- Each call to uuid() produces a
 new arbitrary value.
select uuid();
+--------------------------------------
+
| uuid()
 |
+--------------------------------------
+
| c7013e25-1455-457f-bf74-
a2046e58caea |
+--------------------------------------
+

-- If you get a UUID for each row of
 a result set, you can use it as a
-- unique identifier within a table,
 or even a unique ID across tables.
select uuid() from four_row_table;
+--------------------------------------
+
| uuid()
 |
+--------------------------------------
+
|
 51d3c540-85e5-4cb9-9110-604e53999e2e
 |
| 0bb40071-92f6-4a59-
a6a4-60d46e9703e2 |
| 5e9d7c36-9842-4a96-862d-
c13cd0457c02 |

https://en.wikipedia.org/wiki/Universally_unique_identifier

 | Impala SQL Language Reference | 537

| cae29095-0cc0-4053-
a5ea-7fcd3c780861 |
+--------------------------------------
+

 version() Purpose: Returns information such as the precise version
number and build date for the impalad daemon that
you are currently connected to. Typically used to confirm
that you are connected to the expected level of Impala
to use a particular feature, or to connect to several
nodes and confirm they are all running the same level of
impalad.

Return type: string (with one or more embedded
newlines)

Impala Aggregate Functions

Aggregate functions are a special category with different rules. These functions calculate a return value across all the
items in a result set, so they require a FROM clause in the query:

select count(product_id) from product_catalog;
select max(height), avg(height) from census_data where age > 20;

Aggregate functions also ignore NULL values rather than returning a NULL result. For example, if some rows have
NULL for a particular column, those rows are ignored when computing the AVG() for that column. Likewise,
specifying COUNT(col_name) in a query counts only those rows where col_name contains a non-NULL value.

APPX_MEDIAN Function

An aggregate function that returns a value that is approximately the median (midpoint) of values in the set of input
values.

Syntax:

APPX_MEDIAN([DISTINCT | ALL] expression)

This function works with any input type, because the only requirement is that the type supports less-than and greater-
than comparison operators.

Usage notes:

Because the return value represents the estimated midpoint, it might not reflect the precise midpoint value, especially
if the cardinality of the input values is very high. If the cardinality is low (up to approximately 20,000), the result is
more accurate because the sampling considers all or almost all of the different values.

Return type: Same as the input value, except for CHAR and VARCHAR arguments which produce a STRING result

The return value is always the same as one of the input values, not an “in-between” value produced by averaging.

Restrictions:

This function cannot be used in an analytic context. That is, the OVER() clause is not allowed at all with this
function.

The APPX_MEDIAN function returns only the first 10 characters for string values (string, varchar, char). Additional
characters are truncated.

Examples:

The following example uses a table of a million random floating-point numbers ranging up to approximately 50,000.
The average is approximately 25,000. Because of the random distribution, we would expect the median to be close to

 | Impala SQL Language Reference | 538

this same number. Computing the precise median is a more intensive operation than computing the average, because
it requires keeping track of every distinct value and how many times each occurs. The APPX_MEDIAN() function
uses a sampling algorithm to return an approximate result, which in this case is close to the expected value. To make
sure that the value is not substantially out of range due to a skewed distribution, subsequent queries confirm that there
are approximately 500,000 values higher than the APPX_MEDIAN() value, and approximately 500,000 values lower
than the APPX_MEDIAN() value.

[localhost:21000] > select min(x), max(x), avg(x) from million_numbers;
+-------------------+-------------------+-------------------+
| min(x) | max(x) | avg(x) |
+-------------------+-------------------+-------------------+
| 4.725693727250069 | 49994.56852674231 | 24945.38563793553 |
+-------------------+-------------------+-------------------+
[localhost:21000] > select appx_median(x) from million_numbers;
+----------------+
| appx_median(x) |
+----------------+
| 24721.6 |
+----------------+
[localhost:21000] > select count(x) as higher from million_numbers where x >
 (select appx_median(x) from million_numbers);
+--------+
| higher |
+--------+
| 502013 |
+--------+
[localhost:21000] > select count(x) as lower from million_numbers where x <
 (select appx_median(x) from million_numbers);
+--------+
| lower |
+--------+
| 497987 |
+--------+

The following example computes the approximate median using a subset of the values from the table, and then
confirms that the result is a reasonable estimate for the midpoint.

[localhost:21000] > select appx_median(x) from million_numbers where x
 between 1000 and 5000;
+-------------------+
| appx_median(x) |
+-------------------+
| 3013.107787358159 |
+-------------------+
[localhost:21000] > select count(x) as higher from million_numbers where x
 between 1000 and 5000 and x > 3013.107787358159;
+--------+
| higher |
+--------+
| 37692 |
+--------+
[localhost:21000] > select count(x) as lower from million_numbers where x
 between 1000 and 5000 and x < 3013.107787358159;
+-------+
| lower |
+-------+
| 37089 |
+-------+

 | Impala SQL Language Reference | 539

AVG Function

An aggregate function that returns the average value from a set of numbers or TIMESTAMP values. Its single
argument can be numeric column, or the numeric result of a function or expression applied to the column value. Rows
with a NULL value for the specified column are ignored. If the table is empty, or all the values supplied to AVG are
NULL, AVG returns NULL.

Syntax:

AVG([DISTINCT | ALL] expression) [OVER (analytic_clause)]

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Return type: DOUBLE for numeric values; TIMESTAMP for TIMESTAMP values

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or
value at the bottom of any nested type hierarchy in the column. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM() and AVG() are computed using the numeric
R_NATIONKEY field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME
field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18

 | Impala SQL Language Reference | 540

ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------
+---------------+
| r_name | count | sum | avg | minimum | maximum |
 distinct_vals |
+-------------+-------+-----+------+-----------+----------------
+---------------+
| AFRICA | 5 | 50 | 10 | ALGERIA | MOZAMBIQUE | 5
 |
| AMERICA | 5 | 47 | 9.4 | ARGENTINA | UNITED STATES | 5
 |
| ASIA | 5 | 68 | 13.6 | CHINA | VIETNAM | 5
 |
| EUROPE | 5 | 77 | 15.4 | FRANCE | UNITED KINGDOM | 5
 |
| MIDDLE EAST | 5 | 58 | 11.6 | EGYPT | SAUDI ARABIA | 5
 |
+-------------+-------+-----+------+-----------+----------------
+---------------+

Examples:

-- Average all the non-NULL values in a column.
insert overwrite avg_t values (2),(4),(6),(null),(null);
-- The average of the above values is 4: (2+4+6) / 3. The 2 NULL values are
 ignored.
select avg(x) from avg_t;
-- Average only certain values from the column.
select avg(x) from t1 where month = 'January' and year = '2013';
-- Apply a calculation to the value of the column before averaging.
select avg(x/3) from t1;
-- Apply a function to the value of the column before averaging.
-- Here we are substituting a value of 0 for all NULLs in the column,
-- so that those rows do factor into the return value.
select avg(isnull(x,0)) from t1;
-- Apply some number-returning function to a string column and average the
 results.
-- If column s contains any NULLs, length(s) also returns NULL and those
 rows are ignored.

 | Impala SQL Language Reference | 541

select avg(length(s)) from t1;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, avg(page_visits) from web_stats group by month, year;
-- Filter the input to eliminate duplicates before performing the
 calculation.
select avg(distinct x) from t1;
-- Filter the output after performing the calculation.
select avg(x) from t1 group by y having avg(x) between 1 and 20;

The following examples show how to use AVG() in an analytic context. They use a table containing integers from 1
to 10. Notice how the AVG() is reported for each input value, as opposed to the GROUP BY clause which condenses
the result set.

select x, property, avg(x) over (partition by property) as avg from int_t
 where property in ('odd','even');
+----+----------+-----+
| x | property | avg |
+----+----------+-----+
2	even	6
4	even	6
6	even	6
8	even	6
10	even	6
1	odd	5
3	odd	5
5	odd	5
7	odd	5
9	odd	5
+----+----------+-----+

Adding an ORDER BY clause lets you experiment with results that are cumulative or apply to a moving set of rows
(the “window”). The following examples use AVG() in an analytic context (that is, with an OVER() clause) to
produce a running average of all the even values, then a running average of all the odd values. The basic ORDER BY
x clause implicitly activates a window clause of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW, which is effectively the same as ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,
therefore all of these examples produce the same results:

select x, property,
 avg(x) over (partition by property order by x) as 'cumulative average'
 from int_t where property in ('odd','even');
+----+----------+--------------------+
| x | property | cumulative average |
+----+----------+--------------------+
2	even	2
4	even	3
6	even	4
8	even	5
10	even	6
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+--------------------+

select x, property,
 avg(x) over
 (
 partition by property
 order by x
 range between unbounded preceding and current row

 | Impala SQL Language Reference | 542

) as 'cumulative average'
from int_t where property in ('odd','even');
+----+----------+--------------------+
| x | property | cumulative average |
+----+----------+--------------------+
2	even	2
4	even	3
6	even	4
8	even	5
10	even	6
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+--------------------+

select x, property,
 avg(x) over
 (
 partition by property
 order by x
 rows between unbounded preceding and current row
) as 'cumulative average'
 from int_t where property in ('odd','even');
+----+----------+--------------------+
| x | property | cumulative average |
+----+----------+--------------------+
2	even	2
4	even	3
6	even	4
8	even	5
10	even	6
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+--------------------+

The following examples show how to construct a moving window, with a running average taking into account 1 row
before and 1 row after the current row, within the same partition (all the even values or all the odd values). Because of
a restriction in the Impala RANGE syntax, this type of moving window is possible with the ROWS BETWEEN clause
but not the RANGE BETWEEN clause:

select x, property,
 avg(x) over
 (
 partition by property
 order by x
 rows between 1 preceding and 1 following
) as 'moving average'
 from int_t where property in ('odd','even');
+----+----------+----------------+
| x | property | moving average |
+----+----------+----------------+
2	even	3
4	even	4
6	even	6
8	even	8
10	even	9
1	odd	2
3	odd	3

 | Impala SQL Language Reference | 543

5	odd	5
7	odd	7
9	odd	8
+----+----------+----------------+

-- Doesn't work because of syntax restriction on RANGE clause.
select x, property,
 avg(x) over
 (
 partition by property
 order by x
 range between 1 preceding and 1 following
) as 'moving average'
from int_t where property in ('odd','even');
ERROR: AnalysisException: RANGE is only supported with both the lower and
 upper bounds UNBOUNDED or one UNBOUNDED and the other CURRENT ROW.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and
distributed queries can perform these operations in different order for each query, results can vary slightly for
aggregate function calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECIMAL data type for such operations instead of FLOAT or DOUBLE.

Related information:

Impala Analytic Functions on page 568, MAX Function on page 549, MIN Function on page 553

COUNT Function

An aggregate function that returns the number of rows, or the number of non-NULL rows.

Syntax:

COUNT([DISTINCT | ALL] expression) [OVER (analytic_clause)]

Depending on the argument, COUNT() considers rows that meet certain conditions:

• The notation COUNT(*) includes NULL values in the total.
• The notation COUNT(column_name) only considers rows where the column contains a non-NULL value.
• You can also combine COUNT with the DISTINCT operator to eliminate duplicates before counting, and to count

the combinations of values across multiple columns.

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Return type: BIGINT

Usage notes:

If you frequently run aggregate functions such as MIN(), MAX(), and COUNT(DISTINCT) on partition key
columns, consider enabling the OPTIMIZE_PARTITION_KEY_SCANS query option, which optimizes such queries.
This feature is available in Impala 2.5 and higher. See OPTIMIZE_PARTITION_KEY_SCANS Query Option (Impala
2.5 or higher only) on page 384 for the kinds of queries that this option applies to, and slight differences in how
partitions are evaluated when this query option is enabled.

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or
value at the bottom of any nested type hierarchy in the column. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about using complex types in Impala.

 | Impala SQL Language Reference | 544

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM() and AVG() are computed using the numeric
R_NATIONKEY field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME
field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from

 | Impala SQL Language Reference | 545

 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------
+---------------+
| r_name | count | sum | avg | minimum | maximum |
 distinct_vals |
+-------------+-------+-----+------+-----------+----------------
+---------------+
| AFRICA | 5 | 50 | 10 | ALGERIA | MOZAMBIQUE | 5
 |
| AMERICA | 5 | 47 | 9.4 | ARGENTINA | UNITED STATES | 5
 |
| ASIA | 5 | 68 | 13.6 | CHINA | VIETNAM | 5
 |
| EUROPE | 5 | 77 | 15.4 | FRANCE | UNITED KINGDOM | 5
 |
| MIDDLE EAST | 5 | 58 | 11.6 | EGYPT | SAUDI ARABIA | 5
 |
+-------------+-------+-----+------+-----------+----------------
+---------------+

Examples:

-- How many rows total are in the table, regardless of NULL values?
select count(*) from t1;
-- How many rows are in the table with non-NULL values for a column?
select count(c1) from t1;
-- Count the rows that meet certain conditions.
-- Again, * includes NULLs, so COUNT(*) might be greater than COUNT(col).
select count(*) from t1 where x > 10;
select count(c1) from t1 where x > 10;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Combine COUNT and DISTINCT to find the number of unique values.
-- Must use column names rather than * with COUNT(DISTINCT ...) syntax.
-- Rows with NULL values are not counted.
select count(distinct c1) from t1;
-- Rows with a NULL value in _either_ column are not counted.
select count(distinct c1, c2) from t1;
-- Return more than one result.
select month, year, count(distinct visitor_id) from web_stats group by
 month, year;

The following examples show how to use COUNT() in an analytic context. They use a table containing integers
from 1 to 10. Notice how the COUNT() is reported for each input value, as opposed to the GROUP BY clause which
condenses the result set.

select x, property, count(x) over (partition by property) as count from
 int_t where property in ('odd','even');
+----+----------+-------+
| x | property | count |
+----+----------+-------+
2	even	5
4	even	5
6	even	5
8	even	5
10	even	5
1	odd	5
3	odd	5
5	odd	5
7	odd	5
9	odd	5

 | Impala SQL Language Reference | 546

+----+----------+-------+

Adding an ORDER BY clause lets you experiment with results that are cumulative or apply to a moving set of rows
(the “window”). The following examples use COUNT() in an analytic context (that is, with an OVER() clause) to
produce a running count of all the even values, then a running count of all the odd values. The basic ORDER BY x
clause implicitly activates a window clause of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW, which is effectively the same as ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,
therefore all of these examples produce the same results:

select x, property,
 count(x) over (partition by property order by x) as 'cumulative count'
 from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative count |
+----+----------+------------------+
2	even	1
4	even	2
6	even	3
8	even	4
10	even	5
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+------------------+

select x, property,
 count(x) over
 (
 partition by property
 order by x
 range between unbounded preceding and current row
) as 'cumulative total'
from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative count |
+----+----------+------------------+
2	even	1
4	even	2
6	even	3
8	even	4
10	even	5
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+------------------+

select x, property,
 count(x) over
 (
 partition by property
 order by x
 rows between unbounded preceding and current row
) as 'cumulative total'
 from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative count |
+----+----------+------------------+
| 2 | even | 1 |

 | Impala SQL Language Reference | 547

4	even	2
6	even	3
8	even	4
10	even	5
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+------------------+

The following examples show how to construct a moving window, with a running count taking into account 1 row
before and 1 row after the current row, within the same partition (all the even values or all the odd values). Therefore,
the count is consistently 3 for rows in the middle of the window, and 2 for rows near the ends of the window, where
there is no preceding or no following row in the partition. Because of a restriction in the Impala RANGE syntax, this
type of moving window is possible with the ROWS BETWEEN clause but not the RANGE BETWEEN clause:

select x, property,
 count(x) over
 (
 partition by property
 order by x
 rows between 1 preceding and 1 following
) as 'moving total'
 from int_t where property in ('odd','even');
+----+----------+--------------+
| x | property | moving total |
+----+----------+--------------+
2	even	2
4	even	3
6	even	3
8	even	3
10	even	2
1	odd	2
3	odd	3
5	odd	3
7	odd	3
9	odd	2
+----+----------+--------------+

-- Doesn't work because of syntax restriction on RANGE clause.
select x, property,
 count(x) over
 (
 partition by property
 order by x
 range between 1 preceding and 1 following
) as 'moving total'
from int_t where property in ('odd','even');
ERROR: AnalysisException: RANGE is only supported with both the lower and
 upper bounds UNBOUNDED or one UNBOUNDED and the other CURRENT ROW.

Note:

By default, Impala only allows a single COUNT(DISTINCT columns) expression in each query.

If you do not need precise accuracy, you can produce an estimate of the distinct values for a column by specifying
NDV(column); a query can contain multiple instances of NDV(column). To make Impala automatically rewrite
COUNT(DISTINCT) expressions to NDV(), enable the APPX_COUNT_DISTINCT query option.

 | Impala SQL Language Reference | 548

To produce the same result as multiple COUNT(DISTINCT) expressions, you can use the following technique for
queries involving a single table:

select v1.c1 result1, v2.c1 result2 from
 (select count(distinct col1) as c1 from t1) v1
 cross join
 (select count(distinct col2) as c1 from t1) v2;

Because CROSS JOIN is an expensive operation, prefer to use the NDV() technique wherever practical.

Related information:

Impala Analytic Functions on page 568

GROUP_CONCAT Function

An aggregate function that returns a single string representing the argument value concatenated together for each row
of the result set. If the optional separator string is specified, the separator is added between each pair of concatenated
values. The default separator is a comma followed by a space.

Syntax:

GROUP_CONCAT([ALL | DISTINCT] expression [, separator])

Usage notes: concat() and concat_ws() are appropriate for concatenating the values of multiple columns
within the same row, while group_concat() joins together values from different rows.

By default, returns a single string covering the whole result set. To include other columns or values in the result set, or
to produce multiple concatenated strings for subsets of rows, include a GROUP BY clause in the query.

Return type: STRING

This function cannot be used in an analytic context. That is, the OVER() clause is not allowed at all with this
function.

Currently, Impala returns an error if the result value grows larger than 1 GiB.

Examples:

The following examples illustrate various aspects of the GROUP_CONCAT() function.

You can call the function directly on a STRING column. To use it with a numeric column, cast the value to STRING.

[localhost:21000] > create table t1 (x int, s string);
[localhost:21000] > insert into t1 values (1, "one"), (3, "three"), (2,
 "two"), (1, "one");
[localhost:21000] > select group_concat(s) from t1;
+----------------------+
| group_concat(s) |
+----------------------+
| one, three, two, one |
+----------------------+
[localhost:21000] > select group_concat(cast(x as string)) from t1;
+---------------------------------+
| group_concat(cast(x as string)) |
+---------------------------------+
| 1, 3, 2, 1 |
+---------------------------------+

Specify the DISTINCT keyword to eliminate duplicate values from the concatenated result:

[localhost:21000] > select group_concat(distinct s) from t1;
+--------------------------+
| group_concat(distinct s) |

 | Impala SQL Language Reference | 549

+--------------------------+
| three, two, one |
+--------------------------+

The optional separator lets you format the result in flexible ways. The separator can be an arbitrary string expression,
not just a single character.

[localhost:21000] > select group_concat(s,"|") from t1;
+----------------------+
| group_concat(s, '|') |
+----------------------+
| one|three|two|one |
+----------------------+
[localhost:21000] > select group_concat(s,'---') from t1;
+-------------------------+
| group_concat(s, '---') |
+-------------------------+
| one---three---two---one |
+-------------------------+

The default separator is a comma followed by a space. To get a comma-delimited result without extra spaces, specify
a delimiter character that is only a comma.

[localhost:21000] > select group_concat(s,',') from t1;
+----------------------+
| group_concat(s, ',') |
+----------------------+
| one,three,two,one |
+----------------------+

Including a GROUP BY clause lets you produce a different concatenated result for each group in the result set.
In this example, the only X value that occurs more than once is 1, so that is the only row in the result set where
GROUP_CONCAT() returns a delimited value. For groups containing a single value, GROUP_CONCAT() returns the
original value of its STRING argument.

[localhost:21000] > select x, group_concat(s) from t1 group by x;
+---+-----------------+
| x | group_concat(s) |
+---+-----------------+
2	two
3	three
1	one, one
+---+-----------------+

MAX Function

An aggregate function that returns the maximum value from a set of numbers. Opposite of the MIN function. Its single
argument can be numeric column, or the numeric result of a function or expression applied to the column value. Rows
with a NULL value for the specified column are ignored. If the table is empty, or all the values supplied to MAX are
NULL, MAX returns NULL.

Syntax:

MAX([DISTINCT | ALL] expression) [OVER (analytic_clause)]

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Restrictions: In Impala 2.0 and higher, this function can be used as an analytic function, but with restrictions on
any window clause. For MAX() and MIN(), the window clause is only allowed if the start bound is UNBOUNDED
PRECEDING.

 | Impala SQL Language Reference | 550

Return type: Same as the input value, except for CHAR and VARCHAR arguments which produce a STRING result

Usage notes:

If you frequently run aggregate functions such as MIN(), MAX(), and COUNT(DISTINCT) on partition key
columns, consider enabling the OPTIMIZE_PARTITION_KEY_SCANS query option, which optimizes such queries.
This feature is available in Impala 2.5 and higher. See OPTIMIZE_PARTITION_KEY_SCANS Query Option (Impala
2.5 or higher only) on page 384 for the kinds of queries that this option applies to, and slight differences in how
partitions are evaluated when this query option is enabled.

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or
value at the bottom of any nested type hierarchy in the column. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM() and AVG() are computed using the numeric
R_NATIONKEY field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME
field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22

 | Impala SQL Language Reference | 551

EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------
+---------------+
| r_name | count | sum | avg | minimum | maximum |
 distinct_vals |
+-------------+-------+-----+------+-----------+----------------
+---------------+
| AFRICA | 5 | 50 | 10 | ALGERIA | MOZAMBIQUE | 5
 |
| AMERICA | 5 | 47 | 9.4 | ARGENTINA | UNITED STATES | 5
 |
| ASIA | 5 | 68 | 13.6 | CHINA | VIETNAM | 5
 |
| EUROPE | 5 | 77 | 15.4 | FRANCE | UNITED KINGDOM | 5
 |
| MIDDLE EAST | 5 | 58 | 11.6 | EGYPT | SAUDI ARABIA | 5
 |
+-------------+-------+-----+------+-----------+----------------
+---------------+

Examples:

-- Find the largest value for this column in the table.
select max(c1) from t1;
-- Find the largest value for this column from a subset of the table.
select max(c1) from t1 where month = 'January' and year = '2013';
-- Find the largest value from a set of numeric function results.
select max(length(s)) from t1;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, max(purchase_price) from store_stats group by month,
 year;
-- Filter the input to eliminate duplicates before performing the
 calculation.
select max(distinct x) from t1;

The following examples show how to use MAX() in an analytic context. They use a table containing integers from 1
to 10. Notice how the MAX() is reported for each input value, as opposed to the GROUP BY clause which condenses
the result set.

select x, property, max(x) over (partition by property) as max from int_t
 where property in ('odd','even');
+----+----------+-----+

 | Impala SQL Language Reference | 552

| x | property | max |
+----+----------+-----+
2	even	10
4	even	10
6	even	10
8	even	10
10	even	10
1	odd	9
3	odd	9
5	odd	9
7	odd	9
9	odd	9
+----+----------+-----+

Adding an ORDER BY clause lets you experiment with results that are cumulative or apply to a moving set of rows
(the “window”). The following examples use MAX() in an analytic context (that is, with an OVER() clause) to
display the smallest value of X encountered up to each row in the result set. The examples use two columns in the
ORDER BY clause to produce a sequence of values that rises and falls, to illustrate how the MAX() result only
increases or stays the same throughout each partition within the result set. The basic ORDER BY x clause implicitly
activates a window clause of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, which is
effectively the same as ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, therefore all of these
examples produce the same results:

select x, property,
 max(x) over (order by property, x desc) as 'maximum to this point'
from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | maximum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	7
3	prime	7
2	prime	7
9	square	9
4	square	9
1	square	9
+---+----------+-----------------------+

select x, property,
 max(x) over
 (
 order by property, x desc
 rows between unbounded preceding and current row
) as 'maximum to this point'
from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | maximum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	7
3	prime	7
2	prime	7
9	square	9
4	square	9
1	square	9
+---+----------+-----------------------+

select x, property,
 max(x) over
 (
 order by property, x desc
 range between unbounded preceding and current row

 | Impala SQL Language Reference | 553

) as 'maximum to this point'
from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | maximum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	7
3	prime	7
2	prime	7
9	square	9
4	square	9
1	square	9
+---+----------+-----------------------+

The following examples show how to construct a moving window, with a running maximum taking into account all
rows before and 1 row after the current row. Because of a restriction in the Impala RANGE syntax, this type of moving
window is possible with the ROWS BETWEEN clause but not the RANGE BETWEEN clause. Because of an extra
Impala restriction on the MAX() and MIN() functions in an analytic context, the lower bound must be UNBOUNDED
PRECEDING.

select x, property,
 max(x) over
 (
 order by property, x
 rows between unbounded preceding and 1 following
) as 'local maximum'
from int_t where property in ('prime','square');
+---+----------+---------------+
| x | property | local maximum |
+---+----------+---------------+
2	prime	3
3	prime	5
5	prime	7
7	prime	7
1	square	7
4	square	9
9	square	9
+---+----------+---------------+

-- Doesn't work because of syntax restriction on RANGE clause.
select x, property,
 max(x) over
 (
 order by property, x
 range between unbounded preceding and 1 following
) as 'local maximum'
from int_t where property in ('prime','square');
ERROR: AnalysisException: RANGE is only supported with both the lower and
 upper bounds UNBOUNDED or one UNBOUNDED and the other CURRENT ROW.

Related information:

Impala Analytic Functions on page 568, MIN Function on page 553, AVG Function on page 539

MIN Function

An aggregate function that returns the minimum value from a set of numbers. Opposite of the MAX function. Its single
argument can be numeric column, or the numeric result of a function or expression applied to the column value. Rows
with a NULL value for the specified column are ignored. If the table is empty, or all the values supplied to MIN are
NULL, MIN returns NULL.

 | Impala SQL Language Reference | 554

Syntax:

MIN([DISTINCT | ALL] expression) [OVER (analytic_clause)]

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Restrictions: In Impala 2.0 and higher, this function can be used as an analytic function, but with restrictions on
any window clause. For MAX() and MIN(), the window clause is only allowed if the start bound is UNBOUNDED
PRECEDING.

Return type: Same as the input value, except for CHAR and VARCHAR arguments which produce a STRING result

Usage notes:

If you frequently run aggregate functions such as MIN(), MAX(), and COUNT(DISTINCT) on partition key
columns, consider enabling the OPTIMIZE_PARTITION_KEY_SCANS query option, which optimizes such queries.
This feature is available in Impala 2.5 and higher. See OPTIMIZE_PARTITION_KEY_SCANS Query Option (Impala
2.5 or higher only) on page 384 for the kinds of queries that this option applies to, and slight differences in how
partitions are evaluated when this query option is enabled.

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or
value at the bottom of any nested type hierarchy in the column. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM() and AVG() are computed using the numeric
R_NATIONKEY field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME
field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17

 | Impala SQL Language Reference | 555

AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------
+---------------+
| r_name | count | sum | avg | minimum | maximum |
 distinct_vals |
+-------------+-------+-----+------+-----------+----------------
+---------------+
| AFRICA | 5 | 50 | 10 | ALGERIA | MOZAMBIQUE | 5
 |
| AMERICA | 5 | 47 | 9.4 | ARGENTINA | UNITED STATES | 5
 |
| ASIA | 5 | 68 | 13.6 | CHINA | VIETNAM | 5
 |
| EUROPE | 5 | 77 | 15.4 | FRANCE | UNITED KINGDOM | 5
 |
| MIDDLE EAST | 5 | 58 | 11.6 | EGYPT | SAUDI ARABIA | 5
 |
+-------------+-------+-----+------+-----------+----------------
+---------------+

Examples:

-- Find the smallest value for this column in the table.
select min(c1) from t1;
-- Find the smallest value for this column from a subset of the table.
select min(c1) from t1 where month = 'January' and year = '2013';
-- Find the smallest value from a set of numeric function results.
select min(length(s)) from t1;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, min(purchase_price) from store_stats group by month,
 year;
-- Filter the input to eliminate duplicates before performing the
 calculation.

 | Impala SQL Language Reference | 556

select min(distinct x) from t1;

The following examples show how to use MIN() in an analytic context. They use a table containing integers from 1
to 10. Notice how the MIN() is reported for each input value, as opposed to the GROUP BY clause which condenses
the result set.

select x, property, min(x) over (partition by property) as min from int_t
 where property in ('odd','even');
+----+----------+-----+
| x | property | min |
+----+----------+-----+
2	even	2
4	even	2
6	even	2
8	even	2
10	even	2
1	odd	1
3	odd	1
5	odd	1
7	odd	1
9	odd	1
+----+----------+-----+

Adding an ORDER BY clause lets you experiment with results that are cumulative or apply to a moving set of rows
(the “window”). The following examples use MIN() in an analytic context (that is, with an OVER() clause) to
display the smallest value of X encountered up to each row in the result set. The examples use two columns in the
ORDER BY clause to produce a sequence of values that rises and falls, to illustrate how the MIN() result only
decreases or stays the same throughout each partition within the result set. The basic ORDER BY x clause implicitly
activates a window clause of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, which is
effectively the same as ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, therefore all of these
examples produce the same results:

select x, property, min(x) over (order by property, x desc) as 'minimum to
 this point'
 from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | minimum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	5
3	prime	3
2	prime	2
9	square	2
4	square	2
1	square	1
+---+----------+-----------------------+

select x, property,
 min(x) over
 (
 order by property, x desc
 range between unbounded preceding and current row
) as 'minimum to this point'
from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | minimum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	5
3	prime	3
2	prime	2

 | Impala SQL Language Reference | 557

9	square	2
4	square	2
1	square	1
+---+----------+-----------------------+

select x, property,
 min(x) over
 (
 order by property, x desc
 rows between unbounded preceding and current row
) as 'minimum to this point'
from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | minimum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	5
3	prime	3
2	prime	2
9	square	2
4	square	2
1	square	1
+---+----------+-----------------------+

The following examples show how to construct a moving window, with a running minimum taking into account all
rows before and 1 row after the current row. Because of a restriction in the Impala RANGE syntax, this type of moving
window is possible with the ROWS BETWEEN clause but not the RANGE BETWEEN clause. Because of an extra
Impala restriction on the MAX() and MIN() functions in an analytic context, the lower bound must be UNBOUNDED
PRECEDING.

select x, property,
 min(x) over
 (
 order by property, x desc
 rows between unbounded preceding and 1 following
) as 'local minimum'
from int_t where property in ('prime','square');
+---+----------+---------------+
| x | property | local minimum |
+---+----------+---------------+
7	prime	5
5	prime	3
3	prime	2
2	prime	2
9	square	2
4	square	1
1	square	1
+---+----------+---------------+

-- Doesn't work because of syntax restriction on RANGE clause.
select x, property,
 min(x) over
 (
 order by property, x desc
 range between unbounded preceding and 1 following
) as 'local minimum'
from int_t where property in ('prime','square');
ERROR: AnalysisException: RANGE is only supported with both the lower and
 upper bounds UNBOUNDED or one UNBOUNDED and the other CURRENT ROW.

Related information:

 | Impala SQL Language Reference | 558

Impala Analytic Functions on page 568, MAX Function on page 549, AVG Function on page 539

NDV Function

An aggregate function that returns an approximate value similar to the result of COUNT(DISTINCT col), the
“number of distinct values”. It is much faster than the combination of COUNT and DISTINCT, and uses a constant
amount of memory and thus is less memory-intensive for columns with high cardinality.

Syntax:

NDV([DISTINCT | ALL] expression)

Usage notes:

This is the mechanism used internally by the COMPUTE STATS statement for computing the number of distinct
values in a column.

Because this number is an estimate, it might not reflect the precise number of different values in the column,
especially if the cardinality is very low or very high. If the estimated number is higher than the number of rows in the
table, Impala adjusts the value internally during query planning.

Return type: DOUBLE in Impala 2.0 and higher; STRING in earlier releases

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or
value at the bottom of any nested type hierarchy in the column. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM() and AVG() are computed using the numeric
R_NATIONKEY field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME
field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1

 | Impala SQL Language Reference | 559

AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------
+---------------+
| r_name | count | sum | avg | minimum | maximum |
 distinct_vals |
+-------------+-------+-----+------+-----------+----------------
+---------------+
| AFRICA | 5 | 50 | 10 | ALGERIA | MOZAMBIQUE | 5
 |
| AMERICA | 5 | 47 | 9.4 | ARGENTINA | UNITED STATES | 5
 |
| ASIA | 5 | 68 | 13.6 | CHINA | VIETNAM | 5
 |
| EUROPE | 5 | 77 | 15.4 | FRANCE | UNITED KINGDOM | 5
 |
| MIDDLE EAST | 5 | 58 | 11.6 | EGYPT | SAUDI ARABIA | 5
 |
+-------------+-------+-----+------+-----------+----------------
+---------------+

Restrictions:

This function cannot be used in an analytic context. That is, the OVER() clause is not allowed at all with this
function.

Examples:

The following example queries a billion-row table to illustrate the relative performance of COUNT(DISTINCT) and
NDV(). It shows how COUNT(DISTINCT) gives a precise answer, but is inefficient for large-scale data where an
approximate result is sufficient. The NDV() function gives an approximate result but is much faster.

select count(distinct col1) from sample_data;

 | Impala SQL Language Reference | 560

+---------------------+
| count(distinct col1)|
+---------------------+
| 100000 |
+---------------------+
Fetched 1 row(s) in 20.13s

select cast(ndv(col1) as bigint) as col1 from sample_data;
+----------+
| col1 |
+----------+
| 139017 |
+----------+
Fetched 1 row(s) in 8.91s

The following example shows how you can code multiple NDV() calls in a single query, to easily learn which
columns have substantially more or fewer distinct values. This technique is faster than running a sequence of queries
with COUNT(DISTINCT) calls.

select cast(ndv(col1) as bigint) as col1, cast(ndv(col2) as bigint) as col2,
 cast(ndv(col3) as bigint) as col3, cast(ndv(col4) as bigint) as col4
 from sample_data;
+----------+-----------+------------+-----------+
| col1 | col2 | col3 | col4 |
+----------+-----------+------------+-----------+
| 139017 | 282 | 46 | 145636240 |
+----------+-----------+------------+-----------+
Fetched 1 row(s) in 34.97s

select count(distinct col1) from sample_data;
+---------------------+
| count(distinct col1)|
+---------------------+
| 100000 |
+---------------------+
Fetched 1 row(s) in 20.13s

select count(distinct col2) from sample_data;
+----------------------+
| count(distinct col2) |
+----------------------+
| 278 |
+----------------------+
Fetched 1 row(s) in 20.09s

select count(distinct col3) from sample_data;
+-----------------------+
| count(distinct col3) |
+-----------------------+
| 46 |
+-----------------------+
Fetched 1 row(s) in 19.12s

select count(distinct col4) from sample_data;
+----------------------+
| count(distinct col4) |
+----------------------+
| 147135880 |
+----------------------+
Fetched 1 row(s) in 266.95s

 | Impala SQL Language Reference | 561

STDDEV, STDDEV_SAMP, STDDEV_POP Functions

An aggregate function that standard deviation of a set of numbers.

Syntax:

{ STDDEV | STDDEV_SAMP | STDDEV_POP } ([DISTINCT | ALL] expression)

This function works with any numeric data type.

Return type: DOUBLE in Impala 2.0 and higher; STRING in earlier releases

This function is typically used in mathematical formulas related to probability distributions.

The STDDEV_POP() and STDDEV_SAMP() functions compute the population standard deviation and sample
standard deviation, respectively, of the input values. (STDDEV() is an alias for STDDEV_SAMP().) Both functions
evaluate all input rows matched by the query. The difference is that STDDEV_SAMP() is scaled by 1/(N-1) while
STDDEV_POP() is scaled by 1/N.

If no input rows match the query, the result of any of these functions is NULL. If a single input row matches the query,
the result of any of these functions is "0.0".

Examples:

This example demonstrates how STDDEV() and STDDEV_SAMP() return the same result, while STDDEV_POP()
uses a slightly different calculation to reflect that the input data is considered part of a larger “population”.

[localhost:21000] > select stddev(score) from test_scores;
+---------------+
| stddev(score) |
+---------------+
| 28.5 |
+---------------+
[localhost:21000] > select stddev_samp(score) from test_scores;
+--------------------+
| stddev_samp(score) |
+--------------------+
| 28.5 |
+--------------------+
[localhost:21000] > select stddev_pop(score) from test_scores;
+-------------------+
| stddev_pop(score) |
+-------------------+
| 28.4858 |
+-------------------+

This example demonstrates that, because the return value of these aggregate functions is a STRING, you must
currently convert the result with CAST.

[localhost:21000] > create table score_stats as select cast(stddev(score) as
 decimal(7,4)) `standard_deviation`, cast(variance(score) as decimal(7,4))
 `variance` from test_scores;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc score_stats;
+--------------------+--------------+---------+
| name | type | comment |
+--------------------+--------------+---------+
| standard_deviation | decimal(7,4) | |
| variance | decimal(7,4) | |
+--------------------+--------------+---------+

http://en.wikipedia.org/wiki/Standard_deviation

 | Impala SQL Language Reference | 562

Restrictions:

This function cannot be used in an analytic context. That is, the OVER() clause is not allowed at all with this
function.

Related information:

The STDDEV(), STDDEV_POP(), and STDDEV_SAMP() functions compute the standard deviation (square root
of the variance) based on the results of VARIANCE(), VARIANCE_POP(), and VARIANCE_SAMP() respectively.
See VARIANCE, VARIANCE_SAMP, VARIANCE_POP, VAR_SAMP, VAR_POP Functions on page 566 for details
about the variance property.

SUM Function

An aggregate function that returns the sum of a set of numbers. Its single argument can be numeric column, or the
numeric result of a function or expression applied to the column value. Rows with a NULL value for the specified
column are ignored. If the table is empty, or all the values supplied to MIN are NULL, SUM returns NULL.

Syntax:

SUM([DISTINCT | ALL] expression) [OVER (analytic_clause)]

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Return type: BIGINT for integer arguments, DOUBLE for floating-point arguments

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or
value at the bottom of any nested type hierarchy in the column. See Complex Types (Impala 2.3 or higher only) on
page 152 for details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM() and AVG() are computed using the numeric
R_NATIONKEY field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME
field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15

 | Impala SQL Language Reference | 563

AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------
+---------------+
| r_name | count | sum | avg | minimum | maximum |
 distinct_vals |
+-------------+-------+-----+------+-----------+----------------
+---------------+
| AFRICA | 5 | 50 | 10 | ALGERIA | MOZAMBIQUE | 5
 |
| AMERICA | 5 | 47 | 9.4 | ARGENTINA | UNITED STATES | 5
 |
| ASIA | 5 | 68 | 13.6 | CHINA | VIETNAM | 5
 |
| EUROPE | 5 | 77 | 15.4 | FRANCE | UNITED KINGDOM | 5
 |
| MIDDLE EAST | 5 | 58 | 11.6 | EGYPT | SAUDI ARABIA | 5
 |
+-------------+-------+-----+------+-----------+----------------
+---------------+

Examples:

The following example shows how to use SUM() to compute the total for all the values in the table, a subset of
values, or the sum for each combination of values in the GROUP BY clause:

-- Total all the values for this column in the table.
select sum(c1) from t1;
-- Find the total for this column from a subset of the table.
select sum(c1) from t1 where month = 'January' and year = '2013';

 | Impala SQL Language Reference | 564

-- Find the total from a set of numeric function results.
select sum(length(s)) from t1;
-- Often used with functions that return predefined values to compute a
 score.
select sum(case when grade = 'A' then 1.0 when grade = 'B' then 0.75 else 0)
 as class_honors from test_scores;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, sum(purchase_price) from store_stats group by month,
 year;
-- Filter the input to eliminate duplicates before performing the
 calculation.
select sum(distinct x) from t1;

The following examples show how to use SUM() in an analytic context. They use a table containing integers from 1
to 10. Notice how the SUM() is reported for each input value, as opposed to the GROUP BY clause which condenses
the result set.

select x, property, sum(x) over (partition by property) as sum from int_t
 where property in ('odd','even');
+----+----------+-----+
| x | property | sum |
+----+----------+-----+
2	even	30
4	even	30
6	even	30
8	even	30
10	even	30
1	odd	25
3	odd	25
5	odd	25
7	odd	25
9	odd	25
+----+----------+-----+

Adding an ORDER BY clause lets you experiment with results that are cumulative or apply to a moving set of rows
(the “window”). The following examples use SUM() in an analytic context (that is, with an OVER() clause) to
produce a running total of all the even values, then a running total of all the odd values. The basic ORDER BY x
clause implicitly activates a window clause of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW, which is effectively the same as ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,
therefore all of these examples produce the same results:

select x, property,
 sum(x) over (partition by property order by x) as 'cumulative total'
 from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative total |
+----+----------+------------------+
2	even	2
4	even	6
6	even	12
8	even	20
10	even	30
1	odd	1
3	odd	4
5	odd	9
7	odd	16
9	odd	25
+----+----------+------------------+

select x, property,
 sum(x) over

 | Impala SQL Language Reference | 565

 (
 partition by property
 order by x
 range between unbounded preceding and current row
) as 'cumulative total'
from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative total |
+----+----------+------------------+
2	even	2
4	even	6
6	even	12
8	even	20
10	even	30
1	odd	1
3	odd	4
5	odd	9
7	odd	16
9	odd	25
+----+----------+------------------+

select x, property,
 sum(x) over
 (
 partition by property
 order by x
 rows between unbounded preceding and current row
) as 'cumulative total'
 from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative total |
+----+----------+------------------+
2	even	2
4	even	6
6	even	12
8	even	20
10	even	30
1	odd	1
3	odd	4
5	odd	9
7	odd	16
9	odd	25
+----+----------+------------------+

Changing the direction of the ORDER BY clause causes the intermediate results of the cumulative total to be
calculated in a different order:

select sum(x) over (partition by property order by x desc) as 'cumulative
 total'
 from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative total |
+----+----------+------------------+
10	even	10
8	even	18
6	even	24
4	even	28
2	even	30
9	odd	9
7	odd	16
5	odd	21
3	odd	24
1	odd	25

 | Impala SQL Language Reference | 566

+----+----------+------------------+

The following examples show how to construct a moving window, with a running total taking into account 1 row
before and 1 row after the current row, within the same partition (all the even values or all the odd values). Because of
a restriction in the Impala RANGE syntax, this type of moving window is possible with the ROWS BETWEEN clause
but not the RANGE BETWEEN clause:

select x, property,
 sum(x) over
 (
 partition by property
 order by x
 rows between 1 preceding and 1 following
) as 'moving total'
 from int_t where property in ('odd','even');
+----+----------+--------------+
| x | property | moving total |
+----+----------+--------------+
2	even	6
4	even	12
6	even	18
8	even	24
10	even	18
1	odd	4
3	odd	9
5	odd	15
7	odd	21
9	odd	16
+----+----------+--------------+

-- Doesn't work because of syntax restriction on RANGE clause.
select x, property,
 sum(x) over
 (
 partition by property
 order by x
 range between 1 preceding and 1 following
) as 'moving total'
from int_t where property in ('odd','even');
ERROR: AnalysisException: RANGE is only supported with both the lower and
 upper bounds UNBOUNDED or one UNBOUNDED and the other CURRENT ROW.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and
distributed queries can perform these operations in different order for each query, results can vary slightly for
aggregate function calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECIMAL data type for such operations instead of FLOAT or DOUBLE.

Related information:

Impala Analytic Functions on page 568

VARIANCE, VARIANCE_SAMP, VARIANCE_POP, VAR_SAMP, VAR_POP Functions

An aggregate function that returns the variance of a set of numbers. This is a mathematical property that signifies
how far the values spread apart from the mean. The return value can be zero (if the input is a single value, or a set of
identical values), or a positive number otherwise.

http://en.wikipedia.org/wiki/Variance

 | Impala SQL Language Reference | 567

Syntax:

{ VARIANCE | VAR[IANCE]_SAMP | VAR[IANCE]_POP } ([DISTINCT |
 ALL] expression)

This function works with any numeric data type.

Return type: DOUBLE in Impala 2.0 and higher; STRING in earlier releases

This function is typically used in mathematical formulas related to probability distributions.

The VARIANCE_SAMP() and VARIANCE_POP() functions compute the sample variance and population variance,
respectively, of the input values. (VARIANCE() is an alias for VARIANCE_SAMP().) Both functions evaluate
all input rows matched by the query. The difference is that STDDEV_SAMP() is scaled by 1/(N-1) while
STDDEV_POP() is scaled by 1/N.

The functions VAR_SAMP() and VAR_POP() are the same as VARIANCE_SAMP() and VARIANCE_POP(),
respectively. These aliases are available in Impala 2.0 and later.

If no input rows match the query, the result of any of these functions is NULL. If a single input row matches the query,
the result of any of these functions is "0.0".

Examples:

This example demonstrates how VARIANCE() and VARIANCE_SAMP() return the same result, while
VARIANCE_POP() uses a slightly different calculation to reflect that the input data is considered part of a larger
“population”.

[localhost:21000] > select variance(score) from test_scores;
+-----------------+
| variance(score) |
+-----------------+
| 812.25 |
+-----------------+
[localhost:21000] > select variance_samp(score) from test_scores;
+----------------------+
| variance_samp(score) |
+----------------------+
| 812.25 |
+----------------------+
[localhost:21000] > select variance_pop(score) from test_scores;
+---------------------+
| variance_pop(score) |
+---------------------+
| 811.438 |
+---------------------+

This example demonstrates that, because the return value of these aggregate functions is a STRING, you convert the
result with CAST if you need to do further calculations as a numeric value.

[localhost:21000] > create table score_stats as select cast(stddev(score) as
 decimal(7,4)) `standard_deviation`, cast(variance(score) as decimal(7,4))
 `variance` from test_scores;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc score_stats;
+--------------------+--------------+---------+
| name | type | comment |
+--------------------+--------------+---------+
| standard_deviation | decimal(7,4) | |
| variance | decimal(7,4) | |

 | Impala SQL Language Reference | 568

+--------------------+--------------+---------+

Restrictions:

This function cannot be used in an analytic context. That is, the OVER() clause is not allowed at all with this
function.

Related information:

The STDDEV(), STDDEV_POP(), and STDDEV_SAMP() functions compute the standard deviation (square root
of the variance) based on the results of VARIANCE(), VARIANCE_POP(), and VARIANCE_SAMP() respectively.
See STDDEV, STDDEV_SAMP, STDDEV_POP Functions on page 561 for details about the standard deviation
property.

Impala Analytic Functions

Analytic functions (also known as window functions) are a special category of built-in functions. Like aggregate
functions, they examine the contents of multiple input rows to compute each output value. However, rather than being
limited to one result value per GROUP BY group, they operate on windows where the input rows are ordered and
grouped using flexible conditions expressed through an OVER() clause.

Added in: Impala 2.0.0

Some functions, such as LAG() and RANK(), can only be used in this analytic context. Some aggregate functions do
double duty: when you call the aggregation functions such as MAX(), SUM(), AVG(), and so on with an OVER()
clause, they produce an output value for each row, based on computations across other rows in the window.

Although analytic functions often compute the same value you would see from an aggregate function in a GROUP BY
query, the analytic functions produce a value for each row in the result set rather than a single value for each group.
This flexibility lets you include additional columns in the SELECT list, offering more opportunities for organizing
and filtering the result set.

Analytic function calls are only allowed in the SELECT list and in the outermost ORDER BY clause of the query.
During query processing, analytic functions are evaluated after other query stages such as joins, WHERE, and GROUP
BY,

The rows that are part of each partition are analyzed by computations across an ordered or unordered set of rows. For
example, COUNT() and SUM() might be applied to all the rows in the partition, in which case the order of analysis
does not matter. The ORDER BY clause might be used inside the OVER() clause to defines the ordering that applies
to functions such as LAG() and FIRST_VALUE().

Analytic functions are frequently used in fields such as finance and science to provide trend, outlier, and bucketed
analysis for large data sets. You might also see the term “window functions” in database literature, referring to the
sequence of rows (the “window”) that the function call applies to, particularly when the OVER clause includes a ROWS
or RANGE keyword.

The following sections describe the analytic query clauses and the pure analytic functions provided by Impala. For
usage information about aggregate functions in an analytic context, see Impala Aggregate Functions on page 537.

OVER Clause

The OVER clause is required for calls to pure analytic functions such as LEAD(), RANK(), and FIRST_VALUE().
When you include an OVER clause with calls to aggregate functions such as MAX(), COUNT(), or SUM(), they
operate as analytic functions.

Syntax:

function(args) OVER([partition_by_clause] [order_by_clause [window_clause]])

partition_by_clause ::= PARTITION BY expr [, expr ...]
order_by_clause ::= ORDER BY expr [ASC | DESC] [NULLS FIRST | NULLS LAST]
 [, expr [ASC | DESC] [NULLS FIRST | NULLS LAST] ...]

 | Impala SQL Language Reference | 569

window_clause: See Window Clause

PARTITION BY clause:

The PARTITION BY clause acts much like the GROUP BY clause in the outermost block of a query. It divides the
rows into groups containing identical values in one or more columns. These logical groups are known as partitions.
Throughout the discussion of analytic functions, “partitions” refers to the groups produced by the PARTITION BY
clause, not to partitioned tables. However, note the following limitation that applies specifically to analytic function
calls involving partitioned tables.

In queries involving both analytic functions and partitioned tables, partition pruning only occurs for columns named
in the PARTITION BY clause of the analytic function call. For example, if an analytic function query has a clause
such as WHERE year=2016, the way to make the query prune all other YEAR partitions is to include PARTITION
BY yearin the analytic function call; for example, OVER (PARTITION BY year,other_columns
other_analytic_clauses).

The sequence of results from an analytic function “resets” for each new partition in the result set. That is, the set of
preceding or following rows considered by the analytic function always come from a single partition. Any MAX(),
SUM(), ROW_NUMBER(), and so on apply to each partition independently. Omit the PARTITION BY clause to
apply the analytic operation to all the rows in the table.

ORDER BY clause:

The ORDER BY clause works much like the ORDER BY clause in the outermost block of a query. It defines the order
in which rows are evaluated for the entire input set, or for each group produced by a PARTITION BY clause. You
can order by one or multiple expressions, and for each expression optionally choose ascending or descending order
and whether nulls come first or last in the sort order. Because this ORDER BY clause only defines the order in which
rows are evaluated, if you want the results to be output in a specific order, also include an ORDER BY clause in the
outer block of the query.

When the ORDER BY clause is omitted, the analytic function applies to all items in the group produced by the
PARTITION BY clause. When the ORDER BY clause is included, the analysis can apply to all or a subset of the
items in the group, depending on the optional window clause.

The order in which the rows are analyzed is only defined for those columns specified in ORDER BY clauses.

One difference between the analytic and outer uses of the ORDER BY clause: inside the OVER clause, ORDER BY 1
or other integer value is interpreted as a constant sort value (effectively a no-op) rather than referring to column 1.

Window clause:

The window clause is only allowed in combination with an ORDER BY clause. If the ORDER BY clause is specified
but the window clause is not, the default window is RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW. See Window Clause on page 570 for full details.

HBase considerations:

Because HBase tables are optimized for single-row lookups rather than full scans, analytic functions using the
OVER() clause are not recommended for HBase tables. Although such queries work, their performance is lower than
on comparable tables using HDFS data files.

Parquet considerations:

Analytic functions are very efficient for Parquet tables. The data that is examined during evaluation of the OVER()
clause comes from a specified set of columns, and the values for each column are arranged sequentially within each
data file.

Text table considerations:

Analytic functions are convenient to use with text tables for exploratory business intelligence. When the volume of
data is substantial, prefer to use Parquet tables for performance-critical analytic queries.

Added in: Impala 2.0.0

Examples:

 | Impala SQL Language Reference | 570

The following example shows how to synthesize a numeric sequence corresponding to all the rows in a table. The
new table has the same columns as the old one, plus an additional column ID containing the integers 1, 2, 3, and so
on, corresponding to the order of a TIMESTAMP column in the original table.

CREATE TABLE events_with_id AS
 SELECT
 row_number() OVER (ORDER BY date_and_time) AS id,
 c1, c2, c3, c4
 FROM events;

The following example shows how to determine the number of rows containing each value for a column. Unlike a
corresponding GROUP BY query, this one can analyze a single column and still return all values (not just the distinct
ones) from the other columns.

SELECT x, y, z,
 count() OVER (PARTITION BY x) AS how_many_x
FROM t1;

Restrictions:

You cannot directly combine the DISTINCT operator with analytic function calls. You can put the analytic function
call in a WITH clause or an inline view, and apply the DISTINCT operator to its result set.

WITH t1 AS (SELECT x, sum(x) OVER (PARTITION BY x) AS total FROM t1)
 SELECT DISTINCT x, total FROM t1;

Window Clause

Certain analytic functions accept an optional window clause, which makes the function analyze only certain rows
“around” the current row rather than all rows in the partition. For example, you can get a moving average by
specifying some number of preceding and following rows, or a running count or running total by specifying all rows
up to the current position. This clause can result in different analytic results for rows within the same partition.

The window clause is supported with the AVG(), COUNT(), FIRST_VALUE(), LAST_VALUE(), and SUM()
functions. For MAX() and MIN(), the window clause only allowed if the start bound is UNBOUNDED PRECEDING

Syntax:

ROWS BETWEEN [{ m | UNBOUNDED } PRECEDING | CURRENT ROW] [AND [CURRENT ROW
 | { UNBOUNDED | n } FOLLOWING]]
RANGE BETWEEN [{m | UNBOUNDED } PRECEDING | CURRENT ROW] [AND [CURRENT ROW
 | { UNBOUNDED | n } FOLLOWING]]

ROWS BETWEEN defines the size of the window in terms of the indexes of the rows in the result set. The size of the
window is predictable based on the clauses the position within the result set.

RANGE BETWEEN does not currently support numeric arguments to define a variable-size sliding window.

Currently, Impala supports only some combinations of arguments to the RANGE clause:

• RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW (the default when ORDER BY is
specified and the window clause is omitted)

• RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
• RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

When RANGE is used, CURRENT ROW includes not just the current row but all rows that are tied with the current row
based on the ORDER BY expressions.

Added in: Impala 2.0.0

Examples:

 | Impala SQL Language Reference | 571

The following examples show financial data for a fictional stock symbol JDR. The closing price moves up and down
each day.

create table stock_ticker (stock_symbol string, closing_price decimal(8,2),
 closing_date timestamp);
...load some data...
select * from stock_ticker order by stock_symbol, closing_date
+--------------+---------------+---------------------+
| stock_symbol | closing_price | closing_date |
+--------------+---------------+---------------------+
JDR	12.86	2014-10-02 00:00:00
JDR	12.89	2014-10-03 00:00:00
JDR	12.94	2014-10-04 00:00:00
JDR	12.55	2014-10-05 00:00:00
JDR	14.03	2014-10-06 00:00:00
JDR	14.75	2014-10-07 00:00:00
JDR	13.98	2014-10-08 00:00:00
+--------------+---------------+---------------------+

The queries use analytic functions with window clauses to compute moving averages of the closing price. For
example, ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING produces an average of the value from a 3-day
span, producing a different value for each row. The first row, which has no preceding row, only gets averaged with
the row following it. If the table contained more than one stock symbol, the PARTITION BY clause would limit the
window for the moving average to only consider the prices for a single stock.

select stock_symbol, closing_date, closing_price,
 avg(closing_price) over (partition by stock_symbol order by closing_date
 rows between 1 preceding and 1 following) as moving_average
 from stock_ticker;
+--------------+---------------------+---------------+----------------+
| stock_symbol | closing_date | closing_price | moving_average |
+--------------+---------------------+---------------+----------------+
JDR	2014-10-02 00:00:00	12.86	12.87
JDR	2014-10-03 00:00:00	12.89	12.89
JDR	2014-10-04 00:00:00	12.94	12.79
JDR	2014-10-05 00:00:00	12.55	13.17
JDR	2014-10-06 00:00:00	14.03	13.77
JDR	2014-10-07 00:00:00	14.75	14.25
JDR	2014-10-08 00:00:00	13.98	14.36
+--------------+---------------------+---------------+----------------+

The clause ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW produces a cumulative moving
average, from the earliest data up to the value for each day.

select stock_symbol, closing_date, closing_price,
 avg(closing_price) over (partition by stock_symbol order by closing_date
 rows between unbounded preceding and current row) as moving_average
 from stock_ticker;
+--------------+---------------------+---------------+----------------+
| stock_symbol | closing_date | closing_price | moving_average |
+--------------+---------------------+---------------+----------------+
JDR	2014-10-02 00:00:00	12.86	12.86
JDR	2014-10-03 00:00:00	12.89	12.87
JDR	2014-10-04 00:00:00	12.94	12.89
JDR	2014-10-05 00:00:00	12.55	12.81
JDR	2014-10-06 00:00:00	14.03	13.05
JDR	2014-10-07 00:00:00	14.75	13.33
JDR	2014-10-08 00:00:00	13.98	13.42
+--------------+---------------------+---------------+----------------+

 | Impala SQL Language Reference | 572

AVG Function - Analytic Context

You can include an OVER clause with a call to this function to use it as an analytic function. See AVG Function on
page 539 for details and examples.

COUNT Function - Analytic Context

You can include an OVER clause with a call to this function to use it as an analytic function. See COUNT Function on
page 543 for details and examples.

CUME_DIST Function (Impala 2.3 or higher only)

Returns the cumulative distribution of a value. The value for each row in the result set is greater than 0 and less than
or equal to 1.

Syntax:

CUME_DIST (expr)
 OVER ([partition_by_clause] order_by_clause)

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

Within each partition of the result set, the CUME_DIST() value represents an ascending sequence that ends at 1.
Each value represents the proportion of rows in the partition whose values are less than or equal to the value in the
current row.

If the sequence of input values contains ties, the CUME_DIST() results are identical for the tied values.

Impala only supports the CUME_DIST() function in an analytic context, not as a regular aggregate function.

Examples:

This example uses a table with 9 rows. The CUME_DIST() function evaluates the entire table because there is no
PARTITION BY clause, with the rows ordered by the weight of the animal. the sequence of values shows that 1/9 of
the values are less than or equal to the lightest animal (mouse), 2/9 of the values are less than or equal to the second-
lightest animal, and so on up to the heaviest animal (elephant), where 9/9 of the rows are less than or equal to its
weight.

create table animals (name string, kind string, kilos decimal(9,3));
insert into animals values
 ('Elephant', 'Mammal', 4000), ('Giraffe', 'Mammal', 1200), ('Mouse',
 'Mammal', 0.020),
 ('Condor', 'Bird', 15), ('Horse', 'Mammal', 500), ('Owl', 'Bird', 2.5),
 ('Ostrich', 'Bird', 145), ('Polar bear', 'Mammal', 700), ('Housecat',
 'Mammal', 5);

select name, cume_dist() over (order by kilos) from animals;
+------------+-----------------------+
| name | cume_dist() OVER(...) |
+------------+-----------------------+
Elephant	1
Giraffe	0.8888888888888888
Polar bear	0.7777777777777778
Horse	0.6666666666666666
Ostrich	0.5555555555555556
Condor	0.4444444444444444
Housecat	0.3333333333333333
Owl	0.2222222222222222
Mouse	0.1111111111111111
+------------+-----------------------+

 | Impala SQL Language Reference | 573

Using a PARTITION BY clause produces a separate sequence for each partition group, in this case one for mammals
and one for birds. Because there are 3 birds and 6 mammals, the sequence illustrates how 1/3 of the “Bird” rows
have a kilos value that is less than or equal to the lightest bird, 1/6 of the “Mammal” rows have a kilos value
that is less than or equal to the lightest mammal, and so on until both the heaviest bird and heaviest mammal have a
CUME_DIST() value of 1.

select name, kind, cume_dist() over (partition by kind order by kilos) from
 animals
+------------+--------+-----------------------+
| name | kind | cume_dist() OVER(...) |
+------------+--------+-----------------------+
Ostrich	Bird	1
Condor	Bird	0.6666666666666666
Owl	Bird	0.3333333333333333
Elephant	Mammal	1
Giraffe	Mammal	0.8333333333333334
Polar bear	Mammal	0.6666666666666666
Horse	Mammal	0.5
Housecat	Mammal	0.3333333333333333
Mouse	Mammal	0.1666666666666667
+------------+--------+-----------------------+

We can reverse the ordering within each partition group by using an ORDER BY ... DESC clause within the
OVER() clause. Now the lightest (smallest value of kilos) animal of each kind has a CUME_DIST() value of 1.

select name, kind, cume_dist() over (partition by kind order by kilos desc)
 from animals
+------------+--------+-----------------------+
| name | kind | cume_dist() OVER(...) |
+------------+--------+-----------------------+
Owl	Bird	1
Condor	Bird	0.6666666666666666
Ostrich	Bird	0.3333333333333333
Mouse	Mammal	1
Housecat	Mammal	0.8333333333333334
Horse	Mammal	0.6666666666666666
Polar bear	Mammal	0.5
Giraffe	Mammal	0.3333333333333333
Elephant	Mammal	0.1666666666666667
+------------+--------+-----------------------+

The following example manufactures some rows with identical values in the kilos column, to demonstrate how
the results look in case of tie values. For simplicity, it only shows the CUME_DIST() sequence for the “Bird” rows.
Now with 3 rows all with a value of 15, all of those rows have the same CUME_DIST() value. 4/5 of the rows have a
value for kilos that is less than or equal to 15.

insert into animals values ('California Condor', 'Bird', 15), ('Andean
 Condor', 'Bird', 15)

select name, kind, cume_dist() over (order by kilos) from animals where kind
 = 'Bird';
+-------------------+------+-----------------------+
| name | kind | cume_dist() OVER(...) |
+-------------------+------+-----------------------+
Ostrich	Bird	1
Condor	Bird	0.8
California Condor	Bird	0.8
Andean Condor	Bird	0.8
Owl	Bird	0.2
+-------------------+------+-----------------------+

 | Impala SQL Language Reference | 574

The following example shows how to use an ORDER BY clause in the outer block to order the result set in case of
ties. Here, all the “Bird” rows are together, then in descending order by the result of the CUME_DIST() function, and
all tied CUME_DIST() values are ordered by the animal name.

select name, kind, cume_dist() over (partition by kind order by kilos) as
 ordering
 from animals
where
 kind = 'Bird'
order by kind, ordering desc, name;
+-------------------+------+----------+
| name | kind | ordering |
+-------------------+------+----------+
Ostrich	Bird	1
Andean Condor	Bird	0.8
California Condor	Bird	0.8
Condor	Bird	0.8
Owl	Bird	0.2
+-------------------+------+----------+

DENSE_RANK Function

Returns an ascending sequence of integers, starting with 1. The output sequence produces duplicate integers for
duplicate values of the ORDER BY expressions. After generating duplicate output values for the “tied” input values,
the function continues the sequence with the next higher integer. Therefore, the sequence contains duplicates but no
gaps when the input contains duplicates. Starts the sequence over for each group produced by the PARTITIONED
BY clause.

Syntax:

DENSE_RANK() OVER([partition_by_clause] order_by_clause)

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is not allowed.

Usage notes:

Often used for top-N and bottom-N queries. For example, it could produce a “top 10” report including all the items
with the 10 highest values, even if several items tied for 1st place.

Similar to ROW_NUMBER and RANK. These functions differ in how they treat duplicate combinations of values.

Added in: Impala 2.0.0

Examples:

The following example demonstrates how the DENSE_RANK() function identifies where each value “places” in the
result set, producing the same result for duplicate values, but with a strict sequence from 1 to the number of groups.
For example, when results are ordered by the X column, both 1 values are tied for first; both 2 values are tied for
second; and so on.

select x, dense_rank() over(order by x) as rank, property from int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
1	1	square
1	1	odd
2	2	even
2	2	prime
3	3	prime
3	3	odd
4	4	even
4	4	square
5	5	odd

 | Impala SQL Language Reference | 575

5	5	prime
6	6	even
6	6	perfect
7	7	lucky
7	7	lucky
7	7	lucky
7	7	odd
7	7	prime
8	8	even
9	9	square
9	9	odd
10	10	round
10	10	even
+----+------+----------+

The following examples show how the DENSE_RANK() function is affected by the PARTITION property within the
ORDER BY clause.

Partitioning by the PROPERTY column groups all the even, odd, and so on values together, and DENSE_RANK()
returns the place of each value within the group, producing several ascending sequences.

select x, dense_rank() over(partition by property order by x) as rank,
 property from int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
2	1	even
4	2	even
6	3	even
8	4	even
10	5	even
7	1	lucky
7	1	lucky
7	1	lucky
1	1	odd
3	2	odd
5	3	odd
7	4	odd
9	5	odd
6	1	perfect
2	1	prime
3	2	prime
5	3	prime
7	4	prime
10	1	round
1	1	square
4	2	square
9	3	square
+----+------+----------+

Partitioning by the X column groups all the duplicate numbers together and returns the place each each value within
the group; because each value occurs only 1 or 2 times, DENSE_RANK() designates each X value as either first or
second within its group.

select x, dense_rank() over(partition by x order by property) as rank,
 property from int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
1	1	odd
1	2	square
2	1	even
2	2	prime

 | Impala SQL Language Reference | 576

3	1	odd
3	2	prime
4	1	even
4	2	square
5	1	odd
5	2	prime
6	1	even
6	2	perfect
7	1	lucky
7	1	lucky
7	1	lucky
7	2	odd
7	3	prime
8	1	even
9	1	odd
9	2	square
10	1	even
10	2	round
+----+------+----------+

The following example shows how DENSE_RANK() produces a continuous sequence while still allowing for ties.
In this case, Croesus and Midas both have the second largest fortune, while Crassus has the third largest. (In RANK
Function on page 583, you see a similar query with the RANK() function that shows that while Crassus has the
third largest fortune, he is the fourth richest person.)

select dense_rank() over (order by net_worth desc) as placement, name,
 net_worth from wealth order by placement, name;
+-----------+---------+---------------+
| placement | name | net_worth |
+-----------+---------+---------------+
1	Solomon	2000000000.00
2	Croesus	1000000000.00
2	Midas	1000000000.00
3	Crassus	500000000.00
4	Scrooge	80000000.00
+-----------+---------+---------------+

Related information:

RANK Function on page 583, ROW_NUMBER Function on page 585

FIRST_VALUE Function

Returns the expression value from the first row in the window. The return value is NULL if the input expression is
NULL.

Syntax:

FIRST_VALUE(expr) OVER([partition_by_clause] order_by_clause
 [window_clause])

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is optional.

Usage notes:

If any duplicate values occur in the tuples evaluated by the ORDER BY clause, the result of this function is not
deterministic. Consider adding additional ORDER BY columns to ensure consistent ordering.

Added in: Impala 2.0.0

Examples:

 | Impala SQL Language Reference | 577

The following example shows a table with a wide variety of country-appropriate greetings. For consistency, we want
to standardize on a single greeting for each country. The FIRST_VALUE() function helps to produce a mail merge
report where every person from the same country is addressed with the same greeting.

select name, country, greeting from mail_merge
+---------+---------+--------------+
| name | country | greeting |
+---------+---------+--------------+
Pete	USA	Hello
John	USA	Hi
Boris	Germany	Guten tag
Michael	Germany	Guten morgen
Bjorn	Sweden	Hej
Mats	Sweden	Tja
+---------+---------+--------------+

select country, name,
 first_value(greeting)
 over (partition by country order by name, greeting) as greeting
 from mail_merge;
+---------+---------+-----------+
| country | name | greeting |
+---------+---------+-----------+
Germany	Boris	Guten tag
Germany	Michael	Guten tag
Sweden	Bjorn	Hej
Sweden	Mats	Hej
USA	John	Hi
USA	Pete	Hi
+---------+---------+-----------+

Changing the order in which the names are evaluated changes which greeting is applied to each group.

select country, name,
 first_value(greeting)
 over (partition by country order by name desc, greeting) as greeting
 from mail_merge;
+---------+---------+--------------+
| country | name | greeting |
+---------+---------+--------------+
Germany	Michael	Guten morgen
Germany	Boris	Guten morgen
Sweden	Mats	Tja
Sweden	Bjorn	Tja
USA	Pete	Hello
USA	John	Hello
+---------+---------+--------------+

Related information:

LAST_VALUE Function on page 579

LAG Function

This function returns the value of an expression using column values from a preceding row. You specify an integer
offset, which designates a row position some number of rows previous to the current row. Any column references in
the expression argument refer to column values from that prior row. Typically, the table contains a time sequence or
numeric sequence column that clearly distinguishes the ordering of the rows.

Syntax:

LAG (expr [, offset] [, default])

 | Impala SQL Language Reference | 578

 OVER ([partition_by_clause] order_by_clause)

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

Sometimes used an an alternative to doing a self-join.

Added in: Impala 2.0.0

Examples:

The following example uses the same stock data created in Window Clause on page 570. For each day, the query
prints the closing price alongside the previous day's closing price. The first row for each stock symbol has no previous
row, so that LAG() value is NULL.

select stock_symbol, closing_date, closing_price,
 lag(closing_price,1) over (partition by stock_symbol order by
 closing_date) as "yesterday closing"
 from stock_ticker
 order by closing_date;
+--------------+---------------------+---------------+-------------------+
| stock_symbol | closing_date | closing_price | yesterday closing |
+--------------+---------------------+---------------+-------------------+
JDR	2014-09-13 00:00:00	12.86	NULL
JDR	2014-09-14 00:00:00	12.89	12.86
JDR	2014-09-15 00:00:00	12.94	12.89
JDR	2014-09-16 00:00:00	12.55	12.94
JDR	2014-09-17 00:00:00	14.03	12.55
JDR	2014-09-18 00:00:00	14.75	14.03
JDR	2014-09-19 00:00:00	13.98	14.75
+--------------+---------------------+---------------+-------------------+

The following example does an arithmetic operation between the current row and a value from the previous row, to
produce a delta value for each day. This example also demonstrates how ORDER BY works independently in the
different parts of the query. The ORDER BY closing_date in the OVER clause makes the query analyze the rows
in chronological order. Then the outer query block uses ORDER BY closing_date DESC to present the results
with the most recent date first.

select stock_symbol, closing_date, closing_price,
 cast(
 closing_price - lag(closing_price,1) over
 (partition by stock_symbol order by closing_date)
 as decimal(8,2)
)
 as "change from yesterday"
 from stock_ticker
 order by closing_date desc;
+--------------+---------------------+---------------
+-----------------------+
| stock_symbol | closing_date | closing_price | change from yesterday
 |
+--------------+---------------------+---------------
+-----------------------+
| JDR | 2014-09-19 00:00:00 | 13.98 | -0.76
 |
| JDR | 2014-09-18 00:00:00 | 14.75 | 0.72
 |
| JDR | 2014-09-17 00:00:00 | 14.03 | 1.47
 |
| JDR | 2014-09-16 00:00:00 | 12.55 | -0.38
 |

 | Impala SQL Language Reference | 579

| JDR | 2014-09-15 00:00:00 | 12.94 | 0.04
 |
| JDR | 2014-09-14 00:00:00 | 12.89 | 0.03
 |
| JDR | 2014-09-13 00:00:00 | 12.86 | NULL
 |
+--------------+---------------------+---------------
+-----------------------+

Related information:

This function is the converse of LEAD Function on page 579.

LAST_VALUE Function

Returns the expression value from the last row in the window. This same value is repeated for all result rows for the
group. The return value is NULL if the input expression is NULL.

Syntax:

LAST_VALUE(expr) OVER([partition_by_clause] order_by_clause [window_clause])

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is optional.

Usage notes:

If any duplicate values occur in the tuples evaluated by the ORDER BY clause, the result of this function is not
deterministic. Consider adding additional ORDER BY columns to ensure consistent ordering.

Added in: Impala 2.0.0

Examples:

The following example uses the same MAIL_MERGE table as in the example for FIRST_VALUE Function on page
576. Because the default window when ORDER BY is used is BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW, the query requires the UNBOUNDED FOLLOWING to look ahead to subsequent rows and find the
last value for each country.

select country, name,
 last_value(greeting) over (
 partition by country order by name, greeting
 rows between unbounded preceding and unbounded following
) as greeting
 from mail_merge
+---------+---------+--------------+
| country | name | greeting |
+---------+---------+--------------+
Germany	Boris	Guten morgen
Germany	Michael	Guten morgen
Sweden	Bjorn	Tja
Sweden	Mats	Tja
USA	John	Hello
USA	Pete	Hello
+---------+---------+--------------+

Related information:

FIRST_VALUE Function on page 576

LEAD Function

This function returns the value of an expression using column values from a following row. You specify an integer
offset, which designates a row position some number of rows after to the current row. Any column references in

 | Impala SQL Language Reference | 580

the expression argument refer to column values from that later row. Typically, the table contains a time sequence or
numeric sequence column that clearly distinguishes the ordering of the rows.

Syntax:

LEAD (expr [, offset] [, default])
 OVER ([partition_by_clause] order_by_clause)

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

Sometimes used an an alternative to doing a self-join.

Added in: Impala 2.0.0

Examples:

The following example uses the same stock data created in Window Clause on page 570. The query analyzes the
closing price for a stock symbol, and for each day evaluates if the closing price for the following day is higher or
lower.

select stock_symbol, closing_date, closing_price,
 case
 (lead(closing_price,1)
 over (partition by stock_symbol order by closing_date)
 - closing_price) > 0
 when true then "higher"
 when false then "flat or lower"
 end as "trending"
from stock_ticker
 order by closing_date;
+--------------+---------------------+---------------+---------------+
| stock_symbol | closing_date | closing_price | trending |
+--------------+---------------------+---------------+---------------+
JDR	2014-09-13 00:00:00	12.86	higher
JDR	2014-09-14 00:00:00	12.89	higher
JDR	2014-09-15 00:00:00	12.94	flat or lower
JDR	2014-09-16 00:00:00	12.55	higher
JDR	2014-09-17 00:00:00	14.03	higher
JDR	2014-09-18 00:00:00	14.75	flat or lower
JDR	2014-09-19 00:00:00	13.98	NULL
+--------------+---------------------+---------------+---------------+

Related information:

This function is the converse of LAG Function on page 577.

MAX Function - Analytic Context

You can include an OVER clause with a call to this function to use it as an analytic function. See MAX Function on
page 549 for details and examples.

MIN Function - Analytic Context

You can include an OVER clause with a call to this function to use it as an analytic function. See MIN Function on
page 553 for details and examples.

NTILE Function (Impala 2.3 or higher only)

Returns the “bucket number” associated with each row, between 1 and the value of an expression. For example,
creating 100 buckets puts the lowest 1% of values in the first bucket, while creating 10 buckets puts the lowest 10%
of values in the first bucket. Each partition can have a different number of buckets.

 | Impala SQL Language Reference | 581

Syntax:

NTILE (expr [, offset ...]
 OVER ([partition_by_clause] order_by_clause)

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

The “ntile” name is derived from the practice of dividing result sets into fourths (quartile), tenths (decile), and so on.
The NTILE() function divides the result set based on an arbitrary percentile value.

The number of buckets must be a positive integer.

The number of items in each bucket is identical or almost so, varying by at most 1. If the number of items does not
divide evenly between the buckets, the remaining N items are divided evenly among the first N buckets.

If the number of buckets N is greater than the number of input rows in the partition, then the first N buckets each
contain one item, and the remaining buckets are empty.

Examples:

The following example shows divides groups of animals into 4 buckets based on their weight. The ORDER BY ...
DESC clause in the OVER() clause means that the heaviest 25% are in the first group, and the lightest 25% are in
the fourth group. (The ORDER BY in the outermost part of the query shows how you can order the final result set
independently from the order in which the rows are evaluated by the OVER() clause.) Because there are 9 rows in the
group, divided into 4 buckets, the first bucket receives the extra item.

create table animals (name string, kind string, kilos decimal(9,3));

insert into animals values
 ('Elephant', 'Mammal', 4000), ('Giraffe', 'Mammal', 1200), ('Mouse',
 'Mammal', 0.020),
 ('Condor', 'Bird', 15), ('Horse', 'Mammal', 500), ('Owl', 'Bird', 2.5),
 ('Ostrich', 'Bird', 145), ('Polar bear', 'Mammal', 700), ('Housecat',
 'Mammal', 5);

select name, ntile(4) over (order by kilos desc) as quarter
 from animals
order by quarter desc;
+------------+---------+
| name | quarter |
+------------+---------+
Owl	4
Mouse	4
Condor	3
Housecat	3
Horse	2
Ostrich	2
Elephant	1
Giraffe	1
Polar bear	1
+------------+---------+

The following examples show how the PARTITION clause works for the NTILE() function. Here, we divide each
kind of animal (mammal or bird) into 2 buckets, the heavier half and the lighter half.

select name, kind, ntile(2) over (partition by kind order by kilos desc) as
 half
 from animals
order by kind;
+------------+--------+------+
| name | kind | half |
+------------+--------+------+

 | Impala SQL Language Reference | 582

Ostrich	Bird	1
Condor	Bird	1
Owl	Bird	2
Elephant	Mammal	1
Giraffe	Mammal	1
Polar bear	Mammal	1
Horse	Mammal	2
Housecat	Mammal	2
Mouse	Mammal	2
+------------+--------+------+

Again, the result set can be ordered independently from the analytic evaluation. This next example lists all the animals
heaviest to lightest, showing that elephant and giraffe are in the “top half” of mammals by weight, while housecat and
mouse are in the “bottom half”.

select name, kind, ntile(2) over (partition by kind order by kilos desc) as
 half
 from animals
order by kilos desc;
+------------+--------+------+
| name | kind | half |
+------------+--------+------+
Elephant	Mammal	1
Giraffe	Mammal	1
Polar bear	Mammal	1
Horse	Mammal	2
Ostrich	Bird	1
Condor	Bird	1
Housecat	Mammal	2
Owl	Bird	2
Mouse	Mammal	2
+------------+--------+------+

PERCENT_RANK Function (Impala 2.3 or higher only)

Syntax:

PERCENT_RANK (expr)
 OVER ([partition_by_clause] order_by_clause)

Calculates the rank, expressed as a percentage, of each row within a group of rows. If rank is the value for
that same row from the RANK() function (from 1 to the total number of rows in the partition group), then the
PERCENT_RANK() value is calculated as (rank - 1) / (rows_in_group - 1) . If there is only a single
item in the partition group, its PERCENT_RANK() value is 0.

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

This function is similar to the RANK and CUME_DIST() functions: it returns an ascending sequence representing
the position of each row within the rows of the same partition group. The actual numeric sequence is calculated
differently, and the handling of duplicate (tied) values is different.

The return values range from 0 to 1 inclusive. The first row in each partition group always has the value 0. A NULL
value is considered the lowest possible value. In the case of duplicate input values, all the corresponding rows
in the result set have an identical value: the lowest PERCENT_RANK() value of those tied rows. (In contrast to
CUME_DIST(), where all tied rows have the highest CUME_DIST() value.)

Examples:

 | Impala SQL Language Reference | 583

The following example uses the same ANIMALS table as the examples for CUME_DIST() and NTILE(), with a
few additional rows to illustrate the results where some values are NULL or there is only a single row in a partition
group.

insert into animals values ('Komodo dragon', 'Reptile', 70);
insert into animals values ('Unicorn', 'Mythical', NULL);
insert into animals values ('Fire-breathing dragon', 'Mythical', NULL);

As with CUME_DIST(), there is an ascending sequence for each kind of animal. For example, the “Birds” and
“Mammals” rows each have a PERCENT_RANK() sequence that ranges from 0 to 1. The “Reptile” row has a
PERCENT_RANK() of 0 because that partition group contains only a single item. Both “Mythical” animals have a
PERCENT_RANK() of 0 because a NULL is considered the lowest value within its partition group.

select name, kind, percent_rank() over (partition by kind order by kilos)
 from animals;
+-----------------------+----------+--------------------------+
| name | kind | percent_rank() OVER(...) |
+-----------------------+----------+--------------------------+
Mouse	Mammal	0
Housecat	Mammal	0.2
Horse	Mammal	0.4
Polar bear	Mammal	0.6
Giraffe	Mammal	0.8
Elephant	Mammal	1
Komodo dragon	Reptile	0
Owl	Bird	0
California Condor	Bird	0.25
Andean Condor	Bird	0.25
Condor	Bird	0.25
Ostrich	Bird	1
Fire-breathing dragon	Mythical	0
Unicorn	Mythical	0
+-----------------------+----------+--------------------------+

RANK Function

Returns an ascending sequence of integers, starting with 1. The output sequence produces duplicate integers for
duplicate values of the ORDER BY expressions. After generating duplicate output values for the “tied” input
values, the function increments the sequence by the number of tied values. Therefore, the sequence contains both
duplicates and gaps when the input contains duplicates. Starts the sequence over for each group produced by the
PARTITIONED BY clause.

Syntax:

RANK() OVER([partition_by_clause] order_by_clause)

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is not allowed.

Usage notes:

Often used for top-N and bottom-N queries. For example, it could produce a “top 10” report including several items
that were tied for 10th place.

Similar to ROW_NUMBER and DENSE_RANK. These functions differ in how they treat duplicate combinations of
values.

Added in: Impala 2.0.0

Examples:

The following example demonstrates how the RANK() function identifies where each value “places” in the result
set, producing the same result for duplicate values, and skipping values in the sequence to account for the number of

 | Impala SQL Language Reference | 584

duplicates. For example, when results are ordered by the X column, both 1 values are tied for first; both 2 values are
tied for third; and so on.

select x, rank() over(order by x) as rank, property from int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
1	1	square
1	1	odd
2	3	even
2	3	prime
3	5	prime
3	5	odd
4	7	even
4	7	square
5	9	odd
5	9	prime
6	11	even
6	11	perfect
7	13	lucky
7	13	lucky
7	13	lucky
7	13	odd
7	13	prime
8	18	even
9	19	square
9	19	odd
10	21	round
10	21	even
+----+------+----------+

The following examples show how the RANK() function is affected by the PARTITION property within the ORDER
BY clause.

Partitioning by the PROPERTY column groups all the even, odd, and so on values together, and RANK() returns the
place of each value within the group, producing several ascending sequences.

select x, rank() over(partition by property order by x) as rank, property
 from int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
2	1	even
4	2	even
6	3	even
8	4	even
10	5	even
7	1	lucky
7	1	lucky
7	1	lucky
1	1	odd
3	2	odd
5	3	odd
7	4	odd
9	5	odd
6	1	perfect
2	1	prime
3	2	prime
5	3	prime
7	4	prime
10	1	round
1	1	square
4	2	square

 | Impala SQL Language Reference | 585

| 9 | 3 | square |
+----+------+----------+

Partitioning by the X column groups all the duplicate numbers together and returns the place each each value within
the group; because each value occurs only 1 or 2 times, RANK() designates each X value as either first or second
within its group.

select x, rank() over(partition by x order by property) as rank, property
 from int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
1	1	odd
1	2	square
2	1	even
2	2	prime
3	1	odd
3	2	prime
4	1	even
4	2	square
5	1	odd
5	2	prime
6	1	even
6	2	perfect
7	1	lucky
7	1	lucky
7	1	lucky
7	4	odd
7	5	prime
8	1	even
9	1	odd
9	2	square
10	1	even
10	2	round
+----+------+----------+

The following example shows how a magazine might prepare a list of history's wealthiest people. Croesus and Midas
are tied for second, then Crassus is fourth.

select rank() over (order by net_worth desc) as rank, name, net_worth from
 wealth order by rank, name;
+------+---------+---------------+
| rank | name | net_worth |
+------+---------+---------------+
1	Solomon	2000000000.00
2	Croesus	1000000000.00
2	Midas	1000000000.00
4	Crassus	500000000.00
5	Scrooge	80000000.00
+------+---------+---------------+

Related information:

DENSE_RANK Function on page 574, ROW_NUMBER Function on page 585

ROW_NUMBER Function

Returns an ascending sequence of integers, starting with 1. Starts the sequence over for each group produced by the
PARTITIONED BY clause. The output sequence includes different values for duplicate input values. Therefore, the
sequence never contains any duplicates or gaps, regardless of duplicate input values.

 | Impala SQL Language Reference | 586

Syntax:

ROW_NUMBER() OVER([partition_by_clause] order_by_clause)

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

Often used for top-N and bottom-N queries where the input values are known to be unique, or precisely N rows are
needed regardless of duplicate values.

Because its result value is different for each row in the result set (when used without a PARTITION BY clause),
ROW_NUMBER() can be used to synthesize unique numeric ID values, for example for result sets involving unique
values or tuples.

Similar to RANK and DENSE_RANK. These functions differ in how they treat duplicate combinations of values.

Added in: Impala 2.0.0

Examples:

The following example demonstrates how ROW_NUMBER() produces a continuous numeric sequence, even though
some values of X are repeated.

select x, row_number() over(order by x, property) as row_number, property
 from int_t;
+----+------------+----------+
| x | row_number | property |
+----+------------+----------+
1	1	odd
1	2	square
2	3	even
2	4	prime
3	5	odd
3	6	prime
4	7	even
4	8	square
5	9	odd
5	10	prime
6	11	even
6	12	perfect
7	13	lucky
7	14	lucky
7	15	lucky
7	16	odd
7	17	prime
8	18	even
9	19	odd
9	20	square
10	21	even
10	22	round
+----+------------+----------+

The following example shows how a financial institution might assign customer IDs to some of history's wealthiest
figures. Although two of the people have identical net worth figures, unique IDs are required for this purpose.
ROW_NUMBER() produces a sequence of five different values for the five input rows.

select row_number() over (order by net_worth desc) as account_id, name,
 net_worth
 from wealth order by account_id, name;
+------------+---------+---------------+
| account_id | name | net_worth |
+------------+---------+---------------+
| 1 | Solomon | 2000000000.00 |

 | Impala SQL Language Reference | 587

2	Croesus	1000000000.00
3	Midas	1000000000.00
4	Crassus	500000000.00
5	Scrooge	80000000.00
+------------+---------+---------------+

Related information:

RANK Function on page 583, DENSE_RANK Function on page 574

SUM Function - Analytic Context

You can include an OVER clause with a call to this function to use it as an analytic function. See SUM Function on
page 562 for details and examples.

Impala User-Defined Functions (UDFs)

User-defined functions (frequently abbreviated as UDFs) let you code your own application logic for processing
column values during an Impala query. For example, a UDF could perform calculations using an external
math library, combine several column values into one, do geospatial calculations, or other kinds of tests and
transformations that are outside the scope of the built-in SQL operators and functions.

You can use UDFs to simplify query logic when producing reports, or to transform data in flexible ways when
copying from one table to another with the INSERT ... SELECT syntax.

You might be familiar with this feature from other database products, under names such as stored functions or stored
routines.

Impala support for UDFs is available in Impala 1.2 and higher:

• In Impala 1.1, using UDFs in a query required using the Hive shell. (Because Impala and Hive share the same
metastore database, you could switch to Hive to run just those queries requiring UDFs, then switch back to
Impala.)

• Starting in Impala 1.2, Impala can run both high-performance native code UDFs written in C++, and Java-based
Hive UDFs that you might already have written.

• Impala can run scalar UDFs that return a single value for each row of the result set, and user-defined aggregate
functions (UDAFs) that return a value based on a set of rows. Currently, Impala does not support user-defined
table functions (UDTFs) or window functions.

UDF Concepts

Depending on your use case, you might write all-new functions, reuse Java UDFs that you have already written for
Hive, or port Hive Java UDF code to higher-performance native Impala UDFs in C++. You can code either scalar
functions for producing results one row at a time, or more complex aggregate functions for doing analysis across. The
following sections discuss these different aspects of working with UDFs.

UDFs and UDAFs

Depending on your use case, the user-defined functions (UDFs) you write might accept or produce different numbers
of input and output values:

• The most general kind of user-defined function (the one typically referred to by the abbreviation UDF) takes a
single input value and produces a single output value. When used in a query, it is called once for each row in the
result set. For example:

select customer_name, is_frequent_customer(customer_id) from customers;
select obfuscate(sensitive_column) from sensitive_data;

• A user-defined aggregate function (UDAF) accepts a group of values and returns a single value. You use
UDAFs to summarize and condense sets of rows, in the same style as the built-in COUNT, MAX(), SUM(), and

 | Impala SQL Language Reference | 588

AVG() functions. When called in a query that uses the GROUP BY clause, the function is called once for each
combination of GROUP BY values. For example:

-- Evaluates multiple rows but returns a single value.
select closest_restaurant(latitude, longitude) from places;

-- Evaluates batches of rows and returns a separate value for each batch.
select most_profitable_location(store_id, sales, expenses, tax_rate,
 depreciation) from franchise_data group by year;

• Currently, Impala does not support other categories of user-defined functions, such as user-defined table functions
(UDTFs) or window functions.

Native Impala UDFs

Impala supports UDFs written in C++, in addition to supporting existing Hive UDFs written in Java. Where practical,
use C++ UDFs because the compiled native code can yield higher performance, with UDF execution time often 10x
faster for a C++ UDF than the equivalent Java UDF.

Using Hive UDFs with Impala

Impala can run Java-based user-defined functions (UDFs), originally written for Hive, with no changes, subject to the
following conditions:

• The parameters and return value must all use scalar data types supported by Impala. For example, complex or
nested types are not supported.

• Currently, Hive UDFs that accept or return the TIMESTAMP type are not supported.
• Prior to Impala 2.5 the return type must be a “Writable” type such as Text or IntWritable, rather than a

Java primitive type such as String or int. Otherwise, the UDF returns NULL. In Impala 2.5 and higher, this
restriction is lifted, and both UDF arguments and return values can be Java primitive types.

• Hive UDAFs and UDTFs are not supported.
• Typically, a Java UDF will execute several times slower in Impala than the equivalent native UDF written in C++.
• In Impala 2.5 and higher, you can transparently call Hive Java UDFs through Impala, or call Impala Java UDFs

through Hive. This feature does not apply to built-in Hive functions. Any Impala Java UDFs created with older
versions must be re-created using new CREATE FUNCTION syntax, without any signature for arguments or the
return value.

To take full advantage of the Impala architecture and performance features, you can also write Impala-specific UDFs
in C++.

For background about Java-based Hive UDFs, see the Hive documentation for UDFs. For examples or tutorials for
writing such UDFs, search the web for related blog posts.

The ideal way to understand how to reuse Java-based UDFs (originally written for Hive) with Impala is to take
some of the Hive built-in functions (implemented as Java UDFs) and take the applicable JAR files through the UDF
deployment process for Impala, creating new UDFs with different names:

1. Take a copy of the Hive JAR file containing the Hive built-in functions. For example, the path might be like /
usr/lib/hive/lib/hive-exec-0.10.0.jar, with different version numbers corresponding to your
specific level of .

2. Use jar tf jar_file to see a list of the classes inside the JAR. You will see names like org/
apache/hadoop/hive/ql/udf/UDFLower.class and org/apache/hadoop/hive/ql/udf/
UDFOPNegative.class. Make a note of the names of the functions you want to experiment with. When
you specify the entry points for the Impala CREATE FUNCTION statement, change the slash characters to dots
and strip off the .class suffix, for example org.apache.hadoop.hive.ql.udf.UDFLower and
org.apache.hadoop.hive.ql.udf.UDFOPNegative.

3. Copy that file to an HDFS location that Impala can read. (In the examples here, we renamed the file to hive-
builtins.jar in HDFS for simplicity.)

4. For each Java-based UDF that you want to call through Impala, issue a CREATE FUNCTION statement, with a
LOCATION clause containing the full HDFS path of the JAR file, and a SYMBOL clause with the fully qualified
name of the class, using dots as separators and without the .class extension. Remember that user-defined

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

 | Impala SQL Language Reference | 589

functions are associated with a particular database, so issue a USE statement for the appropriate database first,
or specify the SQL function name as db_name.function_name. Use completely new names for the SQL
functions, because Impala UDFs cannot have the same name as Impala built-in functions.

5. Call the function from your queries, passing arguments of the correct type to match the function signature. These
arguments could be references to columns, arithmetic or other kinds of expressions, the results of CAST functions
to ensure correct data types, and so on.

Note:

In Impala 2.9 and higher, you can refresh the user-defined functions (UDFs) that Impala recognizes, at the database
level, by running the REFRESH FUNCTIONS statement with the database name as an argument. Java-based UDFs
can be added to the metastore database through Hive CREATE FUNCTION statements, and made visible to Impala
by subsequently running REFRESH FUNCTIONS. For example:

CREATE DATABASE shared_udfs;
USE shared_udfs;
...use CREATE FUNCTION statements in Hive to create some Java-based UDFs
 that Impala is not initially aware of...
REFRESH FUNCTIONS shared_udfs;
SELECT udf_created_by_hive(c1) FROM ...

Java UDF Example: Reusing lower() Function

For example, the following impala-shell session creates an Impala UDF my_lower() that
reuses the Java code for the Hive lower(): built-in function. We cannot call it lower() because
Impala does not allow UDFs to have the same name as built-in functions. From SQL, we call the
function in a basic way (in a query with no WHERE clause), directly on a column, and on the results
of a string expression:

[localhost:21000] > create database udfs;
[localhost:21000] > use udfs;
localhost:21000] > create function lower(string)
 returns string location '/user/hive/udfs/hive.jar'
 symbol='org.apache.hadoop.hive.ql.udf.UDFLower';
ERROR: AnalysisException: Function cannot have the same name as
 a builtin: lower
[localhost:21000] > create function my_lower(string)
 returns string location '/user/hive/udfs/hive.jar'
 symbol='org.apache.hadoop.hive.ql.udf.UDFLower';
[localhost:21000] > select my_lower('Some String NOT ALREADY
 LOWERCASE');
+--+
| udfs.my_lower('some string not already lowercase') |
+--+
| some string not already lowercase |
+--+
Returned 1 row(s) in 0.11s
[localhost:21000] > create table t2 (s string);
[localhost:21000] > insert into t2 values ('lower'),('UPPER'),
('Init cap'),('CamelCase');
Inserted 4 rows in 2.28s
[localhost:21000] > select * from t2;
+-----------+
| s |
+-----------+
| lower |
| UPPER |
| Init cap |
| CamelCase |
+-----------+
Returned 4 row(s) in 0.47s

 | Impala SQL Language Reference | 590

[localhost:21000] > select my_lower(s) from t2;
+------------------+
| udfs.my_lower(s) |
+------------------+
| lower |
| upper |
| init cap |
| camelcase |
+------------------+
Returned 4 row(s) in 0.54s
[localhost:21000] > select my_lower(concat('ABC ',s,' XYZ'))
 from t2;
+--+
| udfs.my_lower(concat('abc ', s, ' xyz')) |
+--+
| abc lower xyz |
| abc upper xyz |
| abc init cap xyz |
| abc camelcase xyz |
+--+
Returned 4 row(s) in 0.22s

Java UDF Example: Reusing negative() Function

Here is an example that reuses the Hive Java code for the negative() built-in function. This
example demonstrates how the data types of the arguments must match precisely with the function
signature. At first, we create an Impala SQL function that can only accept an integer argument.
Impala cannot find a matching function when the query passes a floating-point argument, although
we can call the integer version of the function by casting the argument. Then we overload the same
function name to also accept a floating-point argument.

[localhost:21000] > create table t (x int);
[localhost:21000] > insert into t values (1), (2), (4), (100);
Inserted 4 rows in 1.43s
[localhost:21000] > create function my_neg(bigint)
 returns bigint location '/user/hive/udfs/hive.jar'
 symbol='org.apache.hadoop.hive.ql.udf.UDFOPNegative';
[localhost:21000] > select my_neg(4);
+----------------+
| udfs.my_neg(4) |
+----------------+
| -4 |
+----------------+
[localhost:21000] > select my_neg(x) from t;
+----------------+
| udfs.my_neg(x) |
+----------------+
| -2 |
| -4 |
| -100 |
+----------------+
Returned 3 row(s) in 0.60s
[localhost:21000] > select my_neg(4.0);
ERROR: AnalysisException: No matching function with signature:
 udfs.my_neg(FLOAT).
[localhost:21000] > select my_neg(cast(4.0 as int));
+-------------------------------+
| udfs.my_neg(cast(4.0 as int)) |
+-------------------------------+
| -4 |
+-------------------------------+

 | Impala SQL Language Reference | 591

Returned 1 row(s) in 0.11s
[localhost:21000] > create function my_neg(double)
 returns double location '/user/hive/udfs/hive.jar'
 symbol='org.apache.hadoop.hive.ql.udf.UDFOPNegative';
[localhost:21000] > select my_neg(4.0);
+------------------+
| udfs.my_neg(4.0) |
+------------------+
| -4 |
+------------------+
Returned 1 row(s) in 0.11s

Runtime Environment for UDFs

By default, Impala copies UDFs into /tmp, and you can configure this location through the --
local_library_dir startup flag for the impalad daemon.

Installing the UDF Development Package

To develop UDFs for Impala, download and install the impala-udf-devel package (RHEL-based distributions)
or impala-udf-dev (Ubuntu and Debian). This package contains header files, sample source, and build
configuration files.

1. Locate the appropriate .repo or list file for your operating system version.
2. Use the familiar yum, zypper, or apt-get commands depending on your operating system. For the package

name, specify impala-udf-devel (RHEL-based distributions) or impala-udf-dev (Ubuntu and Debian).

Note: The UDF development code does not rely on Impala being installed on the same machine. You can write and
compile UDFs on a minimal development system, then deploy them on a different one for use with Impala.

When you are ready to start writing your own UDFs, download the sample code and build scripts from the Impala
sample UDF github. Then see Writing User-Defined Functions (UDFs) on page 591 for how to code UDFs, and
Examples of Creating and Using UDFs on page 597 for how to build and run UDFs.

Writing User-Defined Functions (UDFs)

Before starting UDF development, make sure to install the development package and download the UDF code
samples, as described in Installing the UDF Development Package on page 591.

When writing UDFs:

• Keep in mind the data type differences as you transfer values from the high-level SQL to your lower-level UDF
code. For example, in the UDF code you might be much more aware of how many bytes different kinds of
integers require.

• Use best practices for function-oriented programming: choose arguments carefully, avoid side effects, make each
function do a single thing, and so on.

Getting Started with UDF Coding

To understand the layout and member variables and functions of the predefined UDF data types, examine the header
file /usr/include/impala_udf/udf.h:

// This is the only Impala header required to develop UDFs and UDAs. This
 header
// contains the types that need to be used and the FunctionContext object.
 The context
// object serves as the interface object between the UDF/UDA and the impala
 process.

 | Impala SQL Language Reference | 592

For the basic declarations needed to write a scalar UDF, see the header file udf-sample.h within the sample build
environment, which defines a simple function named AddUdf():

#ifndef IMPALA_UDF_SAMPLE_UDF_H
#define IMPALA_UDF_SAMPLE_UDF_H

#include <impala_udf/udf.h>

using namespace impala_udf;

IntVal AddUdf(FunctionContext* context, const IntVal& arg1, const IntVal&
 arg2);

#endif

For sample C++ code for a simple function named AddUdf(), see the source file udf-sample.cc within the
sample build environment:

#include "udf-sample.h"

// In this sample we are declaring a UDF that adds two ints and returns an
 int.
IntVal AddUdf(FunctionContext* context, const IntVal& arg1, const IntVal&
 arg2) {
 if (arg1.is_null || arg2.is_null) return IntVal::null();
 return IntVal(arg1.val + arg2.val);
}

// Multiple UDFs can be defined in the same file

Data Types for Function Arguments and Return Values

Each value that a user-defined function can accept as an argument or return as a result value must map to a SQL data
type that you could specify for a table column.

Currently, Impala UDFs cannot accept arguments or return values of the Impala complex types (STRUCT, ARRAY, or
MAP).

Each data type has a corresponding structure defined in the C++ and Java header files, with two member fields and
some predefined comparison operators and constructors:

• is_null indicates whether the value is NULL or not. val holds the actual argument or return value when it is
non-NULL.

• Each struct also defines a null() member function that constructs an instance of the struct with the is_null
flag set.

• The built-in SQL comparison operators and clauses such as <, >=, BETWEEN, and ORDER BY all work
automatically based on the SQL return type of each UDF. For example, Impala knows how to evaluate BETWEEN
1 AND udf_returning_int(col1) or ORDER BY udf_returning_string(col2) without you
declaring any comparison operators within the UDF itself.

For convenience within your UDF code, each struct defines == and != operators for comparisons with
other structs of the same type. These are for typical C++ comparisons within your own code, not necessarily
reproducing SQL semantics. For example, if the is_null flag is set in both structs, they compare as equal. That
behavior of null comparisons is different from SQL (where NULL == NULL is NULL rather than true), but
more in line with typical C++ behavior.

• Each kind of struct has one or more constructors that define a filled-in instance of the struct, optionally with
default values.

• Each kind of struct has a null() member function that returns an instance of the struct with the is_null flag
set.

 | Impala SQL Language Reference | 593

• Because Impala currently does not support composite or nested types, Impala cannot process UDFs that accept
such types as arguments or return them as result values. This limitation applies both to Impala UDFs written in C+
+ and Java-based Hive UDFs.

• You can overload functions by creating multiple functions with the same SQL name but different argument types.
For overloaded functions, you must use different C++ or Java entry point names in the underlying functions.

The data types defined on the C++ side (in /usr/include/impala_udf/udf.h) are:

• IntVal represents an INT column.
• BigIntVal represents a BIGINT column. Even if you do not need the full range of a BIGINT value, it can be

useful to code your function arguments as BigIntVal to make it convenient to call the function with different
kinds of integer columns and expressions as arguments. Impala automatically casts smaller integer types to larger
ones when appropriate, but does not implicitly cast large integer types to smaller ones.

• SmallIntVal represents a SMALLINT column.
• TinyIntVal represents a TINYINT column.
• StringVal represents a STRING column. It has a len field representing the length of the string, and a

ptr field pointing to the string data. It has constructors that create a new StringVal struct based on a null-
terminated C-style string, or a pointer plus a length; these new structs still refer to the original string data rather
than allocating a new buffer for the data. It also has a constructor that takes a pointer to a FunctionContext
struct and a length, that does allocate space for a new copy of the string data, for use in UDFs that return string
values.

• BooleanVal represents a BOOLEAN column.
• FloatVal represents a FLOAT column.
• DoubleVal represents a DOUBLE column.
• TimestampVal represents a TIMESTAMP column. It has a date field, a 32-bit integer representing the

Gregorian date, that is, the days past the epoch date. It also has a time_of_day field, a 64-bit integer
representing the current time of day in nanoseconds.

Variable-Length Argument Lists

UDFs typically take a fixed number of arguments, with each one named explicitly in the signature of your C++
function. Your function can also accept additional optional arguments, all of the same type. For example, you can
concatenate two strings, three strings, four strings, and so on. Or you can compare two numbers, three numbers, four
numbers, and so on.

To accept a variable-length argument list, code the signature of your function like this:

StringVal Concat(FunctionContext* context, const StringVal& separator,
 int num_var_args, const StringVal* args);

In the CREATE FUNCTION statement, after the type of the first optional argument, include ... to indicate it could
be followed by more arguments of the same type. For example, the following function accepts a STRING argument,
followed by one or more additional STRING arguments:

[localhost:21000] > create function my_concat(string, string ...) returns
 string location '/user/test_user/udfs/sample.so' symbol='Concat';

The call from the SQL query must pass at least one argument to the variable-length portion of the argument list.

When Impala calls the function, it fills in the initial set of required arguments, then passes the number of extra
arguments and a pointer to the first of those optional arguments.

Handling NULL Values

For correctness, performance, and reliability, it is important for each UDF to handle all situations where any NULL
values are passed to your function. For example, when passed a NULL, UDFs typically also return NULL. In an
aggregate function, which could be passed a combination of real and NULL values, you might make the final value
into a NULL (as in CONCAT()), ignore the NULL value (as in AVG()), or treat it the same as a numeric zero or
empty string.

 | Impala SQL Language Reference | 594

Each parameter type, such as IntVal or StringVal, has an is_null Boolean member. Test this flag
immediately for each argument to your function, and if it is set, do not refer to the val field of the argument
structure. The val field is undefined when the argument is NULL, so your function could go into an infinite loop or
produce incorrect results if you skip the special handling for NULL.

If your function returns NULL when passed a NULL value, or in other cases such as when a search string is not found,
you can construct a null instance of the return type by using its null() member function.

Memory Allocation for UDFs

By default, memory allocated within a UDF is deallocated when the function exits, which could be before the
query is finished. The input arguments remain allocated for the lifetime of the function, so you can refer to them
in the expressions for your return values. If you use temporary variables to construct all-new string values, use the
StringVal() constructor that takes an initial FunctionContext* argument followed by a length, and copy the
data into the newly allocated memory buffer.

Thread-Safe Work Area for UDFs

One way to improve performance of UDFs is to specify the optional PREPARE_FN and CLOSE_FN clauses on the
CREATE FUNCTION statement. The “prepare” function sets up a thread-safe data structure in memory that you can
use as a work area. The “close” function deallocates that memory. Each subsequent call to the UDF within the same
thread can access that same memory area. There might be several such memory areas allocated on the same host, as
UDFs are parallelized using multiple threads.

Within this work area, you can set up predefined lookup tables, or record the results of complex operations on
data types such as STRING or TIMESTAMP. Saving the results of previous computations rather than repeating the
computation each time is an optimization known as http://en.wikipedia.org/wiki/Memoization. For example, if your
UDF performs a regular expression match or date manipulation on a column that repeats the same value over and
over, you could store the last-computed value or a hash table of already-computed values, and do a fast lookup to find
the result for subsequent iterations of the UDF.

Each such function must have the signature:

void function_name(impala_udf::FunctionContext*,
 impala_udf::FunctionContext::FunctionScope)

Currently, only THREAD_SCOPE is implemented, not FRAGMENT_SCOPE. See udf.h for details about the scope
values.

Error Handling for UDFs

To handle errors in UDFs, you call functions that are members of the initial FunctionContext* argument passed
to your function.

A UDF can record one or more warnings, for conditions that indicate minor, recoverable problems that do not cause
the query to stop. The signature for this function is:

bool AddWarning(const char* warning_msg);

For a serious problem that requires cancelling the query, a UDF can set an error flag that prevents the query from
returning any results. The signature for this function is:

void SetError(const char* error_msg);

Writing User-Defined Aggregate Functions (UDAFs)

User-defined aggregate functions (UDAFs or UDAs) are a powerful and flexible category of user-defined functions.
If a query processes N rows, calling a UDAF during the query condenses the result set, anywhere from a single value
(such as with the SUM or MAX functions), or some number less than or equal to N (as in queries using the GROUP BY
or HAVING clause).

http://en.wikipedia.org/wiki/Memoization

 | Impala SQL Language Reference | 595

The Underlying Functions for a UDA

A UDAF must maintain a state value across subsequent calls, so that it can accumulate a result across a set of calls,
rather than derive it purely from one set of arguments. For that reason, a UDAF is represented by multiple underlying
functions:

• An initialization function that sets any counters to zero, creates empty buffers, and does any other one-time setup
for a query.

• An update function that processes the arguments for each row in the query result set and accumulates an
intermediate result for each node. For example, this function might increment a counter, append to a string buffer,
or set flags.

• A merge function that combines the intermediate results from two different nodes.
• A serialize function that flattens any intermediate values containing pointers, and frees any memory allocated

during the init, update, and merge phases.
• A finalize function that either passes through the combined result unchanged, or does one final transformation.

In the SQL syntax, you create a UDAF by using the statement CREATE AGGREGATE FUNCTION. You
specify the entry points of the underlying C++ functions using the clauses INIT_FN, UPDATE_FN, MERGE_FN,
SERIALIZE_FN, and FINALIZE_FN.

For convenience, you can use a naming convention for the underlying functions and Impala automatically recognizes
those entry points. Specify the UPDATE_FN clause, using an entry point name containing the string update or
Update. When you omit the other _FN clauses from the SQL statement, Impala looks for entry points with names
formed by substituting the update or Update portion of the specified name.

uda-sample.h:

uda-sample.cc:

Intermediate Results for UDAs

A user-defined aggregate function might produce and combine intermediate results during some phases of processing,
using a different data type than the final return value. For example, if you implement a function similar to the built-in
AVG() function, it must keep track of two values, the number of values counted and the sum of those values. Or, you
might accumulate a string value over the course of a UDA, then in the end return a numeric or Boolean result.

In such a case, specify the data type of the intermediate results using the optional INTERMEDIATE type_name
clause of the CREATE AGGREGATE FUNCTION statement. If the intermediate data is a typeless byte array (for
example, to represent a C++ struct or array), specify the type name as CHAR(n), with n representing the number of
bytes in the intermediate result buffer.

For an example of this technique, see the trunc_sum() aggregate function, which accumulates intermediate results
of type DOUBLE and returns BIGINT at the end. View the CREATE FUNCTION statement and the implementation
of the underlying TruncSum*() functions on Github.

Building and Deploying UDFs

This section explains the steps to compile Impala UDFs from C++ source code, and deploy the resulting libraries for
use in Impala queries.

Impala ships with a sample build environment for UDFs, that you can study, experiment with, and adapt for your
own use. This sample build environment starts with the cmake configuration command, which reads the file
CMakeLists.txt and generates a Makefile customized for your particular directory paths. Then the make
command runs the actual build steps based on the rules in the Makefile.

Impala loads the shared library from an HDFS location. After building a shared library containing one or more UDFs,
use hdfs dfs or hadoop fs commands to copy the binary file to an HDFS location readable by Impala.

The final step in deployment is to issue a CREATE FUNCTION statement in the impala-shell interpreter
to make Impala aware of the new function. See CREATE FUNCTION Statement on page 250 for syntax
details. Because each function is associated with a particular database, always issue a USE statement to the
appropriate database before creating a function, or specify a fully qualified name, that is, CREATE FUNCTION
db_name.function_name.

https://github.com/apache/impala/blob/master/tests/query_test/test_udfs.py
https://github.com/apache/impala/blob/master/be/src/testutil/test-udas.cc
https://github.com/apache/impala/blob/master/be/src/testutil/test-udas.cc

 | Impala SQL Language Reference | 596

As you update the UDF code and redeploy updated versions of a shared library, use DROP FUNCTION and CREATE
FUNCTION to let Impala pick up the latest version of the code.

Note:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTION syntax
do not persist across restarts because they are held in the memory of the catalogd daemon. Until you re-create
such Java UDFs using the new CREATE FUNCTION syntax, you must reload those Java-based UDFs by running the
original CREATE FUNCTION statements again each time you restart the catalogd daemon. Prior to Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

See CREATE FUNCTION Statement on page 250 and DROP FUNCTION Statement on page 288 for the new
syntax for the persistent Java UDFs.

Prerequisites for the build environment are:

Use the appropriate package installation command for your Linux
 distribution.
sudo yum install gcc-c++ cmake boost-devel
sudo yum install impala-udf-devel
The package name on Ubuntu and Debian is impala-udf-dev.

Then, unpack the sample code in udf_samples.tar.gz and use that as a template to set up your build
environment.

To build the original samples:

Process CMakeLists.txt and set up appropriate Makefiles.
cmake .
Generate shared libraries from UDF and UDAF sample code,
udf_samples/libudfsample.so and udf_samples/libudasample.so
make

The sample code to examine, experiment with, and adapt is in these files:

• udf-sample.h: Header file that declares the signature for a scalar UDF (AddUDF).
• udf-sample.cc: Sample source for a simple UDF that adds two integers. Because Impala can reference

multiple function entry points from the same shared library, you could add other UDF functions in this file and
add their signatures to the corresponding header file.

• udf-sample-test.cc: Basic unit tests for the sample UDF.
• uda-sample.h: Header file that declares the signature for sample aggregate functions. The SQL functions

will be called COUNT, AVG, and STRINGCONCAT. Because aggregate functions require more elaborate coding
to handle the processing for multiple phases, there are several underlying C++ functions such as CountInit,
AvgUpdate, and StringConcatFinalize.

• uda-sample.cc: Sample source for simple UDAFs that demonstrate how to manage the state transitions as the
underlying functions are called during the different phases of query processing.

• The UDAF that imitates the COUNT function keeps track of a single incrementing number; the merge functions
combine the intermediate count values from each Impala node, and the combined number is returned verbatim
by the finalize function.

• The UDAF that imitates the AVG function keeps track of two numbers, a count of rows processed and the sum
of values for a column. These numbers are updated and merged as with COUNT, then the finalize function
divides them to produce and return the final average value.

• The UDAF that concatenates string values into a comma-separated list demonstrates how to manage storage
for a string that increases in length as the function is called for multiple rows.

• uda-sample-test.cc: basic unit tests for the sample UDAFs.

 | Impala SQL Language Reference | 597

Performance Considerations for UDFs

Because a UDF typically processes each row of a table, potentially being called billions of times, the performance of
each UDF is a critical factor in the speed of the overall ETL or ELT pipeline. Tiny optimizations you can make within
the function body can pay off in a big way when the function is called over and over when processing a huge result
set.

Examples of Creating and Using UDFs

This section demonstrates how to create and use all kinds of user-defined functions (UDFs).

Sample C++ UDFs: HasVowels, CountVowels, StripVowels

This example shows 3 separate UDFs that operate on strings and return different data types.
In the C++ code, the functions are HasVowels() (checks if a string contains any vowels),
CountVowels() (returns the number of vowels in a string), and StripVowels() (returns a
new string with vowels removed).

First, we add the signatures for these functions to udf-sample.h in the demo build environment:

BooleanVal HasVowels(FunctionContext* context, const StringVal&
 input);
IntVal CountVowels(FunctionContext* context, const StringVal&
 arg1);
StringVal StripVowels(FunctionContext* context, const StringVal&
 arg1);

Then, we add the bodies of these functions to udf-sample.cc:

BooleanVal HasVowels(FunctionContext* context, const StringVal&
 input)
{
 if (input.is_null) return BooleanVal::null();

 int index;
 uint8_t *ptr;

 for (ptr = input.ptr, index = 0; index <= input.len;
 index++, ptr++)
 {
 uint8_t c = tolower(*ptr);
 if (c == 'a' || c == 'e' || c == 'i' || c == 'o'
 || c == 'u')
 {
 return BooleanVal(true);
 }
 }
 return BooleanVal(false);
}

IntVal CountVowels(FunctionContext* context, const StringVal&
 arg1)
{
 if (arg1.is_null) return IntVal::null();

 int count;
 int index;
 uint8_t *ptr;

 for (ptr = arg1.ptr, count = 0, index = 0; index <=
 arg1.len; index++, ptr++)
 {
 uint8_t c = tolower(*ptr);

 | Impala SQL Language Reference | 598

 if (c == 'a' || c == 'e' || c == 'i' || c == 'o'
 || c == 'u')
 {
 count++;
 }
 }
 return IntVal(count);
}

StringVal StripVowels(FunctionContext* context, const StringVal&
 arg1)
{
 if (arg1.is_null) return StringVal::null();

 int index;
 std::string original((const char *)arg1.ptr,arg1.len);
 std::string shorter("");

 for (index = 0; index < original.length(); index++)
 {
 uint8_t c = original[index];
 uint8_t l = tolower(c);

 if (l == 'a' || l == 'e' || l == 'i' || l == 'o'
 || l == 'u')
 {
 ;
 }
 else
 {
 shorter.append(1, (char)c);
 }
 }
// The modified string is stored in 'shorter', which is
 destroyed when this function ends. We need to make a string val
// and copy the contents.
 StringVal result(context, shorter.size()); // Only the
 version of the ctor that takes a context object allocates new
 memory
 memcpy(result.ptr, shorter.c_str(), shorter.size());
 return result;
}

We build a shared library, libudfsample.so, and put the library file into HDFS where Impala
can read it:

$ make
[0%] Generating udf_samples/uda-sample.ll
[16%] Built target uda-sample-ir
[33%] Built target udasample
[50%] Built target uda-sample-test
[50%] Generating udf_samples/udf-sample.ll
[66%] Built target udf-sample-ir
Scanning dependencies of target udfsample
[83%] Building CXX object CMakeFiles/udfsample.dir/udf-sample.o
Linking CXX shared library udf_samples/libudfsample.so
[83%] Built target udfsample
Linking CXX executable udf_samples/udf-sample-test
[100%] Built target udf-sample-test
$ hdfs dfs -put ./udf_samples/libudfsample.so /user/hive/udfs/
libudfsample.so

 | Impala SQL Language Reference | 599

Finally, we go into the impala-shell interpreter where we set up some sample data, issue
CREATE FUNCTION statements to set up the SQL function names, and call the functions in some
queries:

[localhost:21000] > create database udf_testing;
[localhost:21000] > use udf_testing;

[localhost:21000] > create function has_vowels (string)
 returns boolean location '/user/hive/udfs/libudfsample.so'
 symbol='HasVowels';
[localhost:21000] > select has_vowels('abc');
+------------------------+
| udfs.has_vowels('abc') |
+------------------------+
| true |
+------------------------+
Returned 1 row(s) in 0.13s
[localhost:21000] > select has_vowels('zxcvbnm');
+----------------------------+
| udfs.has_vowels('zxcvbnm') |
+----------------------------+
| false |
+----------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select has_vowels(null);
+-----------------------+
| udfs.has_vowels(null) |
+-----------------------+
| NULL |
+-----------------------+
Returned 1 row(s) in 0.11s
[localhost:21000] > select s, has_vowels(s) from t2;
+-----------+--------------------+
| s | udfs.has_vowels(s) |
+-----------+--------------------+
lower	true
UPPER	true
Init cap	true
CamelCase	true
+-----------+--------------------+
Returned 4 row(s) in 0.24s

[localhost:21000] > create function count_vowels (string)
 returns int location '/user/hive/udfs/libudfsample.so'
 symbol='CountVowels';
[localhost:21000] > select count_vowels('cat in the hat');
+-------------------------------------+
| udfs.count_vowels('cat in the hat') |
+-------------------------------------+
| 4 |
+-------------------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select s, count_vowels(s) from t2;
+-----------+----------------------+
| s | udfs.count_vowels(s) |
+-----------+----------------------+
lower	2
UPPER	2
Init cap	3
CamelCase	4
+-----------+----------------------+
Returned 4 row(s) in 0.23s
[localhost:21000] > select count_vowels(null);

 | Impala SQL Language Reference | 600

+-------------------------+
| udfs.count_vowels(null) |
+-------------------------+
| NULL |
+-------------------------+
Returned 1 row(s) in 0.12s

[localhost:21000] > create function strip_vowels (string)
 returns string location '/user/hive/udfs/libudfsample.so'
 symbol='StripVowels';
[localhost:21000] > select strip_vowels('abcdefg');
+------------------------------+
| udfs.strip_vowels('abcdefg') |
+------------------------------+
| bcdfg |
+------------------------------+
Returned 1 row(s) in 0.11s
[localhost:21000] > select strip_vowels('ABCDEFG');
+------------------------------+
| udfs.strip_vowels('abcdefg') |
+------------------------------+
| BCDFG |
+------------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select strip_vowels(null);
+-------------------------+
| udfs.strip_vowels(null) |
+-------------------------+
| NULL |
+-------------------------+
Returned 1 row(s) in 0.16s
[localhost:21000] > select s, strip_vowels(s) from t2;
+-----------+----------------------+
| s | udfs.strip_vowels(s) |
+-----------+----------------------+
lower	lwr
UPPER	PPR
Init cap	nt cp
CamelCase	CmlCs
+-----------+----------------------+
Returned 4 row(s) in 0.24s

Sample C++ UDA: SumOfSquares

This example demonstrates a user-defined aggregate function (UDA) that produces the sum of the
squares of its input values.

The coding for a UDA is a little more involved than a scalar UDF, because the processing is
split into several phases, each implemented by a different function. Each phase is relatively
straightforward: the “update” and “merge” phases, where most of the work is done, read an input
value and combine it with some accumulated intermediate value.

As in our sample UDF from the previous example, we add function signatures to a header file (in
this case, uda-sample.h). Because this is a math-oriented UDA, we make two versions of each
function, one accepting an integer value and the other accepting a floating-point value.

void SumOfSquaresInit(FunctionContext* context, BigIntVal* val);
void SumOfSquaresInit(FunctionContext* context, DoubleVal* val);

void SumOfSquaresUpdate(FunctionContext* context, const
 BigIntVal& input, BigIntVal* val);

 | Impala SQL Language Reference | 601

void SumOfSquaresUpdate(FunctionContext* context, const
 DoubleVal& input, DoubleVal* val);

void SumOfSquaresMerge(FunctionContext* context, const
 BigIntVal& src, BigIntVal* dst);
void SumOfSquaresMerge(FunctionContext* context, const
 DoubleVal& src, DoubleVal* dst);

BigIntVal SumOfSquaresFinalize(FunctionContext* context, const
 BigIntVal& val);
DoubleVal SumOfSquaresFinalize(FunctionContext* context, const
 DoubleVal& val);

We add the function bodies to a C++ source file (in this case, uda-sample.cc):

void SumOfSquaresInit(FunctionContext* context, BigIntVal* val)
 {
 val->is_null = false;
 val->val = 0;
}
void SumOfSquaresInit(FunctionContext* context, DoubleVal* val)
 {
 val->is_null = false;
 val->val = 0.0;
}

void SumOfSquaresUpdate(FunctionContext* context, const
 BigIntVal& input, BigIntVal* val) {
 if (input.is_null) return;
 val->val += input.val * input.val;
}
void SumOfSquaresUpdate(FunctionContext* context, const
 DoubleVal& input, DoubleVal* val) {
 if (input.is_null) return;
 val->val += input.val * input.val;
}

void SumOfSquaresMerge(FunctionContext* context, const
 BigIntVal& src, BigIntVal* dst) {
 dst->val += src.val;
}
void SumOfSquaresMerge(FunctionContext* context, const
 DoubleVal& src, DoubleVal* dst) {
 dst->val += src.val;
}

BigIntVal SumOfSquaresFinalize(FunctionContext* context, const
 BigIntVal& val) {
 return val;
}
DoubleVal SumOfSquaresFinalize(FunctionContext* context, const
 DoubleVal& val) {
 return val;
}

As with the sample UDF, we build a shared library and put it into HDFS:

$ make
[0%] Generating udf_samples/uda-sample.ll
[16%] Built target uda-sample-ir
Scanning dependencies of target udasample
[33%] Building CXX object CMakeFiles/udasample.dir/uda-sample.o
Linking CXX shared library udf_samples/libudasample.so

 | Impala SQL Language Reference | 602

[33%] Built target udasample
Scanning dependencies of target uda-sample-test
[50%] Building CXX object CMakeFiles/uda-sample-test.dir/uda-
sample-test.o
Linking CXX executable udf_samples/uda-sample-test
[50%] Built target uda-sample-test
[50%] Generating udf_samples/udf-sample.ll
[66%] Built target udf-sample-ir
[83%] Built target udfsample
[100%] Built target udf-sample-test
$ hdfs dfs -put ./udf_samples/libudasample.so /user/hive/udfs/
libudasample.so

To create the SQL function, we issue a CREATE AGGREGATE FUNCTION statement and specify
the underlying C++ function names for the different phases:

[localhost:21000] > use udf_testing;

[localhost:21000] > create table sos (x bigint, y double);
[localhost:21000] > insert into sos values (1, 1.1), (2, 2.2),
 (3, 3.3), (4, 4.4);
Inserted 4 rows in 1.10s

[localhost:21000] > create aggregate function
 sum_of_squares(bigint) returns bigint
 > location '/user/hive/udfs/libudasample.so'
 > init_fn='SumOfSquaresInit'
 > update_fn='SumOfSquaresUpdate'
 > merge_fn='SumOfSquaresMerge'
 > finalize_fn='SumOfSquaresFinalize';

[localhost:21000] > -- Compute the same value using literals or
 the UDA;
[localhost:21000] > select 1*1 + 2*2 + 3*3 + 4*4;
+-------------------------------+
| 1 * 1 + 2 * 2 + 3 * 3 + 4 * 4 |
+-------------------------------+
| 30 |
+-------------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select sum_of_squares(x) from sos;
+------------------------+
| udfs.sum_of_squares(x) |
+------------------------+
| 30 |
+------------------------+
Returned 1 row(s) in 0.35s

Until we create the overloaded version of the UDA, it can only handle a single data type. To allow
it to handle DOUBLE as well as BIGINT, we issue another CREATE AGGREGATE FUNCTION
statement:

[localhost:21000] > select sum_of_squares(y) from sos;
ERROR: AnalysisException: No matching function with signature:
 udfs.sum_of_squares(DOUBLE).

[localhost:21000] > create aggregate function
 sum_of_squares(double) returns double
 > location '/user/hive/udfs/libudasample.so'
 > init_fn='SumOfSquaresInit'
 > update_fn='SumOfSquaresUpdate'
 > merge_fn='SumOfSquaresMerge'

 | Impala SQL Language Reference | 603

 > finalize_fn='SumOfSquaresFinalize';

[localhost:21000] > -- Compute the same value using literals or
 the UDA;
[localhost:21000] > select 1.1*1.1 + 2.2*2.2 + 3.3*3.3 +
 4.4*4.4;
+---+
| 1.1 * 1.1 + 2.2 * 2.2 + 3.3 * 3.3 + 4.4 * 4.4 |
+---+
| 36.3 |
+---+
Returned 1 row(s) in 0.12s
[localhost:21000] > select sum_of_squares(y) from sos;
+------------------------+
| udfs.sum_of_squares(y) |
+------------------------+
| 36.3 |
+------------------------+
Returned 1 row(s) in 0.35s

Typically, you use a UDA in queries with GROUP BY clauses, to produce a result set with a
separate aggregate value for each combination of values from the GROUP BY clause. Let's change
our sample table to use 0 to indicate rows containing even values, and 1 to flag rows containing
odd values. Then the GROUP BY query can return two values, the sum of the squares for the even
values, and the sum of the squares for the odd values:

[localhost:21000] > insert overwrite sos values (1, 1), (2, 0),
 (3, 1), (4, 0);
Inserted 4 rows in 1.24s

[localhost:21000] > -- Compute 1 squared + 3 squared, and 2
 squared + 4 squared;
[localhost:21000] > select y, sum_of_squares(x) from sos group
 by y;
+---+------------------------+
| y | udfs.sum_of_squares(x) |
+---+------------------------+
| 1 | 10 |
| 0 | 20 |
+---+------------------------+
Returned 2 row(s) in 0.43s

Security Considerations for User-Defined Functions

When the Impala authorization feature is enabled:

• To call a UDF in a query, you must have the required read privilege for any databases and tables used in the
query.

• Because incorrectly coded UDFs could cause performance or capacity problems, for example by going into
infinite loops or allocating excessive amounts of memory, only an administrative user can create UDFs. That is, to
execute the CREATE FUNCTION statement requires the ALL privilege on the server.

See Enabling Sentry Authorization for Impala on page 87 for details about authorization in Impala.

Limitations and Restrictions for Impala UDFs

The following limitations and restrictions apply to Impala UDFs in the current release:

• Impala does not support Hive UDFs that accept or return composite or nested types, or other types not available in
Impala tables.

• The Hive current_user() function cannot be called from a Java UDF through Impala.

 | Impala SQL Language Reference | 604

• All Impala UDFs must be deterministic, that is, produce the same output each time when passed the same
argument values. For example, an Impala UDF must not call functions such as rand() to produce different
values for each invocation. It must not retrieve data from external sources, such as from disk or over the network.

• An Impala UDF must not spawn other threads or processes.
• Prior to Impala 2.5 when the catalogd process is restarted, all UDFs become undefined and must be reloaded.

In Impala 2.5 and higher, this limitation only applies to older Java UDFs. Re-create those UDFs using the new
CREATE FUNCTION syntax for Java UDFs, which excludes the function signature, to remove the limitation
entirely.

• Impala currently does not support user-defined table functions (UDTFs).
• The CHAR and VARCHAR types cannot be used as input arguments or return values for UDFs.

SQL Differences Between Impala and Hive
Impala's SQL syntax follows the SQL-92 standard, and includes many industry extensions in areas such as built-
in functions. See Porting SQL from Other Database Systems to Impala on page 606 for a general discussion of
adapting SQL code from a variety of database systems to Impala.

Because Impala and Hive share the same metastore database and their tables are often used interchangeably, the
following section covers differences between Impala and Hive in detail.

HiveQL Features not Available in Impala

The current release of Impala does not support the following SQL features that you might be familiar with from
HiveQL:

• Extensibility mechanisms such as TRANSFORM, custom file formats, or custom SerDes.
• The DATE data type.
• XML and JSON functions.
• Certain aggregate functions from HiveQL: covar_pop, covar_samp, corr, percentile,

percentile_approx, histogram_numeric, collect_set; Impala supports the set of aggregate
functions listed in Impala Aggregate Functions on page 537 and analytic functions listed in Impala Analytic
Functions on page 568.

• Sampling.
• Lateral views. In Impala 2.3 and higher, Impala supports queries on complex types (STRUCT, ARRAY, or MAP),

using join notation rather than the EXPLODE() keyword. See Complex Types (Impala 2.3 or higher only) on page
152 for details about Impala support for complex types.

• Multiple DISTINCT clauses per query, although Impala includes some workarounds for this limitation.

Note:

By default, Impala only allows a single COUNT(DISTINCT columns) expression in each query.

If you do not need precise accuracy, you can produce an estimate of the distinct values for a column by specifying
NDV(column); a query can contain multiple instances of NDV(column). To make Impala automatically
rewrite COUNT(DISTINCT) expressions to NDV(), enable the APPX_COUNT_DISTINCT query option.

To produce the same result as multiple COUNT(DISTINCT) expressions, you can use the following technique
for queries involving a single table:

select v1.c1 result1, v2.c1 result2 from
 (select count(distinct col1) as c1 from t1) v1
 cross join
 (select count(distinct col2) as c1 from t1) v2;

Because CROSS JOIN is an expensive operation, prefer to use the NDV() technique wherever practical.

User-defined functions (UDFs) are supported starting in Impala 1.2. See Impala User-Defined Functions (UDFs) on
page 587 for full details on Impala UDFs.

 | Impala SQL Language Reference | 605

• Impala supports high-performance UDFs written in C++, as well as reusing some Java-based Hive UDFs.
• Impala supports scalar UDFs and user-defined aggregate functions (UDAFs). Impala does not currently support

user-defined table generating functions (UDTFs).
• Only Impala-supported column types are supported in Java-based UDFs.
• The Hive current_user() function cannot be called from a Java UDF through Impala.

Impala does not currently support these HiveQL statements:

• ANALYZE TABLE (the Impala equivalent is COMPUTE STATS)
• DESCRIBE COLUMN
• DESCRIBE DATABASE
• EXPORT TABLE
• IMPORT TABLE
• SHOW TABLE EXTENDED
• SHOW INDEXES
• SHOW COLUMNS
• INSERT OVERWRITE DIRECTORY; use INSERT OVERWRITE table_name or CREATE TABLE AS

SELECT to materialize query results into the HDFS directory associated with an Impala table.

Semantic Differences Between Impala and HiveQL Features

This section covers instances where Impala and Hive have similar functionality, sometimes including the same
syntax, but there are differences in the runtime semantics of those features.

Security:

Impala utilizes the Apache Sentry authorization framework, which provides fine-grained role-based access control to
protect data against unauthorized access or tampering.

The Hive component now includes Sentry-enabled GRANT, REVOKE, and CREATE/DROP ROLE statements. Earlier
Hive releases had a privilege system with GRANT and REVOKE statements that were primarily intended to prevent
accidental deletion of data, rather than a security mechanism to protect against malicious users.

Impala can make use of privileges set up through Hive GRANT and REVOKE statements. Impala has its own GRANT
and REVOKE statements in Impala 2.0 and higher. See Enabling Sentry Authorization for Impala on page 87 for
the details of authorization in Impala, including how to switch from the original policy file-based privilege model to
the Sentry service using privileges stored in the metastore database.

SQL statements and clauses:

The semantics of Impala SQL statements varies from HiveQL in some cases where they use similar SQL statement
and clause names:

• Impala uses different syntax and names for query hints, [SHUFFLE] and [NOSHUFFLE] rather than MapJoin
or StreamJoin. See Joins in Impala SELECT Statements on page 324 for the Impala details.

• Impala does not expose MapReduce specific features of SORT BY, DISTRIBUTE BY, or CLUSTER BY.
• Impala does not require queries to include a FROM clause.

Data types:

• Impala supports a limited set of implicit casts. This can help avoid undesired results from unexpected casting
behavior.

• Impala does not implicitly cast between string and numeric or Boolean types. Always use CAST() for these
conversions.

• Impala does perform implicit casts among the numeric types, when going from a smaller or less precise type
to a larger or more precise one. For example, Impala will implicitly convert a SMALLINT to a BIGINT or
FLOAT, but to convert from DOUBLE to FLOAT or INT to TINYINT requires a call to CAST() in the query.

http://sentry.apache.org/

 | Impala SQL Language Reference | 606

• Impala does perform implicit casts from string to timestamp. Impala has a restricted set of literal formats for
the TIMESTAMP data type and the from_unixtime() format string; see TIMESTAMP Data Type on page
141 for details.

See Data Types on page 107 for full details on implicit and explicit casting for all types, and Impala Type
Conversion Functions on page 449 for details about the CAST() function.

• Impala does not store or interpret timestamps using the local timezone, to avoid undesired results from unexpected
time zone issues. Timestamps are stored and interpreted relative to UTC. This difference can produce different
results for some calls to similarly named date/time functions between Impala and Hive. See Impala Date and Time
Functions on page 453 for details about the Impala functions. See TIMESTAMP Data Type on page 141 for
a discussion of how Impala handles time zones, and configuration options you can use to make Impala match the
Hive behavior more closely when dealing with Parquet-encoded TIMESTAMP data or when converting between
the local time zone and UTC.

• The Impala TIMESTAMP type can represent dates ranging from 1400-01-01 to 9999-12-31. This is different from
the Hive date range, which is 0000-01-01 to 9999-12-31.

• Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and
overflow conditions similar to how they do so with traditional database systems. Impala returns the largest or
smallest value in the range for the type. For example, valid values for a tinyint range from -128 to 127. In
Impala, a tinyint with a value of -200 returns -128 rather than NULL. A tinyint with a value of 200 returns
127.

Miscellaneous features:

• Impala does not provide virtual columns.
• Impala does not expose locking.
• Impala does not expose some configuration properties.

Porting SQL from Other Database Systems to Impala
Although Impala uses standard SQL for queries, you might need to modify SQL source when bringing applications to
Impala, due to variations in data types, built-in functions, vendor language extensions, and Hadoop-specific syntax.
Even when SQL is working correctly, you might make further minor modifications for best performance.

Porting DDL and DML Statements

When adapting SQL code from a traditional database system to Impala, expect to find a number of differences in the
DDL statements that you use to set up the schema. Clauses related to physical layout of files, tablespaces, and indexes
have no equivalent in Impala. You might restructure your schema considerably to account for the Impala partitioning
scheme and Hadoop file formats.

Expect SQL queries to have a much higher degree of compatibility. With modest rewriting to address vendor
extensions and features not yet supported in Impala, you might be able to run identical or almost-identical query text
on both systems.

Therefore, consider separating out the DDL into a separate Impala-specific setup script. Focus your reuse and ongoing
tuning efforts on the code for SQL queries.

Porting Data Types from Other Database Systems

• Change any VARCHAR, VARCHAR2, and CHAR columns to STRING. Remove any length constraints from the
column declarations; for example, change VARCHAR(32) or CHAR(1) to STRING. Impala is very flexible
about the length of string values; it does not impose any length constraints or do any special processing (such
as blank-padding) for STRING columns. (In Impala 2.0 and higher, there are data types VARCHAR and CHAR,
with length constraints for both types and blank-padding for CHAR. However, for performance reasons, it is still
preferable to use STRING columns where practical.)

 | Impala SQL Language Reference | 607

• For national language character types such as NCHAR, NVARCHAR, or NCLOB, be aware that while Impala can
store and query UTF-8 character data, currently some string manipulation operations only work correctly with
ASCII data. See STRING Data Type on page 134 for details.

• Change any DATE, DATETIME, or TIME columns to TIMESTAMP. Remove any precision constraints. Remove
any timezone clauses, and make sure your application logic or ETL process accounts for the fact that Impala
expects all TIMESTAMP values to be in Coordinated Universal Time (UTC). See TIMESTAMP Data Type on
page 141 for information about the TIMESTAMP data type, and Impala Date and Time Functions on page
453 for conversion functions for different date and time formats.

You might also need to adapt date- and time-related literal values and format strings to use the supported Impala
date and time formats. If you have date and time literals with different separators or different numbers of YY, MM,
and so on placeholders than Impala expects, consider using calls to regexp_replace() to transform those
values to the Impala-compatible format. See TIMESTAMP Data Type on page 141 for information about the
allowed formats for date and time literals, and Impala String Functions on page 510 for string conversion
functions such as regexp_replace().

Instead of SYSDATE, call the function NOW().

Instead of adding or subtracting directly from a date value to produce a value N days in the past or future, use an
INTERVAL expression, for example NOW() + INTERVAL 30 DAYS.

• Although Impala supports INTERVAL expressions for datetime arithmetic, as shown in TIMESTAMP Data Type
on page 141, INTERVAL is not available as a column data type in Impala. For any INTERVAL values stored in
tables, convert them to numeric values that you can add or subtract using the functions in Impala Date and Time
Functions on page 453. For example, if you had a table DEADLINES with an INT column TIME_PERIOD,
you could construct dates N days in the future like so:

SELECT NOW() + INTERVAL time_period DAYS from deadlines;

• For YEAR columns, change to the smallest Impala integer type that has sufficient range. See Data Types on page
107 for details about ranges, casting, and so on for the various numeric data types.

• Change any DECIMAL and NUMBER types. If fixed-point precision is not required, you can use FLOAT or
DOUBLE on the Impala side depending on the range of values. For applications that require precise decimal
values, such as financial data, you might need to make more extensive changes to table structure and application
logic, such as using separate integer columns for dollars and cents, or encoding numbers as string values and
writing UDFs to manipulate them. See Data Types on page 107 for details about ranges, casting, and so on for
the various numeric data types.

• FLOAT, DOUBLE, and REAL types are supported in Impala. Remove any precision and scale specifications. (In
Impala, REAL is just an alias for DOUBLE; columns declared as REAL are turned into DOUBLE behind the scenes.)
See Data Types on page 107 for details about ranges, casting, and so on for the various numeric data types.

• Most integer types from other systems have equivalents in Impala, perhaps under different names such as
BIGINT instead of INT8. For any that are unavailable, for example MEDIUMINT, switch to the smallest Impala
integer type that has sufficient range. Remove any precision specifications. See Data Types on page 107 for
details about ranges, casting, and so on for the various numeric data types.

• Remove any UNSIGNED constraints. All Impala numeric types are signed. See Data Types on page 107 for
details about ranges, casting, and so on for the various numeric data types.

• For any types holding bitwise values, use an integer type with enough range to hold all the relevant bits within
a positive integer. See Data Types on page 107 for details about ranges, casting, and so on for the various
numeric data types.

For example, TINYINT has a maximum positive value of 127, not 256, so to manipulate 8-bit bitfields as positive
numbers switch to the next largest type SMALLINT.

[localhost:21000] > select cast(127*2 as tinyint);
+--------------------------+
| cast(127 * 2 as tinyint) |
+--------------------------+
| -2 |
+--------------------------+

http://en.wikipedia.org/wiki/Coordinated_Universal_Time

 | Impala SQL Language Reference | 608

[localhost:21000] > select cast(128 as tinyint);
+----------------------+
| cast(128 as tinyint) |
+----------------------+
| -128 |
+----------------------+
[localhost:21000] > select cast(127*2 as smallint);
+---------------------------+
| cast(127 * 2 as smallint) |
+---------------------------+
| 254 |
+---------------------------+

Impala does not support notation such as b'0101' for bit literals.
• For BLOB values, use STRING to represent CLOB or TEXT types (character based large objects) up to 32 KB in

size. Binary large objects such as BLOB, RAW BINARY, and VARBINARY do not currently have an equivalent in
Impala.

• For Boolean-like types such as BOOL, use the Impala BOOLEAN type.
• Because Impala currently does not support composite or nested types, any spatial data types in other database

systems do not have direct equivalents in Impala. You could represent spatial values in string format and write
UDFs to process them. See Impala User-Defined Functions (UDFs) on page 587 for details. Where practical,
separate spatial types into separate tables so that Impala can still work with the non-spatial data.

• Take out any DEFAULT clauses. Impala can use data files produced from many different sources, such as Pig,
Hive, or MapReduce jobs. The fast import mechanisms of LOAD DATA and external tables mean that Impala is
flexible about the format of data files, and Impala does not necessarily validate or cleanse data before querying it.
When copying data through Impala INSERT statements, you can use conditional functions such as CASE or NVL
to substitute some other value for NULL fields; see Impala Conditional Functions on page 504 for details.

• Take out any constraints from your CREATE TABLE and ALTER TABLE statements, for example PRIMARY
KEY, FOREIGN KEY, UNIQUE, NOT NULL, UNSIGNED, or CHECK constraints. Impala can use data files
produced from many different sources, such as Pig, Hive, or MapReduce jobs. Therefore, Impala expects initial
data validation to happen earlier during the ETL or ELT cycle. After data is loaded into Impala tables, you
can perform queries to test for NULL values. When copying data through Impala INSERT statements, you can
use conditional functions such as CASE or NVL to substitute some other value for NULL fields; see Impala
Conditional Functions on page 504 for details.

Do as much verification as practical before loading data into Impala. After data is loaded into Impala, you can
do further verification using SQL queries to check if values have expected ranges, if values are NULL or not,
and so on. If there is a problem with the data, you will need to re-run earlier stages of the ETL process, or do an
INSERT ... SELECT statement in Impala to copy the faulty data to a new table and transform or filter out the
bad values.

• Take out any CREATE INDEX, DROP INDEX, and ALTER INDEX statements, and equivalent ALTER TABLE
statements. Remove any INDEX, KEY, or PRIMARY KEY clauses from CREATE TABLE and ALTER TABLE
statements. Impala is optimized for bulk read operations for data warehouse-style queries, and therefore does not
support indexes for its tables.

• Calls to built-in functions with out-of-range or otherwise incorrect arguments, return NULL in Impala as opposed
to raising exceptions. (This rule applies even when the ABORT_ON_ERROR=true query option is in effect.) Run
small-scale queries using representative data to doublecheck that calls to built-in functions are returning expected
values rather than NULL. For example, unsupported CAST operations do not raise an error in Impala:

select cast('foo' as int);
+--------------------+
| cast('foo' as int) |
+--------------------+
| NULL |
+--------------------+

• For any other type not supported in Impala, you could represent their values in string format and write UDFs to
process them. See Impala User-Defined Functions (UDFs) on page 587 for details.

 | Impala SQL Language Reference | 609

• To detect the presence of unsupported or unconvertable data types in data files, do initial testing with the
ABORT_ON_ERROR=true query option in effect. This option causes queries to fail immediately if they
encounter disallowed type conversions. See ABORT_ON_ERROR Query Option on page 359 for details. For
example:

set abort_on_error=true;
select count(*) from (select * from t1);
-- The above query will fail if the data files for T1 contain any
-- values that can't be converted to the expected Impala data types.
-- For example, if T1.C1 is defined as INT but the column contains
-- floating-point values like 1.1, the query will return an error.

SQL Statements to Remove or Adapt

Some SQL statements or clauses that you might be familiar with are not currently supported in Impala:

• Impala has no DELETE statement. Impala is intended for data warehouse-style operations where you do bulk
moves and transforms of large quantities of data. Instead of using DELETE, use INSERT OVERWRITE to
entirely replace the contents of a table or partition, or use INSERT ... SELECT to copy a subset of data
(everything but the rows you intended to delete) from one table to another. See DML Statements on page 224
for an overview of Impala DML statements.

• Impala has no UPDATE statement. Impala is intended for data warehouse-style operations where you do bulk
moves and transforms of large quantities of data. Instead of using UPDATE, do all necessary transformations early
in the ETL process, such as in the job that generates the original data, or when copying from one table to another
to convert to a particular file format or partitioning scheme. See DML Statements on page 224 for an overview
of Impala DML statements.

• Impala has no transactional statements, such as COMMIT or ROLLBACK. Impala effectively works like the
AUTOCOMMIT mode in some database systems, where changes take effect as soon as they are made.

• If your database, table, column, or other names conflict with Impala reserved words, use different names or quote
the names with backticks. See Impala Reserved Words on page 776 for the current list of Impala reserved
words.

Conversely, if you use a keyword that Impala does not recognize, it might be interpreted as a table or column
alias. For example, in SELECT * FROM t1 NATURAL JOIN t2, Impala does not recognize the NATURAL
keyword and interprets it as an alias for the table t1. If you experience any unexpected behavior with queries,
check the list of reserved words to make sure all keywords in join and WHERE clauses are recognized.

• Impala supports subqueries only in the FROM clause of a query, not within the WHERE clauses. Therefore, you
cannot use clauses such as WHERE column IN (subquery). Also, Impala does not allow EXISTS or NOT
EXISTS clauses (although EXISTS is a reserved keyword).

• Impala supports UNION and UNION ALL set operators, but not INTERSECT. Prefer UNION ALL over UNION
when you know the data sets are disjoint or duplicate values are not a problem; UNION ALL is more efficient
because it avoids materializing and sorting the entire result set to eliminate duplicate values.

• Within queries, Impala requires query aliases for any subqueries:

-- Without the alias 'contents_of_t1' at the end, query gives syntax
 error.
select count(*) from (select * from t1) contents_of_t1;

• When an alias is declared for an expression in a query, that alias cannot be referenced again within the same query
block:

-- Can't reference AVERAGE twice in the SELECT list where it's defined.
select avg(x) as average, average+1 from t1 group by x;
ERROR: AnalysisException: couldn't resolve column reference: 'average'

-- Although it can be referenced again later in the same query.
select avg(x) as average from t1 group by x having average > 3;

 | Impala SQL Language Reference | 610

For Impala, either repeat the expression again, or abstract the expression into a WITH clause, creating named
columns that can be referenced multiple times anywhere in the base query:

-- The following 2 query forms are equivalent.
select avg(x) as average, avg(x)+1 from t1 group by x;
with avg_t as (select avg(x) average from t1 group by x) select average,
 average+1 from avg_t;

• Impala does not support certain rarely used join types that are less appropriate for high-volume tables used for
data warehousing. In some cases, Impala supports join types but requires explicit syntax to ensure you do not do
inefficient joins of huge tables by accident. For example, Impala does not support natural joins or anti-joins, and
requires the CROSS JOIN operator for Cartesian products. See Joins in Impala SELECT Statements on page
324 for details on the syntax for Impala join clauses.

• Impala has a limited choice of partitioning types. Partitions are defined based on each distinct combination
of values for one or more partition key columns. Impala does not redistribute or check data to create evenly
distributed partitions; you must choose partition key columns based on your knowledge of the data volume and
distribution. Adapt any tables that use range, list, hash, or key partitioning to use the Impala partition syntax for
CREATE TABLE and ALTER TABLE statements. Impala partitioning is similar to range partitioning where every
range has exactly one value, or key partitioning where the hash function produces a separate bucket for every
combination of key values. See Partitioning for Impala Tables on page 681 for usage details, and CREATE
TABLE Statement on page 256 and ALTER TABLE Statement on page 225 for syntax.

Note: Because the number of separate partitions is potentially higher than in other database systems, keep a
close eye on the number of partitions and the volume of data in each one; scale back the number of partition key
columns if you end up with too many partitions with a small volume of data in each one. Remember, to distribute
work for a query across a cluster, you need at least one HDFS block per node. HDFS blocks are typically multiple
megabytes, especially for Parquet files. Therefore, if each partition holds only a few megabytes of data, you are
unlikely to see much parallelism in the query because such a small amount of data is typically processed by a
single node.

• For “top-N” queries, Impala uses the LIMIT clause rather than comparing against a pseudocolumn named
ROWNUM or ROW_NUM. See LIMIT Clause on page 337 for details.

SQL Constructs to Doublecheck

Some SQL constructs that are supported have behavior or defaults more oriented towards convenience than optimal
performance. Also, sometimes machine-generated SQL, perhaps issued through JDBC or ODBC applications, might
have inefficiencies or exceed internal Impala limits. As you port SQL code, be alert and change these things where
appropriate:

• A CREATE TABLE statement with no STORED AS clause creates data files in plain text format, which is
convenient for data interchange but not a good choice for high-volume data with high-performance queries. See
How Impala Works with Hadoop File Formats on page 690 for why and how to use specific file formats for
compact data and high-performance queries. Especially see Using the Parquet File Format with Impala Tables on
page 699, for details about the file format most heavily optimized for large-scale data warehouse queries.

• A CREATE TABLE statement with no PARTITIONED BY clause stores all the data files in the same physical
location, which can lead to scalability problems when the data volume becomes large.

On the other hand, adapting tables that were already partitioned in a different database system could produce
an Impala table with a high number of partitions and not enough data in each one, leading to underutilization of
Impala's parallel query features.

See Partitioning for Impala Tables on page 681 for details about setting up partitioning and tuning the
performance of queries on partitioned tables.

• The INSERT ... VALUES syntax is suitable for setting up toy tables with a few rows for functional testing,
but because each such statement creates a separate tiny file in HDFS, it is not a scalable technique for loading
megabytes or gigabytes (let alone petabytes) of data. Consider revising your data load process to produce raw data
files outside of Impala, then setting up Impala external tables or using the LOAD DATA statement to use those
data files instantly in Impala tables, with no conversion or indexing stage. See External Tables on page 215

 | Using the Impala Shell (impala-shell Command) | 611

and LOAD DATA Statement on page 313 for details about the Impala techniques for working with data files
produced outside of Impala; see Data Loading and Querying Examples on page 45 for examples of ETL
workflow for Impala.

• If your ETL process is not optimized for Hadoop, you might end up with highly fragmented small data files, or a
single giant data file that cannot take advantage of distributed parallel queries or partitioning. In this case, use an
INSERT ... SELECT statement to copy the data into a new table and reorganize into a more efficient layout in
the same operation. See INSERT Statement on page 301 for details about the INSERT statement.

You can do INSERT ... SELECT into a table with a more efficient file format (see How Impala Works with
Hadoop File Formats on page 690) or from an unpartitioned table into a partitioned one (see Partitioning for
Impala Tables on page 681).

• The number of expressions allowed in an Impala query might be smaller than for some other database systems,
causing failures for very complicated queries (typically produced by automated SQL generators). Where practical,
keep the number of expressions in the WHERE clauses to approximately 2000 or fewer. As a workaround, set
the query option DISABLE_CODEGEN=true if queries fail for this reason. See DISABLE_CODEGEN Query
Option on page 364 for details.

• If practical, rewrite UNION queries to use the UNION ALL operator instead. Prefer UNION ALL over UNION
when you know the data sets are disjoint or duplicate values are not a problem; UNION ALL is more efficient
because it avoids materializing and sorting the entire result set to eliminate duplicate values.

Next Porting Steps after Verifying Syntax and Semantics

Throughout this section, some of the decisions you make during the porting process also have a substantial impact on
performance. After your SQL code is ported and working correctly, doublecheck the performance-related aspects of
your schema design, physical layout, and queries to make sure that the ported application is taking full advantage of
Impala's parallelism, performance-related SQL features, and integration with Hadoop components.

• Have you run the COMPUTE STATS statement on each table involved in join queries? Have you also run
COMPUTE STATS for each table used as the source table in an INSERT ... SELECT or CREATE TABLE
AS SELECT statement?

• Are you using the most efficient file format for your data volumes, table structure, and query characteristics?
• Are you using partitioning effectively? That is, have you partitioned on columns that are often used for filtering

in WHERE clauses? Have you partitioned at the right granularity so that there is enough data in each partition to
parallelize the work for each query?

• Does your ETL process produce a relatively small number of multi-megabyte data files (good) rather than a huge
number of small files (bad)?

See Tuning Impala for Performance on page 626 for details about the whole performance tuning process.

Using the Impala Shell (impala-shell Command)

You can use the Impala shell tool (impala-shell) to set up databases and tables, insert data, and issue queries.
For ad hoc queries and exploration, you can submit SQL statements in an interactive session. To automate your work,
you can specify command-line options to process a single statement or a script file. The impala-shell interpreter
accepts all the same SQL statements listed in Impala SQL Statements on page 223, plus some shell-only commands
that you can use for tuning performance and diagnosing problems.

The impala-shell command fits into the familiar Unix toolchain:

• The -q option lets you issue a single query from the command line, without starting the interactive interpreter.
You could use this option to run impala-shell from inside a shell script or with the command invocation
syntax from a Python, Perl, or other kind of script.

• The -f option lets you process a file containing multiple SQL statements, such as a set of reports or DDL
statements to create a group of tables and views.

• The --var option lets you pass substitution variables to the statements that are executed by that impala-
shell session, for example the statements in a script file processed by the -f option. You encode the

 | Using the Impala Shell (impala-shell Command) | 612

substitution variable on the command line using the notation --var=variable_name=value. Within a SQL
statement, you substitute the value by using the notation ${var:variable_name}. This feature is available in
Impala 2.5 and higher.

• The -o option lets you save query output to a file.
• The -B option turns off pretty-printing, so that you can produce comma-separated, tab-separated, or other

delimited text files as output. (Use the --output_delimiter option to choose the delimiter character; the
default is the tab character.)

• In non-interactive mode, query output is printed to stdout or to the file specified by the -o option, while
incidental output is printed to stderr, so that you can process just the query output as part of a Unix pipeline.

• In interactive mode, impala-shell uses the readline facility to recall and edit previous commands.

For information on installing the Impala shell, see Installing Impala on page 24.

For information about establishing a connection to a DataNode running the impalad daemon through the impala-
shell command, see Connecting to impalad through impala-shell on page 616.

For a list of the impala-shell command-line options, see impala-shell Configuration Options on page 612. For
reference information about the impala-shell interactive commands, see impala-shell Command Reference on
page 623.

impala-shell Configuration Options
You can specify the following options when starting the impala-shell command to change how shell commands
are executed. The table shows the format to use when specifying each option on the command line, or through the
$HOME/.impalarc configuration file.

Note:

These options are different than the configuration options for the impalad daemon itself. For the impalad options,
see Modifying Impala Startup Options on page 32.

Summary of impala-shell Configuration Options

The following table shows the names and allowed arguments for the impala-shell configuration options. You
can specify options on the command line, or in a configuration file as described in impala-shell Configuration File on
page 615.

Command-Line Option Configuration File
Setting

Explanation

-B or --delimited write_delimited=true Causes all query results to be printed in plain format
as a delimited text file. Useful for producing data
files to be used with other Hadoop components. Also
useful for avoiding the performance overhead of
pretty-printing all output, especially when running
benchmark tests using queries returning large result
sets. Specify the delimiter character with the --
output_delimiter option. Store all query results
in a file rather than printing to the screen with the -B
option. Added in Impala 1.0.1.

--print_header print_header=true

 | Using the Impala Shell (impala-shell Command) | 613

Command-Line Option Configuration File
Setting

Explanation

-o filename or --
output_file filename

output_file=filename Stores all query results in the specified file. Typically
used to store the results of a single query issued from
the command line with the -q option. Also works
for interactive sessions; you see the messages such
as number of rows fetched, but not the actual result
set. To suppress these incidental messages when
combining the -q and -o options, redirect stderr
to /dev/null. Added in Impala 1.0.1.

--
output_delimiter=character

output_delimiter=characterSpecifies the character to use as a delimiter between
fields when query results are printed in plain format
by the -B option. Defaults to tab ('\t'). If an output
value contains the delimiter character, that field is
quoted, escaped by doubling quotation marks, or both.
Added in Impala 1.0.1.

-p or --show_profiles show_profiles=true Displays the query execution plan (same output as
the EXPLAIN statement) and a more detailed low-
level breakdown of execution steps, for every query
executed by the shell.

-h or --help N/A Displays help information.

N/A history_max=1000 Sets the maximum number of queries to store in the
history file.

-i hostname or --
impalad=hostname[:portnum]

impalad=hostname[:portnum]Connects to the impalad daemon on the specified
host. The default port of 21000 is assumed unless
you provide another value. You can connect to any
host in your cluster that is running impalad. If you
connect to an instance of impalad that was started
with an alternate port specified by the --fe_port
flag, provide that alternative port.

-q query or --query=query query=query Passes a query or other impala-shell command
from the command line. The impala-shell
interpreter immediately exits after processing the
statement. It is limited to a single statement, which
could be a SELECT, CREATE TABLE, SHOW
TABLES, or any other statement recognized in
impala-shell. Because you cannot pass a USE
statement and another query, fully qualify the names
for any tables outside the default database. (Or
use the -f option to pass a file with a USE statement
followed by other queries.)

 | Using the Impala Shell (impala-shell Command) | 614

Command-Line Option Configuration File
Setting

Explanation

-f query_file or --
query_file=query_file

query_file=path_to_query_filePasses a SQL query from a file. Multiple statements
must be semicolon (;) delimited. In Impala 2.3 and
higher, you can specify a filename of - to represent
standard input. This feature makes it convenient
to use impala-shell as part of a Unix pipeline
where SQL statements are generated dynamically by
other tools.

--
query_option="option=value"
-Q "option=value"

Header line
[impala.query_options],
followed on subsequent
lines by option=value, one
option per line.

Sets default query options for an invocation of the
impala-shell command. To set multiple query
options at once, use more than one instance of this
command-line option. The query option names are not
case-sensitive.

-k or --kerberos use_kerberos=true Kerberos authentication is used when the shell
connects to impalad. If Kerberos is not enabled
on the instance of impalad to which you are
connecting, errors are displayed.

-s kerberos_service_name
or --
kerberos_service_name=name

kerberos_service_name=nameInstructs impala-shell to authenticate to
a particular impalad service principal. If a
kerberos_service_name is not specified, impala is
used by default. If this option is used in conjunction
with a connection in which Kerberos is not supported,
errors are returned.

-V or --verbose verbose=true Enables verbose output.

--quiet verbose=false Disables verbose output.

-v or --version version=true Displays version information.

-c ignore_query_failure=true Continues on query failure.

-r or --
refresh_after_connect

refresh_after_connect=true Updates Impala metadata upon connection. Same as
running the INVALIDATE METADATA statement
after connecting. (This option was originally named
when the REFRESH statement did the extensive
metadata updates now performed by INVALIDATE
METADATA.)

-d default_db or --
database=default_db

default_db=default_db Specifies the database to be used on startup. Same as
running the USE statement after connecting. If not
specified, a database named DEFAULT is used.

-ssl ssl=true Enables TLS/SSL for impala-shell.

 | Using the Impala Shell (impala-shell Command) | 615

Command-Line Option Configuration File
Setting

Explanation

--
ca_cert=path_to_certificate

ca_cert=path_to_certificate The local pathname pointing to the third-party CA
certificate, or to a copy of the server certificate for
self-signed server certificates. If --ca_cert is
not set, impala-shell enables TLS/SSL, but
does not validate the server certificate. This is useful
for connecting to a known-good Impala that is only
running over TLS/SSL, when a copy of the certificate
is not available (such as when debugging customer
installations).

-l use_ldap=true Enables LDAP authentication.

-u user=user_name Supplies the username, when LDAP authentication
is enabled by the -l option. (Specify the short
username, not the full LDAP distinguished name.)
The shell then prompts interactively for the password.

--
ldap_password_cmd=command

N/A Specifies a command to run to retrieve the LDAP
password, when LDAP authentication is enabled
by the -l option. If the command includes space-
separated arguments, enclose the command and its
arguments in quotation marks.

--
config_file=path_to_config_file

N/A Specifies the path of the file containing impala-
shell configuration settings. The default is
$HOME/.impalarc. This setting can only be
specified on the command line.

--live_progress N/A Prints a progress bar showing roughly the percentage
complete for each query. The information is
updated interactively as the query progresses. See
LIVE_PROGRESS Query Option (Impala 2.3 or
higher only) on page 371.

--live_summary N/A Prints a detailed report, similar to the SUMMARY
command, showing progress details for each
phase of query execution. The information is
updated interactively as the query progresses. See
LIVE_SUMMARY Query Option (Impala 2.3 or
higher only) on page 372.

--
var=variable_name=value

N/A Defines a substitution variable that can be used within
the impala-shell session. The variable can be
substituted into statements processed by the -q or -
f options, or in an interactive shell session. Within a
SQL statement, you substitute the value by using the
notation ${var:variable_name}. This feature is
available in Impala 2.5 and higher.

impala-shell Configuration File

You can define a set of default options for your impala-shell environment, stored in the file
$HOME/.impalarc. This file consists of key-value pairs, one option per line. Everything after a # character on a
line is treated as a comment and ignored.

 | Using the Impala Shell (impala-shell Command) | 616

The configuration file must contain a header label [impala], followed by the options specific to impala-shell.
(This standard convention for configuration files lets you use a single file to hold configuration options for multiple
applications.)

To specify a different filename or path for the configuration file, specify the argument --
config_file=path_to_config_file on the impala-shell command line.

The names of the options in the configuration file are similar (although not necessarily identical) to the long-form
command-line arguments to the impala-shell command. For the names to use, see Summary of impala-shell
Configuration Options on page 612.

Any options you specify on the impala-shell command line override any corresponding options within the
configuration file.

The following example shows a configuration file that you might use during benchmarking tests. It sets verbose
mode, so that the output from each SQL query is followed by timing information. impala-shell starts inside
the database containing the tables with the benchmark data, avoiding the need to issue a USE statement or use fully
qualified table names.

In this example, the query output is formatted as delimited text rather than enclosed in ASCII art boxes, and is stored
in a file rather than printed to the screen. Those options are appropriate for benchmark situations, so that the overhead
of impala-shell formatting and printing the result set does not factor into the timing measurements. It also
enables the show_profiles option. That option prints detailed performance information after each query, which
might be valuable in understanding the performance of benchmark queries.

[impala]
verbose=true
default_db=tpc_benchmarking
write_delimited=true
output_delimiter=,
output_file=/home/tester1/benchmark_results.csv
show_profiles=true

The following example shows a configuration file that connects to a specific remote Impala node, runs a single query
within a particular database, then exits. Any query options predefined under the [impala.query_options]
section in the configuration file take effect during the session.

You would typically use this kind of single-purpose configuration setting with the impala-shell command-line
option --config_file=path_to_config_file, to easily select between many predefined queries that could
be run against different databases, hosts, or even different clusters. To run a sequence of statements instead of a single
query, specify the configuration option query_file=path_to_query_file instead.

[impala]
impalad=impala-test-node1.example.com
default_db=site_stats
Issue a predefined query and immediately exit.
query=select count(*) from web_traffic where event_date = trunc(now(),'dd')

[impala.query_options]
mem_limit=32g

Connecting to impalad through impala-shell
Within an impala-shell session, you can only issue queries while connected to an instance of the impalad
daemon. You can specify the connection information:

• Through command-line options when you run the impala-shell command.
• Through a configuration file that is read when you run the impala-shell command.
• During an impala-shell session, by issuing a CONNECT command.

 | Using the Impala Shell (impala-shell Command) | 617

See impala-shell Configuration Options on page 612 for the command-line and configuration file options you can
use.

You can connect to any DataNode where an instance of impalad is running, and that host coordinates the execution
of all queries sent to it.

For simplicity during development, you might always connect to the same host, perhaps running impala-shell on
the same host as impalad and specifying the hostname as localhost.

In a production environment, you might enable load balancing, in which you connect to specific host/port
combination but queries are forwarded to arbitrary hosts. This technique spreads the overhead of acting as the
coordinator node among all the DataNodes in the cluster. See Using Impala through a Proxy for High Availability on
page 78 for details.

To connect the Impala shell during shell startup:

1. Locate the hostname of a DataNode within the cluster that is running an instance of the impalad daemon. If that
DataNode uses a non-default port (something other than port 21000) for impala-shell connections, find out
the port number also.

2. Use the -i option to the impala-shell interpreter to specify the connection information for that instance of
impalad:

When you are logged into the same machine running impalad.
The prompt will reflect the current hostname.
$ impala-shell

When you are logged into the same machine running impalad.
The host will reflect the hostname 'localhost'.
$ impala-shell -i localhost

When you are logged onto a different host, perhaps a client machine
outside the Hadoop cluster.
$ impala-shell -i some.other.hostname

When you are logged onto a different host, and impalad is listening
on a non-default port. Perhaps a load balancer is forwarding requests
to a different host/port combination behind the scenes.
$ impala-shell -i some.other.hostname:port_number

To connect the Impala shell after shell startup:

1. Start the Impala shell with no connection:

$ impala-shell

You should see a prompt like the following:

Welcome to the Impala shell. Press TAB twice to see a list of available
 commands.
...
(Shell
 build version: Impala Shell v2.8.x (hash) built on
 date)
[Not connected] >

2. Locate the hostname of a DataNode within the cluster that is running an instance of the impalad daemon. If that
DataNode uses a non-default port (something other than port 21000) for impala-shell connections, find out
the port number also.

3. Use the connect command to connect to an Impala instance. Enter a command of the form:

[Not connected] > connect impalad-host
[impalad-host:21000] >

 | Using the Impala Shell (impala-shell Command) | 618

Note: Replace impalad-host with the hostname you have configured for any DataNode running Impala in your
environment. The changed prompt indicates a successful connection.

To start impala-shell in a specific database:

You can use all the same connection options as in previous examples. For simplicity, these examples assume that you
are logged into one of the DataNodes that is running the impalad daemon.

1. Find the name of the database containing the relevant tables, views, and so on that you want to operate on.
2. Use the -d option to the impala-shell interpreter to connect and immediately switch to the specified

database, without the need for a USE statement or fully qualified names:

Subsequent queries with unqualified names operate on
tables, views, and so on inside the database named 'staging'.
$ impala-shell -i localhost -d staging

It is common during development, ETL, benchmarking, and so on
to have different databases containing the same table names
but with different contents or layouts.
$ impala-shell -i localhost -d parquet_snappy_compression
$ impala-shell -i localhost -d parquet_gzip_compression

To run one or several statements in non-interactive mode:

You can use all the same connection options as in previous examples. For simplicity, these examples assume that you
are logged into one of the DataNodes that is running the impalad daemon.

1. Construct a statement, or a file containing a sequence of statements, that you want to run in an automated way,
without typing or copying and pasting each time.

2. Invoke impala-shell with the -q option to run a single statement, or the -f option to run a sequence of
statements from a file. The impala-shell command returns immediately, without going into the interactive
interpreter.

A utility command that you might run while developing shell scripts
to manipulate HDFS files.
$ impala-shell -i localhost -d database_of_interest -q 'show tables'

A sequence of CREATE TABLE, CREATE VIEW, and similar DDL statements
can go into a file to make the setup process repeatable.
$ impala-shell -i localhost -d database_of_interest -f recreate_tables.sql

Running Commands and SQL Statements in impala-shell
For information on available commands, see impala-shell Command Reference on page 623. You can see the full
set of available commands by pressing TAB twice, for example:

[impalad-host:21000] >
connect describe explain help history insert quit
 refresh select set shell show use version
[impalad-host:21000] >

Note: Commands must be terminated by a semi-colon. A command can span multiple lines.

For example:

[localhost:21000] > select *
 > from t1
 > limit 5;
+---------+-----------+
| s1 | s2 |

 | Using the Impala Shell (impala-shell Command) | 619

+---------+-----------+
| hello | world |
| goodbye | cleveland |
+---------+-----------+

A comment is considered part of the statement it precedes, so when you enter a -- or /* */ comment, you get a
continuation prompt until you finish entering a statement ending with a semicolon:

[localhost:21000] > -- This is a test comment
 > show tables like 't*';
+--------+
| name |
+--------+
| t1 |
| t2 |
| tab1 |
| tab2 |
| tab3 |
| text_t |
+--------+

Use the up-arrow and down-arrow keys to cycle through and edit previous commands. impala-shell uses the
readline library and so supports a standard set of keyboard shortcuts for editing and cursor movement, such as
Ctrl-A for beginning of line and Ctrl-E for end of line.

In Impala 2.5 and higher, you can define substitution variables to be used within SQL statements processed by
impala-shell. On the command line, you specify the option --var=variable_name=value. Within
an interactive session or a script file processed by the -f option, you specify a SET command using the notation
SET VAR:variable_name=value. Within a SQL statement, you substitute the value by using the notation
${var:variable_name}.

Note: Because this feature is part of impala-shell rather than the impalad backend, make sure the client
system you are connecting from has the most recent impala-shell. You can use this feature with a new
impala-shell connecting to an older impalad, but not the reverse.

For example, here are some impala-shell commands that define substitution variables and then use them in SQL
statements executed through the -q and -f options. Notice how the -q argument strings are single-quoted to prevent
shell expansion of the ${var:value} notation, and any string literals within the queries are enclosed by double
quotation marks.

$ impala-shell --var=tname=table1 --var=colname=x --var=coltype=string
 -q 'create table ${var:tname} (${var:colname} ${var:coltype}) stored as
 parquet'
Starting Impala Shell without Kerberos authentication
Connected to hostname
Server version: impalad_version
Query: create table table1 (x string) stored as parquet

$ NEW_STRING="hello world"
$ impala-shell --var=tname=table1 --var=insert_val="$NEW_STRING" -q 'insert
 into ${var:tname} values ("${var:insert_val}")'
Starting Impala Shell without Kerberos authentication
Connected to hostname
Server version: impalad_version
Query: insert into table1 values ("hello world")
Inserted 1 row(s) in 1.40s

$ for VAL in foo bar bletch
do
 impala-shell --var=tname=table1 --var=insert_val="$VAL" -q 'insert into
 ${var:tname} values ("${var:insert_val}")'

 | Using the Impala Shell (impala-shell Command) | 620

done
...
Query: insert into table1 values ("foo")
Inserted 1 row(s) in 0.22s
Query: insert into table1 values ("bar")
Inserted 1 row(s) in 0.11s
Query: insert into table1 values ("bletch")
Inserted 1 row(s) in 0.21s

$ echo "Search for what substring?" ; read answer
Search for what substring?
b
$ impala-shell --var=tname=table1 -q 'select x from ${var:tname} where x
 like "%${var:answer}%"'
Starting Impala Shell without Kerberos authentication
Connected to hostname
Server version: impalad_version
Query: select x from table1 where x like "%b%"
+--------+
| x |
+--------+
| bletch |
| bar |
+--------+
Fetched 2 row(s) in 0.83s

Here is a substitution variable passed in by the --var option, and then referenced by statements issued interactively.
Then the variable is cleared with the UNSET command, and defined again with the SET command.

$ impala-shell --quiet --var=tname=table1
Starting Impala Shell without Kerberos authentication

banner_message

[hostname:21000] > select count(*) from ${var:tname};
+----------+
| count(*) |
+----------+
| 4 |
+----------+
[hostname:21000] > unset var:tname;
Unsetting variable TNAME
[hostname:21000] > select count(*) from ${var:tname};
Error: Unknown variable TNAME
[hostname:21000] > set var:tname=table1;
[hostname:21000] > select count(*) from ${var:tname};
+----------+
| count(*) |
+----------+
| 4 |
+----------+

The following example shows how the SOURCE command can execute a series of statements from a file:

$ cat commands.sql
show databases;
show tables in default;
show functions in _impala_builtins like '*minute*';

$ impala-shell -i localhost
...

 | Using the Impala Shell (impala-shell Command) | 621

[localhost:21000] > source commands.sql;
Query: show databases
+------------------+--+
| name | comment |
+------------------+--+
| _impala_builtins | System database for Impala builtin functions |
| default | Default Hive database |
+------------------+--+
Fetched 2 row(s) in 0.06s
Query: show tables in default
+-----------+
| name |
+-----------+
| customers |
| sample_07 |
| sample_08 |
| web_logs |
+-----------+
Fetched 4 row(s) in 0.02s
Query: show functions in _impala_builtins like '*minute*'
+-------------+--------------------------------+-------------
+---------------+
| return type | signature | binary type | is persistent
 |
+-------------+--------------------------------+-------------
+---------------+
| INT | minute(TIMESTAMP) | BUILTIN | true
 |
| TIMESTAMP | minutes_add(TIMESTAMP, BIGINT) | BUILTIN | true
 |
| TIMESTAMP | minutes_add(TIMESTAMP, INT) | BUILTIN | true
 |
| TIMESTAMP | minutes_sub(TIMESTAMP, BIGINT) | BUILTIN | true
 |
| TIMESTAMP | minutes_sub(TIMESTAMP, INT) | BUILTIN | true
 |
+-------------+--------------------------------+-------------
+---------------+
Fetched 5 row(s) in 0.03s

The following example shows how a file that is run by the SOURCE command, or through the -q or -f options of
impala-shell, can contain additional SOURCE commands. The first file, nested1.sql, runs an impala-
shell command and then also runs the commands from nested2.sql. This ability for scripts to call each other is
often useful for code that sets up schemas for applications or test environments.

$ cat nested1.sql
show functions in _impala_builtins like '*minute*';
source nested2.sql
$ cat nested2.sql
show functions in _impala_builtins like '*hour*'

$ impala-shell -i localhost -f nested1.sql
Starting Impala Shell without Kerberos authentication
Connected to localhost:21000
...
Query: show functions in _impala_builtins like '*minute*'
+-------------+--------------------------------+-------------
+---------------+
| return type | signature | binary type | is persistent
 |
+-------------+--------------------------------+-------------
+---------------+

 | Using the Impala Shell (impala-shell Command) | 622

| INT | minute(TIMESTAMP) | BUILTIN | true
 |
| TIMESTAMP | minutes_add(TIMESTAMP, BIGINT) | BUILTIN | true
 |
| TIMESTAMP | minutes_add(TIMESTAMP, INT) | BUILTIN | true
 |
| TIMESTAMP | minutes_sub(TIMESTAMP, BIGINT) | BUILTIN | true
 |
| TIMESTAMP | minutes_sub(TIMESTAMP, INT) | BUILTIN | true
 |
+-------------+--------------------------------+-------------
+---------------+
Fetched 5 row(s) in 0.01s
Query: show functions in _impala_builtins like '*hour*'
+-------------+------------------------------+-------------+---------------+
| return type | signature | binary type | is persistent |
+-------------+------------------------------+-------------+---------------+
INT	hour(TIMESTAMP)	BUILTIN	true
TIMESTAMP	hours_add(TIMESTAMP, BIGINT)	BUILTIN	true
TIMESTAMP	hours_add(TIMESTAMP, INT)	BUILTIN	true
TIMESTAMP	hours_sub(TIMESTAMP, BIGINT)	BUILTIN	true
TIMESTAMP	hours_sub(TIMESTAMP, INT)	BUILTIN	true
+-------------+------------------------------+-------------+---------------+
Fetched 5 row(s) in 0.01s

Rerunning impala-shell Commands

In Impala 2.10 and higher, you can use the rerun command, or its abbreviation @, to re-execute commands from the
history list. The argument can be a positive integer (reflecting the number shown in history output) or a negative
integer (reflecting the N'th last command in the history output. For example:

[localhost:21000] > select * from p1 order by t limit 5;
...
[localhost:21000] > show table stats p1;
+-----------+--------+--------
+--+
| #Rows | #Files | Size | Location
 |
+-----------+--------+--------
+--+
| 134217728 | 50 | 4.66MB | hdfs://test.example.com:8020/user/hive/
warehouse/jdr.db/p1 |
+-----------+--------+--------
+--+
[localhost:21000] > compute stats p1;
+---+
| summary |
+---+
| Updated 1 partition(s) and 3 column(s). |
+---+
[localhost:21000] > history;
[1]: use jdr;
[2]: history;
[3]: show tables;
[4]: select * from p1 order by t limit 5;
[5]: show table stats p1;
[6]: compute stats p1;
[7]: history;
[localhost:21000] > @-2; <- Rerun the 2nd last command in the history list
Rerunning compute stats p1;
+---+

 | Using the Impala Shell (impala-shell Command) | 623

| summary |
+---+
| Updated 1 partition(s) and 3 column(s). |
+---+
[localhost:21000] > history; <- History list is not updated by rerunning
 commands
 or by repeating the last command, in this
 case 'history'.
[1]: use jdr;
[2]: history;
[3]: show tables;
[4]: select * from p1 order by t limit 5;
[5]: show table stats p1;
[6]: compute stats p1;
[7]: history;
[localhost:21000] > @4; <- Rerun command #4 in the history list using short
 form '@'.
Rerunning select * from p1 order by t limit 5;
...
[localhost:21000] > rerun 4; <- Rerun command #4 using long form 'rerun'.
Rerunning select * from p1 order by t limit 5;
...

impala-shell Command Reference
Use the following commands within impala-shell to pass requests to the impalad daemon that the shell is
connected to. You can enter a command interactively at the prompt, or pass it as the argument to the -q option
of impala-shell. Most of these commands are passed to the Impala daemon as SQL statements; refer to the
corresponding SQL language reference sections for full syntax details.

Command Explanation

alter Changes the underlying structure or settings of an Impala table, or a table shared
between Impala and Hive. See ALTER TABLE Statement on page 225 and ALTER
VIEW Statement on page 239 for details.

compute stats Gathers important performance-related information for a table, used by Impala to
optimize queries. See COMPUTE STATS Statement on page 240 for details.

connect Connects to the specified instance of impalad. The default port of 21000 is assumed
unless you provide another value. You can connect to any host in your cluster that is
running impalad. If you connect to an instance of impalad that was started with an
alternate port specified by the --fe_port flag, you must provide that alternate port.
See Connecting to impalad through impala-shell on page 616 for examples.

The SET statement has no effect until the impala-shell interpreter is connected to
an Impala server. Once you are connected, any query options you set remain in effect as
you issue a subsequent CONNECT command to connect to a different Impala host.

describe Shows the columns, column data types, and any column comments for a specified
table. DESCRIBE FORMATTED shows additional information such as the HDFS data
directory, partitions, and internal properties for the table. See DESCRIBE Statement
on page 274 for details about the basic DESCRIBE output and the DESCRIBE
FORMATTED variant. You can use DESC as shorthand for the DESCRIBE command.

 | Using the Impala Shell (impala-shell Command) | 624

Command Explanation

drop Removes a schema object, and in some cases its associated data files. See DROP
TABLE Statement on page 295, DROP VIEW Statement on page 296, DROP
DATABASE Statement on page 286, and DROP FUNCTION Statement on page
288 for details.

explain Provides the execution plan for a query. EXPLAIN represents a query as a series of
steps. For example, these steps might be map/reduce stages, metastore operations,
or file system operations such as move or rename. See EXPLAIN Statement on page
297 and Using the EXPLAIN Plan for Performance Tuning on page 663 for
details.

help Help provides a list of all available commands and options.

history Maintains an enumerated cross-session command history. This history is stored in the
~/.impalahistory file.

insert Writes the results of a query to a specified table. This either overwrites table data or
appends data to the existing table content. See INSERT Statement on page 301 for
details.

invalidate
metadata

Updates impalad metadata for table existence and structure. Use this command after
creating, dropping, or altering databases, tables, or partitions in Hive. See INVALIDATE
METADATA Statement on page 310 for details.

profile Displays low-level information about the most recent query. Used for performance
diagnosis and tuning. The report starts with the same information as produced by the
EXPLAIN statement and the SUMMARY command. See Using the Query Profile for
Performance Tuning on page 664 for details.

quit Exits the shell. Remember to include the final semicolon so that the shell recognizes the
end of the command.

refresh Refreshes impalad metadata for the locations of HDFS blocks corresponding to
Impala data files. Use this command after loading new data files into an Impala table
through Hive or through HDFS commands. See REFRESH Statement on page 317
for details.

rerun or @ Executes a previous impala-shell command again, from the list of commands
displayed by the history command. These could be SQL statements, or commands
specific to impala-shell such as quit or profile.

Specify an integer argument. A positive integer N represents the command labelled N in
the history list. A negative integer -N represents the Nth command from the end of the
list, such as -1 for the most recent command. Commands that are executed again do not
produce new entries in the history list.

select Specifies the data set on which to complete some action. All information returned
from select can be sent to some output such as the console or a file or can be used
to complete some other element of query. See SELECT Statement on page 322 for
details.

 | Using the Impala Shell (impala-shell Command) | 625

Command Explanation

set Manages query options for an impala-shell session. The available options are the
ones listed in Query Options for the SET Statement on page 358. These options are
used for query tuning and troubleshooting. Issue SET with no arguments to see the
current query options, either based on the impalad defaults, as specified by you at
impalad startup, or based on earlier SET statements in the same session. To modify
option values, issue commands with the syntax set option=value. To restore an
option to its default, use the unset command. Some options take Boolean values of
true and false. Others take numeric arguments, or quoted string values.

The SET statement has no effect until the impala-shell interpreter is connected to
an Impala server. Once you are connected, any query options you set remain in effect as
you issue a subsequent CONNECT command to connect to a different Impala host.

In Impala 2.0 and later, SET is available as a SQL statement for any kind of
application, not only through impala-shell. See SET Statement on page 355 for
details.

In Impala 2.5 and later, you can use SET to define your own substitution variables
within an impala-shell session. Within a SQL statement, you substitute the value
by using the notation ${var:variable_name}.

shell Executes the specified command in the operating system shell without exiting
impala-shell. You can use the ! character as shorthand for the shell command.

Note: Quote any instances of the -- or /* tokens to avoid them being interpreted as
the start of a comment. To embed comments within source or ! commands, use the
shell comment character # before the comment portion of the line.

show Displays metastore data for schema objects created and accessed through Impala,
Hive, or both. show can be used to gather information about objects such as databases,
tables, and functions. See SHOW Statement on page 394 for details.

source or src Executes one or more statements residing in a specified file from the local filesystem.
Allows you to perform the same kinds of batch operations as with the -f option, but
interactively within the interpreter. The file can contain SQL statements and other
impala-shell commands, including additional SOURCE commands to perform a
flexible sequence of actions. Each command or statement, except the last one in the file,
must end with a semicolon. See Running Commands and SQL Statements in impala-
shell on page 618 for examples.

summary Summarizes the work performed in various stages of a query. It provides a higher-level
view of the information displayed by the EXPLAIN command. Added in Impala 1.4.0.
See Using the SUMMARY Report for Performance Tuning on page 663 for details
about the report format and how to interpret it.

In Impala 2.3 and higher, you can see a continuously updated report of the summary
information while a query is in progress. See LIVE_SUMMARY Query Option (Impala
2.3 or higher only) on page 372 for details.

unset Removes any user-specified value for a query option and returns the option to its
default value. See Query Options for the SET Statement on page 358 for the
available query options.

In Impala 2.5 and higher, it can also remove user-specified substitution variables using
the notation UNSET VAR:variable_name.

 | Tuning Impala for Performance | 626

Command Explanation

use Indicates the database against which to execute subsequent commands. Lets you avoid
using fully qualified names when referring to tables in databases other than default.
See USE Statement on page 418 for details. Not effective with the -q option,
because that option only allows a single statement in the argument.

version Returns Impala version information.

Tuning Impala for Performance

The following sections explain the factors affecting the performance of Impala features, and procedures for tuning,
monitoring, and benchmarking Impala queries and other SQL operations.

This section also describes techniques for maximizing Impala scalability. Scalability is tied to performance: it means
that performance remains high as the system workload increases. For example, reducing the disk I/O performed
by a query can speed up an individual query, and at the same time improve scalability by making it practical to run
more queries simultaneously. Sometimes, an optimization technique improves scalability more than performance.
For example, reducing memory usage for a query might not change the query performance much, but might improve
scalability by allowing more Impala queries or other kinds of jobs to run at the same time without running out of
memory.

Note:

Before starting any performance tuning or benchmarking, make sure your system is configured with all the
recommended minimum hardware requirements from Hardware Requirements on page 20 and software settings
from Post-Installation Configuration for Impala on page 25.

• Partitioning for Impala Tables on page 681. This technique physically divides the data based on the different
values in frequently queried columns, allowing queries to skip reading a large percentage of the data in a table.

• Performance Considerations for Join Queries on page 629. Joins are the main class of queries that you can tune
at the SQL level, as opposed to changing physical factors such as the file format or the hardware configuration.
The related topics Overview of Column Statistics on page 637 and Overview of Table Statistics on page 636
are also important primarily for join performance.

• Overview of Table Statistics on page 636 and Overview of Column Statistics on page 637. Gathering
table and column statistics, using the COMPUTE STATS statement, helps Impala automatically optimize the
performance for join queries, without requiring changes to SQL query statements. (This process is greatly
simplified in Impala 1.2.2 and higher, because the COMPUTE STATS statement gathers both kinds of statistics
in one operation, and does not require any setup and configuration as was previously necessary for the ANALYZE
TABLE statement in Hive.)

• Testing Impala Performance on page 661. Do some post-setup testing to ensure Impala is using optimal
settings for performance, before conducting any benchmark tests.

• Benchmarking Impala Queries on page 650. The configuration and sample data that you use for initial
experiments with Impala is often not appropriate for doing performance tests.

• Controlling Impala Resource Usage on page 651. The more memory Impala can utilize, the better query
performance you can expect. In a cluster running other kinds of workloads as well, you must make tradeoffs to
make sure all Hadoop components have enough memory to perform well, so you might cap the memory that
Impala can use.

• Using Impala with the Amazon S3 Filesystem on page 748. Queries against data stored in the Amazon Simple
Storage Service (S3) have different performance characteristics than when the data is stored in HDFS.

A good source of tips related to scalability and performance tuning is the Impala Cookbook presentation. These slides
are updated periodically as new features come out and new benchmarks are performed.

http://www.slideshare.net/cloudera/the-impala-cookbook-42530186

 | Tuning Impala for Performance | 627

Impala Performance Guidelines and Best Practices
Here are performance guidelines and best practices that you can use during planning, experimentation, and
performance tuning for an Impala-enabled cluster. All of this information is also available in more detail elsewhere
in the Impala documentation; it is gathered together here to serve as a cookbook and emphasize which performance
techniques typically provide the highest return on investment

Choose the appropriate file format for the data.

Typically, for large volumes of data (multiple gigabytes per table or partition), the Parquet file format performs
best because of its combination of columnar storage layout, large I/O request size, and compression and encoding.
See How Impala Works with Hadoop File Formats on page 690 for comparisons of all file formats supported
by Impala, and Using the Parquet File Format with Impala Tables on page 699 for details about the Parquet file
format.

Note: For smaller volumes of data, a few gigabytes or less for each table or partition, you might not see significant
performance differences between file formats. At small data volumes, reduced I/O from an efficient compressed
file format can be counterbalanced by reduced opportunity for parallel execution. When planning for a production
deployment or conducting benchmarks, always use realistic data volumes to get a true picture of performance and
scalability.

Avoid data ingestion processes that produce many small files.

When producing data files outside of Impala, prefer either text format or Avro, where you can build up the files row
by row. Once the data is in Impala, you can convert it to the more efficient Parquet format and split into multiple data
files using a single INSERT ... SELECT statement. Or, if you have the infrastructure to produce multi-megabyte
Parquet files as part of your data preparation process, do that and skip the conversion step inside Impala.

Always use INSERT ... SELECT to copy significant volumes of data from table to table within Impala.
Avoid INSERT ... VALUES for any substantial volume of data or performance-critical tables, because each
such statement produces a separate tiny data file. See INSERT Statement on page 301 for examples of the
INSERT ... SELECT syntax.

For example, if you have thousands of partitions in a Parquet table, each with less than 256 MB of data, consider
partitioning in a less granular way, such as by year / month rather than year / month / day. If an inefficient data
ingestion process produces thousands of data files in the same table or partition, consider compacting the data by
performing an INSERT ... SELECT to copy all the data to a different table; the data will be reorganized into a
smaller number of larger files by this process.

Choose partitioning granularity based on actual data volume.

Partitioning is a technique that physically divides the data based on values of one or more columns, such as by year,
month, day, region, city, section of a web site, and so on. When you issue queries that request a specific value or
range of values for the partition key columns, Impala can avoid reading the irrelevant data, potentially yielding a huge
savings in disk I/O.

When deciding which column(s) to use for partitioning, choose the right level of granularity. For example, should you
partition by year, month, and day, or only by year and month? Choose a partitioning strategy that puts at least 256 MB
of data in each partition, to take advantage of HDFS bulk I/O and Impala distributed queries.

Over-partitioning can also cause query planning to take longer than necessary, as Impala prunes the unnecessary
partitions. Ideally, keep the number of partitions in the table under 30 thousand.

When preparing data files to go in a partition directory, create several large files rather than many small ones. If
you receive data in the form of many small files and have no control over the input format, consider using the
INSERT ... SELECT syntax to copy data from one table or partition to another, which compacts the files into a
relatively small number (based on the number of nodes in the cluster).

 | Tuning Impala for Performance | 628

If you need to reduce the overall number of partitions and increase the amount of data in each partition, first look for
partition key columns that are rarely referenced or are referenced in non-critical queries (not subject to an SLA). For
example, your web site log data might be partitioned by year, month, day, and hour, but if most queries roll up the
results by day, perhaps you only need to partition by year, month, and day.

If you need to reduce the granularity even more, consider creating “buckets”, computed values corresponding to
different sets of partition key values. For example, you can use the TRUNC() function with a TIMESTAMP column to
group date and time values based on intervals such as week or quarter. See Impala Date and Time Functions on page
453 for details.

See Partitioning for Impala Tables on page 681 for full details and performance considerations for partitioning.

Use smallest appropriate integer types for partition key columns.

Although it is tempting to use strings for partition key columns, since those values are turned into HDFS directory
names anyway, you can minimize memory usage by using numeric values for common partition key fields such as
YEAR, MONTH, and DAY. Use the smallest integer type that holds the appropriate range of values, typically TINYINT
for MONTH and DAY, and SMALLINT for YEAR. Use the EXTRACT() function to pull out individual date and time
fields from a TIMESTAMP value, and CAST() the return value to the appropriate integer type.

Choose an appropriate Parquet block size.

By default, the Impala INSERT ... SELECT statement creates Parquet files with a 256 MB block size. (This
default was changed in Impala 2.0. Formerly, the limit was 1 GB, but Impala made conservative estimates about
compression, resulting in files that were smaller than 1 GB.)

Each Parquet file written by Impala is a single block, allowing the whole file to be processed as a unit by a single
host. As you copy Parquet files into HDFS or between HDFS filesystems, use hdfs dfs -pb to preserve the
original block size.

If there is only one or a few data block in your Parquet table, or in a partition that is the only one accessed by a query,
then you might experience a slowdown for a different reason: not enough data to take advantage of Impala's parallel
distributed queries. Each data block is processed by a single core on one of the DataNodes. In a 100-node cluster of
16-core machines, you could potentially process thousands of data files simultaneously. You want to find a sweet
spot between “many tiny files” and “single giant file” that balances bulk I/O and parallel processing. You can set the
PARQUET_FILE_SIZE query option before doing an INSERT ... SELECT statement to reduce the size of each
generated Parquet file. (Specify the file size as an absolute number of bytes, or in Impala 2.0 and later, in units ending
with m for megabytes or g for gigabytes.) Run benchmarks with different file sizes to find the right balance point for
your particular data volume.

Gather statistics for all tables used in performance-critical or high-volume join queries.

Gather the statistics with the COMPUTE STATS statement. See Performance Considerations for Join Queries on
page 629 for details.

Minimize the overhead of transmitting results back to the client.

Use techniques such as:

• Aggregation. If you need to know how many rows match a condition, the total values of matching values from
some column, the lowest or highest matching value, and so on, call aggregate functions such as COUNT(),
SUM(), and MAX() in the query rather than sending the result set to an application and doing those computations
there. Remember that the size of an unaggregated result set could be huge, requiring substantial time to transmit
across the network.

• Filtering. Use all applicable tests in the WHERE clause of a query to eliminate rows that are not relevant, rather
than producing a big result set and filtering it using application logic.

• LIMIT clause. If you only need to see a few sample values from a result set, or the top or bottom values from a
query using ORDER BY, include the LIMIT clause to reduce the size of the result set rather than asking for the
full result set and then throwing most of the rows away.

 | Tuning Impala for Performance | 629

• Avoid overhead from pretty-printing the result set and displaying it on the screen. When you retrieve the results
through impala-shell, use impala-shell options such as -B and --output_delimiter to produce
results without special formatting, and redirect output to a file rather than printing to the screen. Consider using
INSERT ... SELECT to write the results directly to new files in HDFS. See impala-shell Configuration
Options on page 612 for details about the impala-shell command-line options.

Verify that your queries are planned in an efficient logical manner.

Examine the EXPLAIN plan for a query before actually running it. See EXPLAIN Statement on page 297 and
Using the EXPLAIN Plan for Performance Tuning on page 663 for details.

Verify performance characteristics of queries.

Verify that the low-level aspects of I/O, memory usage, network bandwidth, CPU utilization, and so on are within
expected ranges by examining the query profile for a query after running it. See Using the Query Profile for
Performance Tuning on page 664 for details.

Use appropriate operating system settings.

See the documentation for your Apache Hadoop distribution for recommendations about operating system
settings that you can change to influence Impala performance. In particular, you might find that changing the
vm.swappiness Linux kernel setting to a non-zero value improves overall performance.

Performance Considerations for Join Queries
Queries involving join operations often require more tuning than queries that refer to only one table. The maximum
size of the result set from a join query is the product of the number of rows in all the joined tables. When joining
several tables with millions or billions of rows, any missed opportunity to filter the result set, or other inefficiency in
the query, could lead to an operation that does not finish in a practical time and has to be cancelled.

The simplest technique for tuning an Impala join query is to collect statistics on each table involved in the join
using the COMPUTE STATS statement, and then let Impala automatically optimize the query based on the size of
each table, number of distinct values of each column, and so on. The COMPUTE STATS statement and the join
optimization are new features introduced in Impala 1.2.2. For accurate statistics about each table, issue the COMPUTE
STATS statement after loading the data into that table, and again if the amount of data changes substantially due to an
INSERT, LOAD DATA, adding a partition, and so on.

If statistics are not available for all the tables in the join query, or if Impala chooses a join order that is not the most
efficient, you can override the automatic join order optimization by specifying the STRAIGHT_JOIN keyword
immediately after the SELECT and any DISTINCT or ALL keywords. In this case, Impala uses the order the tables
appear in the query to guide how the joins are processed.

When you use the STRAIGHT_JOIN technique, you must order the tables in the join query manually instead of
relying on the Impala optimizer. The optimizer uses sophisticated techniques to estimate the size of the result set at
each stage of the join. For manual ordering, use this heuristic approach to start with, and then experiment to fine-tune
the order:

• Specify the largest table first. This table is read from disk by each Impala node and so its size is not significant in
terms of memory usage during the query.

• Next, specify the smallest table. The contents of the second, third, and so on tables are all transmitted across the
network. You want to minimize the size of the result set from each subsequent stage of the join query. The most
likely approach involves joining a small table first, so that the result set remains small even as subsequent larger
tables are processed.

• Join the next smallest table, then the next smallest, and so on.
• For example, if you had tables BIG, MEDIUM, SMALL, and TINY, the logical join order to try would be BIG,

TINY, SMALL, MEDIUM.

 | Tuning Impala for Performance | 630

The terms “largest” and “smallest” refers to the size of the intermediate result set based on the number of rows and
columns from each table that are part of the result set. For example, if you join one table sales with another table
customers, a query might find results from 100 different customers who made a total of 5000 purchases. In that
case, you would specify SELECT ... FROM sales JOIN customers ..., putting customers on the
right side because it is smaller in the context of this query.

The Impala query planner chooses between different techniques for performing join queries, depending on the
absolute and relative sizes of the tables. Broadcast joins are the default, where the right-hand table is considered
to be smaller than the left-hand table, and its contents are sent to all the other nodes involved in the query. The
alternative technique is known as a partitioned join (not related to a partitioned table), which is more suitable for
large tables of roughly equal size. With this technique, portions of each table are sent to appropriate other nodes
where those subsets of rows can be processed in parallel. The choice of broadcast or partitioned join also depends on
statistics being available for all tables in the join, gathered by the COMPUTE STATS statement.

To see which join strategy is used for a particular query, issue an EXPLAIN statement for the query. If you find that a
query uses a broadcast join when you know through benchmarking that a partitioned join would be more efficient, or
vice versa, add a hint to the query to specify the precise join mechanism to use. See Query Hints in Impala SELECT
Statements on page 352 for details.

How Joins Are Processed when Statistics Are Unavailable

If table or column statistics are not available for some tables in a join, Impala still reorders the tables using the
information that is available. Tables with statistics are placed on the left side of the join order, in descending order
of cost based on overall size and cardinality. Tables without statistics are treated as zero-size, that is, they are always
placed on the right side of the join order.

Overriding Join Reordering with STRAIGHT_JOIN

If an Impala join query is inefficient because of outdated statistics or unexpected data distribution, you can keep
Impala from reordering the joined tables by using the STRAIGHT_JOIN keyword immediately after the SELECT
and any DISTINCT or ALL keywords. The STRAIGHT_JOIN keyword turns off the reordering of join clauses that
Impala does internally, and produces a plan that relies on the join clauses being ordered optimally in the query text.
In this case, rewrite the query so that the largest table is on the left, followed by the next largest, and so on until the
smallest table is on the right.

Note:

The STRAIGHT_JOIN hint affects the join order of table references in the query block containing the hint. It does
not affect the join order of nested queries, such as views, inline views, or WHERE-clause subqueries. To use this hint
for performance tuning of complex queries, apply the hint to all query blocks that need a fixed join order.

In this example, the subselect from the BIG table produces a very small result set, but the table might still be treated
as if it were the biggest and placed first in the join order. Using STRAIGHT_JOIN for the last join clause prevents
the final table from being reordered, keeping it as the rightmost table in the join order.

select straight_join x from medium join small join (select * from big where
 c1 < 10) as big
 where medium.id = small.id and small.id = big.id;

-- If the query contains [DISTINCT | ALL], the hint goes after those
 keywords.
select distinct straight_join x from medium join small join (select * from
 big where c1 < 10) as big
 where medium.id = small.id and small.id = big.id;

Examples of Join Order Optimization

Here are examples showing joins between tables with 1 billion, 200 million, and 1 million rows. (In this case, the
tables are unpartitioned and using Parquet format.) The smaller tables contain subsets of data from the largest one,

 | Tuning Impala for Performance | 631

for convenience of joining on the unique ID column. The smallest table only contains a subset of columns from the
others.

[localhost:21000] > create table big stored as parquet as select * from
 raw_data;
+----------------------------+
| summary |
+----------------------------+
| Inserted 1000000000 row(s) |
+----------------------------+
Returned 1 row(s) in 671.56s
[localhost:21000] > desc big;
+-----------+---------+---------+
| name | type | comment |
+-----------+---------+---------+
id	int	
val	int	
zfill	string	
name	string	
assertion	boolean	
+-----------+---------+---------+		
Returned 5 row(s) in 0.01s		
[localhost:21000] > create table medium stored as parquet as select * from		
big limit 200 * floor(1e6);		
+---------------------------+		
summary		
+---------------------------+		
Inserted 200000000 row(s)		
+---------------------------+		
Returned 1 row(s) in 138.31s		
[localhost:21000] > create table small stored as parquet as select		
id,val,name from big where assertion = true limit 1 * floor(1e6);		
+-------------------------+		
summary		
+-------------------------+		
Inserted 1000000 row(s)		
+-------------------------+
Returned 1 row(s) in 6.32s

For any kind of performance experimentation, use the EXPLAIN statement to see how any expensive query will be
performed without actually running it, and enable verbose EXPLAIN plans containing more performance-oriented
detail: The most interesting plan lines are highlighted in bold, showing that without statistics for the joined tables,
Impala cannot make a good estimate of the number of rows involved at each stage of processing, and is likely to stick
with the BROADCAST join mechanism that sends a complete copy of one of the tables to each node.

[localhost:21000] > set explain_level=verbose;
EXPLAIN_LEVEL set to verbose
[localhost:21000] > explain select count(*) from big join medium where
 big.id = medium.id;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=2.10GB VCores=2 |
| |
| PLAN FRAGMENT 0 |
| PARTITION: UNPARTITIONED |
| |
| 6:AGGREGATE (merge finalize) |
	output: SUM(COUNT(*))
	cardinality: 1
	per-host memory: unavailable
	tuple ids: 2

 | Tuning Impala for Performance | 632

| | |
| 5:EXCHANGE |
| cardinality: 1 |
| per-host memory: unavailable |
| tuple ids: 2 |
| |
| PLAN FRAGMENT 1 |
| PARTITION: RANDOM |
| |
| STREAM DATA SINK |
| EXCHANGE ID: 5 |
| UNPARTITIONED |
| |
| 3:AGGREGATE |
	output: COUNT(*)
	cardinality: 1
	per-host memory: 10.00MB
	tuple ids: 2
2:HASH JOIN	
	join op: INNER JOIN (BROADCAST)
	hash predicates:
	big.id = medium.id
	cardinality: unavailable
	per-host memory: 2.00GB
	tuple ids: 0 1
	----4:EXCHANGE
	cardinality: unavailable
	per-host memory: 0B
	tuple ids: 1
0:SCAN HDFS	
table=join_order.big #partitions=1/1 size=23.12GB	
table stats: unavailable	
column stats: unavailable	
cardinality: unavailable	
per-host memory: 88.00MB	
tuple ids: 0	
PLAN FRAGMENT 2	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 4	
UNPARTITIONED	
1:SCAN HDFS	
table=join_order.medium #partitions=1/1 size=4.62GB	
table stats: unavailable	
column stats: unavailable	
cardinality: unavailable	
per-host memory: 88.00MB	
tuple ids: 1	
+--+
Returned 64 row(s) in 0.04s

Gathering statistics for all the tables is straightforward, one COMPUTE STATS statement per table:

[localhost:21000] > compute stats small;
+---+
| summary |
+---+

 | Tuning Impala for Performance | 633

| Updated 1 partition(s) and 3 column(s). |
+---+
Returned 1 row(s) in 4.26s
[localhost:21000] > compute stats medium;
+---+
| summary |
+---+
| Updated 1 partition(s) and 5 column(s). |
+---+
Returned 1 row(s) in 42.11s
[localhost:21000] > compute stats big;
+---+
| summary |
+---+
| Updated 1 partition(s) and 5 column(s). |
+---+
Returned 1 row(s) in 165.44s

With statistics in place, Impala can choose a more effective join order rather than following the left-to-right sequence
of tables in the query, and can choose BROADCAST or PARTITIONED join strategies based on the overall sizes and
number of rows in the table:

[localhost:21000] > explain select count(*) from medium join big where
 big.id = medium.id;
Query: explain select count(*) from medium join big where big.id = medium.id
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=937.23MB VCores=2 |
| |
| PLAN FRAGMENT 0 |
| PARTITION: UNPARTITIONED |
| |
| 6:AGGREGATE (merge finalize) |
	output: SUM(COUNT(*))
	cardinality: 1
	per-host memory: unavailable
	tuple ids: 2
5:EXCHANGE	
cardinality: 1	
per-host memory: unavailable	
tuple ids: 2	
PLAN FRAGMENT 1	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 5	
UNPARTITIONED	
3:AGGREGATE	
	output: COUNT(*)
	cardinality: 1
	per-host memory: 10.00MB
	tuple ids: 2
2:HASH JOIN	
	join op: INNER JOIN (BROADCAST)
	hash predicates:
	big.id = medium.id
	cardinality: 1443004441
	per-host memory: 839.23MB

 | Tuning Impala for Performance | 634

	tuple ids: 1 0
	----4:EXCHANGE
	cardinality: 200000000
	per-host memory: 0B
	tuple ids: 0
1:SCAN HDFS	
table=join_order.big #partitions=1/1 size=23.12GB	
table stats: 1000000000 rows total	
column stats: all	
cardinality: 1000000000	
per-host memory: 88.00MB	
tuple ids: 1	
PLAN FRAGMENT 2	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 4	
UNPARTITIONED	
0:SCAN HDFS	
table=join_order.medium #partitions=1/1 size=4.62GB	
table stats: 200000000 rows total	
column stats: all	
cardinality: 200000000	
per-host memory: 88.00MB	
tuple ids: 0	
+---+
Returned 64 row(s) in 0.04s

[localhost:21000] > explain select count(*) from small join big where big.id
 = small.id;
Query: explain select count(*) from small join big where big.id = small.id
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=101.15MB VCores=2 |
| |
| PLAN FRAGMENT 0 |
| PARTITION: UNPARTITIONED |
| |
| 6:AGGREGATE (merge finalize) |
	output: SUM(COUNT(*))
	cardinality: 1
	per-host memory: unavailable
	tuple ids: 2
5:EXCHANGE	
cardinality: 1	
per-host memory: unavailable	
tuple ids: 2	
PLAN FRAGMENT 1	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 5	
UNPARTITIONED	
3:AGGREGATE	
	output: COUNT(*)
	cardinality: 1

 | Tuning Impala for Performance | 635

	per-host memory: 10.00MB
	tuple ids: 2
2:HASH JOIN	
	join op: INNER JOIN (BROADCAST)
	hash predicates:
	big.id = small.id
	cardinality: 1000000000
	per-host memory: 3.15MB
	tuple ids: 1 0
	----4:EXCHANGE
	cardinality: 1000000
	per-host memory: 0B
	tuple ids: 0
1:SCAN HDFS	
table=join_order.big #partitions=1/1 size=23.12GB	
table stats: 1000000000 rows total	
column stats: all	
cardinality: 1000000000	
per-host memory: 88.00MB	
tuple ids: 1	
PLAN FRAGMENT 2	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 4	
UNPARTITIONED	
0:SCAN HDFS	
table=join_order.small #partitions=1/1 size=17.93MB	
table stats: 1000000 rows total	
column stats: all	
cardinality: 1000000	
per-host memory: 32.00MB	
tuple ids: 0	
+---+
Returned 64 row(s) in 0.03s

When queries like these are actually run, the execution times are relatively consistent regardless of the table order in
the query text. Here are examples using both the unique ID column and the VAL column containing duplicate values:

[localhost:21000] > select count(*) from big join small on (big.id =
 small.id);
Query: select count(*) from big join small on (big.id = small.id)
+----------+
| count(*) |
+----------+
| 1000000 |
+----------+
Returned 1 row(s) in 21.68s
[localhost:21000] > select count(*) from small join big on (big.id =
 small.id);
Query: select count(*) from small join big on (big.id = small.id)
+----------+
| count(*) |
+----------+
| 1000000 |
+----------+
Returned 1 row(s) in 20.45s

 | Tuning Impala for Performance | 636

[localhost:21000] > select count(*) from big join small on (big.val =
 small.val);
+------------+
| count(*) |
+------------+
| 2000948962 |
+------------+
Returned 1 row(s) in 108.85s
[localhost:21000] > select count(*) from small join big on (big.val =
 small.val);
+------------+
| count(*) |
+------------+
| 2000948962 |
+------------+
Returned 1 row(s) in 100.76s

Note: When examining the performance of join queries and the effectiveness of the join order optimization, make
sure the query involves enough data and cluster resources to see a difference depending on the query plan. For
example, a single data file of just a few megabytes will reside in a single HDFS block and be processed on a single
node. Likewise, if you use a single-node or two-node cluster, there might not be much difference in efficiency for the
broadcast or partitioned join strategies.

Table and Column Statistics
Impala can do better optimization for complex or multi-table queries when it has access to statistics about the volume
of data and how the values are distributed. Impala uses this information to help parallelize and distribute the work
for a query. For example, optimizing join queries requires a way of determining if one table is “bigger” than another,
which is a function of the number of rows and the average row size for each table. The following sections describe the
categories of statistics Impala can work with, and how to produce them and keep them up to date.

Note:

Originally, Impala relied on the Hive mechanism for collecting statistics, through the Hive ANALYZE TABLE
statement which initiates a MapReduce job. For better user-friendliness and reliability, Impala implements its own
COMPUTE STATS statement in Impala 1.2.2 and higher, along with the DROP STATS, SHOW TABLE STATS, and
SHOW COLUMN STATS statements.

Overview of Table Statistics

The Impala query planner can make use of statistics about entire tables and partitions. This information includes
physical characteristics such as the number of rows, number of data files, the total size of the data files, and the
file format. For partitioned tables, the numbers are calculated per partition, and as totals for the whole table. This
metadata is stored in the metastore database, and can be updated by either Impala or Hive. If a number is not
available, the value -1 is used as a placeholder. Some numbers, such as number and total sizes of data files, are always
kept up to date because they can be calculated cheaply, as part of gathering HDFS block metadata.

The following example shows table stats for an unpartitioned Parquet table. The values for the number and sizes of
files are always available. Initially, the number of rows is not known, because it requires a potentially expensive scan
through the entire table, and so that value is displayed as -1. The COMPUTE STATS statement fills in any unknown
table stats values.

show table stats parquet_snappy;
+-------+--------+---------+--------------+-------------------+---------
+-------------------+...
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format |
 Incremental stats |...

 | Tuning Impala for Performance | 637

+-------+--------+---------+--------------+-------------------+---------
+-------------------+...
| -1 | 96 | 23.35GB | NOT CACHED | NOT CACHED | PARQUET |
 false |...
+-------+--------+---------+--------------+-------------------+---------
+-------------------+...

compute stats parquet_snappy;
+---+
| summary |
+---+
| Updated 1 partition(s) and 6 column(s). |
+---+

show table stats parquet_snappy;
+------------+--------+---------+--------------+-------------------
+---------+-------------------+...
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format
 | Incremental stats |...
+------------+--------+---------+--------------+-------------------
+---------+-------------------+...
| 1000000000 | 96 | 23.35GB | NOT CACHED | NOT CACHED | PARQUET
 | false |...
+------------+--------+---------+--------------+-------------------
+---------+-------------------+...

Impala performs some optimizations using this metadata on its own, and other optimizations by using a combination
of table and column statistics.

To check that table statistics are available for a table, and see the details of those statistics, use the statement SHOW
TABLE STATS table_name. See SHOW Statement on page 394 for details.

If you use the Hive-based methods of gathering statistics, see the Hive wiki for information about the required
configuration on the Hive side. Where practical, use the Impala COMPUTE STATS statement to avoid potential
configuration and scalability issues with the statistics-gathering process.

If you run the Hive statement ANALYZE TABLE COMPUTE STATISTICS FOR COLUMNS, Impala can only use
the resulting column statistics if the table is unpartitioned. Impala cannot use Hive-generated column statistics for a
partitioned table.

Overview of Column Statistics

The Impala query planner can make use of statistics about individual columns when that metadata is available in
the metastore database. This technique is most valuable for columns compared across tables in join queries, to help
estimate how many rows the query will retrieve from each table. These statistics are also important for correlated
subqueries using the EXISTS() or IN() operators, which are processed internally the same way as join queries.

The following example shows column stats for an unpartitioned Parquet table. The values for the maximum and
average sizes of some types are always available, because those figures are constant for numeric and other fixed-size
types. Initially, the number of distinct values is not known, because it requires a potentially expensive scan through
the entire table, and so that value is displayed as -1. The same applies to maximum and average sizes of variable-sized
types, such as STRING. The COMPUTE STATS statement fills in most unknown column stats values. (It does not
record the number of NULL values, because currently Impala does not use that figure for query optimization.)

show column stats parquet_snappy;
+-------------+----------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+-------------+----------+------------------+--------+----------+----------+
| id | BIGINT | -1 | -1 | 8 | 8 |
| val | INT | -1 | -1 | 4 | 4 |

https://cwiki.apache.org/confluence/display/Hive/StatsDev

 | Tuning Impala for Performance | 638

zerofill	STRING	-1	-1	-1	-1
name	STRING	-1	-1	-1	-1
assertion	BOOLEAN	-1	-1	1	1
location_id	SMALLINT	-1	-1	2	2
+-------------+----------+------------------+--------+----------+----------+

compute stats parquet_snappy;
+---+
| summary |
+---+
| Updated 1 partition(s) and 6 column(s). |
+---+

show column stats parquet_snappy;
+-------------+----------+------------------+--------+----------
+-------------------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size
 |
+-------------+----------+------------------+--------+----------
+-------------------+
| id | BIGINT | 183861280 | -1 | 8 | 8
 |
| val | INT | 139017 | -1 | 4 | 4
 |
| zerofill | STRING | 101761 | -1 | 6 | 6
 |
| name | STRING | 145636240 | -1 | 22 |
 13.00020027160645 |
| assertion | BOOLEAN | 2 | -1 | 1 | 1
 |
| location_id | SMALLINT | 339 | -1 | 2 | 2
 |
+-------------+----------+------------------+--------+----------
+-------------------+

Note:

For column statistics to be effective in Impala, you also need to have table statistics for the applicable tables, as
described in Overview of Table Statistics on page 636. When you use the Impala COMPUTE STATS statement,
both table and column statistics are automatically gathered at the same time, for all columns in the table.

Note: Prior to Impala 1.4.0, COMPUTE STATS counted the number of NULL values in each column and recorded
that figure in the metastore database. Because Impala does not currently use the NULL count during query planning,
Impala 1.4.0 and higher speeds up the COMPUTE STATS statement by skipping this NULL counting.

To check whether column statistics are available for a particular set of columns, use the SHOW COLUMN STATS
table_name statement, or check the extended EXPLAIN output for a query against that table that refers to those
columns. See SHOW Statement on page 394 and EXPLAIN Statement on page 297 for details.

If you run the Hive statement ANALYZE TABLE COMPUTE STATISTICS FOR COLUMNS, Impala can only use
the resulting column statistics if the table is unpartitioned. Impala cannot use Hive-generated column statistics for a
partitioned table.

How Table and Column Statistics Work for Partitioned Tables

When you use Impala for “big data”, you are highly likely to use partitioning for your biggest tables, the ones
representing data that can be logically divided based on dates, geographic regions, or similar criteria. The table and
column statistics are especially useful for optimizing queries on such tables. For example, a query involving one year
might involve substantially more or less data than a query involving a different year, or a range of several years. Each
query might be optimized differently as a result.

The following examples show how table and column stats work with a partitioned table. The table for this example
is partitioned by year, month, and day. For simplicity, the sample data consists of 5 partitions, all from the same year

 | Tuning Impala for Performance | 639

and month. Table stats are collected independently for each partition. (In fact, the SHOW PARTITIONS statement
displays exactly the same information as SHOW TABLE STATS for a partitioned table.) Column stats apply to the
entire table, not to individual partitions. Because the partition key column values are represented as HDFS directories,
their characteristics are typically known in advance, even when the values for non-key columns are shown as -1.

show partitions year_month_day;
+-------+-------+-----+-------+--------+---------+--------------
+-------------------+---------+...
| year | month | day | #Rows | #Files | Size | Bytes Cached | Cache
 Replication | Format |...
+-------+-------+-----+-------+--------+---------+--------------
+-------------------+---------+...
| 2013 | 12 | 1 | -1 | 1 | 2.51MB | NOT CACHED | NOT CACHED
 | PARQUET |...
| 2013 | 12 | 2 | -1 | 1 | 2.53MB | NOT CACHED | NOT CACHED
 | PARQUET |...
| 2013 | 12 | 3 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED
 | PARQUET |...
| 2013 | 12 | 4 | -1 | 1 | 2.51MB | NOT CACHED | NOT CACHED
 | PARQUET |...
| 2013 | 12 | 5 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED
 | PARQUET |...
| Total | | | -1 | 5 | 12.58MB | 0B |
 | |...
+-------+-------+-----+-------+--------+---------+--------------
+-------------------+---------+...

show table stats year_month_day;
+-------+-------+-----+-------+--------+---------+--------------
+-------------------+---------+...
| year | month | day | #Rows | #Files | Size | Bytes Cached | Cache
 Replication | Format |...
+-------+-------+-----+-------+--------+---------+--------------
+-------------------+---------+...
| 2013 | 12 | 1 | -1 | 1 | 2.51MB | NOT CACHED | NOT CACHED
 | PARQUET |...
| 2013 | 12 | 2 | -1 | 1 | 2.53MB | NOT CACHED | NOT CACHED
 | PARQUET |...
| 2013 | 12 | 3 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED
 | PARQUET |...
| 2013 | 12 | 4 | -1 | 1 | 2.51MB | NOT CACHED | NOT CACHED
 | PARQUET |...
| 2013 | 12 | 5 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED
 | PARQUET |...
| Total | | | -1 | 5 | 12.58MB | 0B |
 | |...
+-------+-------+-----+-------+--------+---------+--------------
+-------------------+---------+...

show column stats year_month_day;
+-----------+---------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+-----------+---------+------------------+--------+----------+----------+
id	INT	-1	-1	4	4
val	INT	-1	-1	4	4
zfill	STRING	-1	-1	-1	-1
name	STRING	-1	-1	-1	-1
assertion	BOOLEAN	-1	-1	1	1
year	INT	1	0	4	4
month	INT	1	0	4	4
day	INT	5	0	4	4
+-----------+---------+------------------+--------+----------+----------+

 | Tuning Impala for Performance | 640

compute stats year_month_day;
+---+
| summary |
+---+
| Updated 5 partition(s) and 5 column(s). |
+---+

show table stats year_month_day;
+-------+-------+-----+--------+--------+---------+--------------
+-------------------+---------+...
| year | month | day | #Rows | #Files | Size | Bytes Cached | Cache
 Replication | Format |...
+-------+-------+-----+--------+--------+---------+--------------
+-------------------+---------+...
| 2013 | 12 | 1 | 93606 | 1 | 2.51MB | NOT CACHED | NOT
 CACHED | PARQUET |...
| 2013 | 12 | 2 | 94158 | 1 | 2.53MB | NOT CACHED | NOT
 CACHED | PARQUET |...
| 2013 | 12 | 3 | 94122 | 1 | 2.52MB | NOT CACHED | NOT
 CACHED | PARQUET |...
| 2013 | 12 | 4 | 93559 | 1 | 2.51MB | NOT CACHED | NOT
 CACHED | PARQUET |...
| 2013 | 12 | 5 | 93845 | 1 | 2.52MB | NOT CACHED | NOT
 CACHED | PARQUET |...
| Total | | | 469290 | 5 | 12.58MB | 0B |
 | |...
+-------+-------+-----+--------+--------+---------+--------------
+-------------------+---------+...

show column stats year_month_day;
+-----------+---------+------------------+--------+----------
+-------------------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size
 |
+-----------+---------+------------------+--------+----------
+-------------------+
| id | INT | 511129 | -1 | 4 | 4
 |
| val | INT | 364853 | -1 | 4 | 4
 |
| zfill | STRING | 311430 | -1 | 6 | 6
 |
| name | STRING | 471975 | -1 | 22 |
 13.00160026550293 |
| assertion | BOOLEAN | 2 | -1 | 1 | 1
 |
| year | INT | 1 | 0 | 4 | 4
 |
| month | INT | 1 | 0 | 4 | 4
 |
| day | INT | 5 | 0 | 4 | 4
 |
+-----------+---------+------------------+--------+----------
+-------------------+

If you run the Hive statement ANALYZE TABLE COMPUTE STATISTICS FOR COLUMNS, Impala can only use
the resulting column statistics if the table is unpartitioned. Impala cannot use Hive-generated column statistics for a
partitioned table.

 | Tuning Impala for Performance | 641

Overview of Incremental Statistics

In Impala 2.1.0 and higher, you can use the syntax COMPUTE INCREMENTAL STATS and DROP INCREMENTAL
STATS. The INCREMENTAL clauses work with incremental statistics, a specialized feature for partitioned tables that
are large or frequently updated with new partitions.

When you compute incremental statistics for a partitioned table, by default Impala only processes those partitions that
do not yet have incremental statistics. By processing only newly added partitions, you can keep statistics up to date
for large partitioned tables, without incurring the overhead of reprocessing the entire table each time.

Important:

For a particular table, use either COMPUTE STATS or COMPUTE INCREMENTAL STATS, but never combine the
two or alternate between them. If you switch from COMPUTE STATS to COMPUTE INCREMENTAL STATS during
the lifetime of a table, or vice versa, drop all statistics (by running both DROP STATS and DROP INCREMENTAL
STATS) before making the switch.

When you run COMPUTE INCREMENTAL STATS on a table for the first time, the statistics are computed again
from scratch regardless of whether the table already has statistics. Therefore, expect a one-time resource-intensive
operation for scanning the entire table when running COMPUTE INCREMENTAL STATS for the first time on a
given table.

For a table with a huge number of partitions and many columns, the approximately 400 bytes of metadata per column
per partition can add up to significant memory overhead, as it must be cached on the catalogd host and on every
impalad host that is eligible to be a coordinator. If this metadata for all tables combined exceeds 2 GB, you might
experience service downtime.

You can also compute or drop statistics for a single partition by including a PARTITION clause in the COMPUTE
INCREMENTAL STATS or DROP INCREMENTAL STATS statement.

The metadata for incremental statistics is handled differently from the original style of statistics:

• If you have a partitioned table for which you have already run a regular COMPUTE STATS statement, issuing
COMPUTE INCREMENTAL STATS without a partition clause causes Impala to rescan the entire table. Once the
incremental statistics are computed, any future COMPUTE INCREMENTAL STATS statements only scan any
new partitions and any partitions where you performed DROP INCREMENTAL STATS.

• The SHOW TABLE STATS and SHOW PARTITIONS statements now include an additional column showing
whether incremental statistics are available for each column. A partition could already be covered by the original
type of statistics based on a prior COMPUTE STATS statement, as indicated by a value other than -1 under the
#Rows column. Impala query planning uses either kind of statistics when available.

• COMPUTE INCREMENTAL STATS takes more time than COMPUTE STATS for the same volume of data.
Therefore it is most suitable for tables with large data volume where new partitions are added frequently, making
it impractical to run a full COMPUTE STATS operation for each new partition. For unpartitioned tables, or
partitioned tables that are loaded once and not updated with new partitions, use the original COMPUTE STATS
syntax.

• COMPUTE INCREMENTAL STATS uses some memory in the catalogd process, proportional to the number
of partitions and number of columns in the applicable table. The memory overhead is approximately 400 bytes for
each column in each partition. This memory is reserved in the catalogd daemon, the statestored daemon,
and in each instance of the impalad daemon.

• In cases where new files are added to an existing partition, issue a REFRESH statement for the table, followed by a
DROP INCREMENTAL STATS and COMPUTE INCREMENTAL STATS sequence for the changed partition.

• The DROP INCREMENTAL STATS statement operates only on a single partition at a time. To remove
statistics (whether incremental or not) from all partitions of a table, issue a DROP STATS statement with no
INCREMENTAL or PARTITION clauses.

The following considerations apply to incremental statistics when the structure of an existing table is changed (known
as schema evolution):

• If you use an ALTER TABLE statement to drop a column, the existing statistics remain valid and COMPUTE
INCREMENTAL STATS does not rescan any partitions.

 | Tuning Impala for Performance | 642

• If you use an ALTER TABLE statement to add a column, Impala rescans all partitions and fills in the appropriate
column-level values the next time you run COMPUTE INCREMENTAL STATS.

• If you use an ALTER TABLE statement to change the data type of a column, Impala rescans all partitions and fills
in the appropriate column-level values the next time you run COMPUTE INCREMENTAL STATS.

• If you use an ALTER TABLE statement to change the file format of a table, the existing statistics remain valid and
a subsequent COMPUTE INCREMENTAL STATS does not rescan any partitions.

See COMPUTE STATS Statement on page 240 and DROP STATS Statement on page 290 for syntax details.

Generating Table and Column Statistics (COMPUTE STATS Statement)

To gather table statistics after loading data into a table or partition, you typically use the COMPUTE STATS
statement. This statement is available in Impala 1.2.2 and higher. It gathers both table statistics and column statistics
for all columns in a single operation. For large partitioned tables, where you frequently need to update statistics and
it is impractical to scan the entire table each time, use the syntax COMPUTE INCREMENTAL STATS, which is
available in Impala 2.1 and higher.

If you use Hive as part of your ETL workflow, you can also use Hive to generate table and column statistics. You
might need to do extra configuration within Hive itself, the metastore, or even set up a separate database to hold Hive-
generated statistics. You might need to run multiple statements to generate all the necessary statistics. Therefore,
prefer the Impala COMPUTE STATS statement where that technique is practical. For details about collecting statistics
through Hive, see the Hive wiki.

If you run the Hive statement ANALYZE TABLE COMPUTE STATISTICS FOR COLUMNS, Impala can only use
the resulting column statistics if the table is unpartitioned. Impala cannot use Hive-generated column statistics for a
partitioned table.

For your very largest tables, you might find that COMPUTE STATS or even COMPUTE INCREMENTAL STATS
take so long to scan the data that it is impractical to use them regularly. In such a case, after adding a partition or
inserting new data, you can update just the number of rows property through an ALTER TABLE statement. See
Setting the NUMROWS Value Manually through ALTER TABLE on page 645 for details. Because the column
statistics might be left in a stale state, do not use this technique as a replacement for COMPUTE STATS. Only use
this technique if all other means of collecting statistics are impractical, or as a low-overhead operation that you run in
between periodic COMPUTE STATS or COMPUTE INCREMENTAL STATS operations.

Detecting Missing Statistics

You can check whether a specific table has statistics using the SHOW TABLE STATS statement (for any table) or
the SHOW PARTITIONS statement (for a partitioned table). Both statements display the same information. If a table
or a partition does not have any statistics, the #Rows field contains -1. Once you compute statistics for the table or
partition, the #Rows field changes to an accurate value.

The following example shows a table that initially does not have any statistics. The SHOW TABLE STATS statement
displays different values for #Rows before and after the COMPUTE STATS operation.

[localhost:21000] > create table no_stats (x int);
[localhost:21000] > show table stats no_stats;
+-------+--------+------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+-------+--------+------+--------------+--------+-------------------+
| -1 | 0 | 0B | NOT CACHED | TEXT | false |
+-------+--------+------+--------------+--------+-------------------+
[localhost:21000] > compute stats no_stats;
+---+
| summary |
+---+
| Updated 1 partition(s) and 1 column(s). |
+---+
[localhost:21000] > show table stats no_stats;
+-------+--------+------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |

https://cwiki.apache.org/confluence/display/Hive/StatsDev

 | Tuning Impala for Performance | 643

+-------+--------+------+--------------+--------+-------------------+
| 0 | 0 | 0B | NOT CACHED | TEXT | false |
+-------+--------+------+--------------+--------+-------------------+

The following example shows a similar progression with a partitioned table. Initially, #Rows is -1. After a
COMPUTE STATS operation, #Rows changes to an accurate value. Any newly added partition starts with no
statistics, meaning that you must collect statistics after adding a new partition.

[localhost:21000] > create table no_stats_partitioned (x int) partitioned by
 (year smallint);
[localhost:21000] > show table stats no_stats_partitioned;
+-------+-------+--------+------+--------------+--------+-------------------
+
| year | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
 |
+-------+-------+--------+------+--------------+--------+-------------------
+
| Total | -1 | 0 | 0B | 0B | |
 |
+-------+-------+--------+------+--------------+--------+-------------------
+
[localhost:21000] > show partitions no_stats_partitioned;
+-------+-------+--------+------+--------------+--------+-------------------
+
| year | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
 |
+-------+-------+--------+------+--------------+--------+-------------------
+
| Total | -1 | 0 | 0B | 0B | |
 |
+-------+-------+--------+------+--------------+--------+-------------------
+
[localhost:21000] > alter table no_stats_partitioned add partition
 (year=2013);
[localhost:21000] > compute stats no_stats_partitioned;
+---+
| summary |
+---+
| Updated 1 partition(s) and 1 column(s). |
+---+
[localhost:21000] > alter table no_stats_partitioned add partition
 (year=2014);
[localhost:21000] > show partitions no_stats_partitioned;
+-------+-------+--------+------+--------------+--------+-------------------
+
| year | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
 |
+-------+-------+--------+------+--------------+--------+-------------------
+
| 2013 | 0 | 0 | 0B | NOT CACHED | TEXT | false
 |
| 2014 | -1 | 0 | 0B | NOT CACHED | TEXT | false
 |
| Total | 0 | 0 | 0B | 0B | |
 |
+-------+-------+--------+------+--------------+--------+-------------------
+

Note: Because the default COMPUTE STATS statement creates and updates statistics for all partitions in a table, if
you expect to frequently add new partitions, use the COMPUTE INCREMENTAL STATS syntax instead, which lets
you compute stats for a single specified partition, or only for those partitions that do not already have incremental
stats.

 | Tuning Impala for Performance | 644

If checking each individual table is impractical, due to a large number of tables or views that hide the underlying base
tables, you can also check for missing statistics for a particular query. Use the EXPLAIN statement to preview query
efficiency before actually running the query. Use the query profile output available through the PROFILE command
in impala-shell or the web UI to verify query execution and timing after running the query. Both the EXPLAIN
plan and the PROFILE output display a warning if any tables or partitions involved in the query do not have statistics.

[localhost:21000] > create table no_stats (x int);
[localhost:21000] > explain select count(*) from no_stats;
+--
+
| Explain String
 |
+--
+
| Estimated Per-Host Requirements: Memory=10.00MB VCores=1
 |
| WARNING: The following tables are missing relevant table and/or column
 statistics. |
| incremental_stats.no_stats
 |
|
 |
| 03:AGGREGATE [FINALIZE]
 |
| | output: count:merge(*)
 |
| |
 |
| 02:EXCHANGE [UNPARTITIONED]
 |
| |
 |
| 01:AGGREGATE
 |
| | output: count(*)
 |
| |
 |
| 00:SCAN HDFS [incremental_stats.no_stats]
 |
| partitions=1/1 files=0 size=0B
 |
+--
+

Because Impala uses the partition pruning technique when possible to only evaluate certain partitions, if you have a
partitioned table with statistics for some partitions and not others, whether or not the EXPLAIN statement shows the
warning depends on the actual partitions used by the query. For example, you might see warnings or not for different
queries against the same table:

-- No warning because all the partitions for the year 2012 have stats.
EXPLAIN SELECT ... FROM t1 WHERE year = 2012;

-- Missing stats warning because one or more partitions in this range
-- do not have stats.
EXPLAIN SELECT ... FROM t1 WHERE year BETWEEN 2006 AND 2009;

To confirm if any partitions at all in the table are missing statistics, you might explain a query that scans the entire
table, such as SELECT COUNT(*) FROM table_name.

 | Tuning Impala for Performance | 645

Keeping Statistics Up to Date

When the contents of a table or partition change significantly, recompute the stats for the relevant table or partition.
The degree of change that qualifies as “significant” varies, depending on the absolute and relative sizes of the tables.
Typically, if you add more than 30% more data to a table, it is worthwhile to recompute stats, because the differences
in number of rows and number of distinct values might cause Impala to choose a different join order when that table
is used in join queries. This guideline is most important for the largest tables. For example, adding 30% new data to a
table containing 1 TB has a greater effect on join order than adding 30% to a table containing only a few megabytes,
and the larger table has a greater effect on query performance if Impala chooses a suboptimal join order as a result of
outdated statistics.

If you reload a complete new set of data for a table, but the number of rows and number of distinct values for each
column is relatively unchanged from before, you do not need to recompute stats for the table.

If the statistics for a table are out of date, and the table's large size makes it impractical to recompute new stats
immediately, you can use the DROP STATS statement to remove the obsolete statistics, making it easier to identify
tables that need a new COMPUTE STATS operation.

For a large partitioned table, consider using the incremental stats feature available in Impala 2.1.0 and higher, as
explained in Overview of Incremental Statistics on page 641. If you add a new partition to a table, it is worthwhile
to recompute incremental stats, because the operation only scans the data for that one new partition.

Setting the NUMROWS Value Manually through ALTER TABLE

The most crucial piece of data in all the statistics is the number of rows in the table (for an unpartitioned or partitioned
table) and for each partition (for a partitioned table). The COMPUTE STATS statement always gathers statistics
about all columns, as well as overall table statistics. If it is not practical to do a full COMPUTE STATS or COMPUTE
INCREMENTAL STATS operation after adding a partition or inserting data, or if you can see that Impala would
produce a more efficient plan if the number of rows was different, you can manually set the number of rows through
an ALTER TABLE statement:

-- Set total number of rows. Applies to both unpartitioned and partitioned
 tables.
alter table table_name set tblproperties('numRows'='new_value',
 'STATS_GENERATED_VIA_STATS_TASK'='true');

-- Set total number of rows for a specific partition. Applies to partitioned
 tables only.
-- You must specify all the partition key columns in the PARTITION clause.
alter table table_name partition (keycol1=val1,keycol2=val2...) set
 tblproperties('numRows'='new_value',
 'STATS_GENERATED_VIA_STATS_TASK'='true');

This statement avoids re-scanning any data files. (The requirement to include the
STATS_GENERATED_VIA_STATS_TASK property is relatively new, as a result of the issue HIVE-8648 for the
Hive metastore.)

create table analysis_data stored as parquet as select * from raw_data;
Inserted 1000000000 rows in 181.98s
compute stats analysis_data;
insert into analysis_data select * from smaller_table_we_forgot_before;
Inserted 1000000 rows in 15.32s
-- Now there are 1001000000 rows. We can update this single data point in
 the stats.
alter table analysis_data set tblproperties('numRows'='1001000000',
 'STATS_GENERATED_VIA_STATS_TASK'='true');

https://issues.apache.org/jira/browse/HIVE-8648

 | Tuning Impala for Performance | 646

For a partitioned table, update both the per-partition number of rows and the number of rows for the whole table:

-- If the table originally contained 1 million rows, and we add another
 partition with 30 thousand rows,
-- change the numRows property for the partition and the overall table.
alter table partitioned_data partition(year=2009, month=4) set tblproperties
 ('numRows'='30000', 'STATS_GENERATED_VIA_STATS_TASK'='true');
alter table partitioned_data set tblproperties ('numRows'='1030000',
 'STATS_GENERATED_VIA_STATS_TASK'='true');

In practice, the COMPUTE STATS statement, or COMPUTE INCREMENTAL STATS for a partitioned table, should
be fast and convenient enough that this technique is only useful for the very largest partitioned tables. Because the
column statistics might be left in a stale state, do not use this technique as a replacement for COMPUTE STATS. Only
use this technique if all other means of collecting statistics are impractical, or as a low-overhead operation that you
run in between periodic COMPUTE STATS or COMPUTE INCREMENTAL STATS operations.

Setting Column Stats Manually through ALTER TABLE

In Impala 2.6 and higher, you can also use the SET COLUMN STATS clause of ALTER TABLE to manually set
or change column statistics. Only use this technique in cases where it is impractical to run COMPUTE STATS or
COMPUTE INCREMENTAL STATS frequently enough to keep up with data changes for a huge table.

You specify a case-insensitive symbolic name for the kind of statistics: numDVs, numNulls, avgSize, maxSize.
The key names and values are both quoted. This operation applies to an entire table, not a specific partition. For
example:

create table t1 (x int, s string);
insert into t1 values (1, 'one'), (2, 'two'), (2, 'deux');
show column stats t1;
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| x | INT | -1 | -1 | 4 | 4 |
| s | STRING | -1 | -1 | -1 | -1 |
+--------+--------+------------------+--------+----------+----------+
alter table t1 set column stats x ('numDVs'='2','numNulls'='0');
alter table t1 set column stats s ('numdvs'='3','maxsize'='4');
show column stats t1;
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| x | INT | 2 | 0 | 4 | 4 |
| s | STRING | 3 | -1 | 4 | -1 |
+--------+--------+------------------+--------+----------+----------+

Examples of Using Table and Column Statistics with Impala

The following examples walk through a sequence of SHOW TABLE STATS, SHOW COLUMN STATS, ALTER
TABLE, and SELECT and INSERT statements to illustrate various aspects of how Impala uses statistics to help
optimize queries.

This example shows table and column statistics for the STORE column used in the TPC-DS benchmarks for decision
support systems. It is a tiny table holding data for 12 stores. Initially, before any statistics are gathered by a COMPUTE
STATS statement, most of the numeric fields show placeholder values of -1, indicating that the figures are unknown.
The figures that are filled in are values that are easily countable or deducible at the physical level, such as the number
of files, total data size of the files, and the maximum and average sizes for data types that have a constant size such as
INT, FLOAT, and TIMESTAMP.

[localhost:21000] > show table stats store;

http://www.tpc.org/tpcds/
http://www.tpc.org/tpcds/

 | Tuning Impala for Performance | 647

+-------+--------+--------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+--------+--------+
| -1 | 1 | 3.08KB | TEXT |
+-------+--------+--------+--------+
Returned 1 row(s) in 0.03s
[localhost:21000] > show column stats store;
+--------------------+-----------+------------------+--------+----------
+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size |
 Avg Size |
+--------------------+-----------+------------------+--------+----------
+----------+
| s_store_sk | INT | -1 | -1 | 4 | 4
 |
| s_store_id | STRING | -1 | -1 | -1 | -1
 |
| s_rec_start_date | TIMESTAMP | -1 | -1 | 16 | 16
 |
| s_rec_end_date | TIMESTAMP | -1 | -1 | 16 | 16
 |
| s_closed_date_sk | INT | -1 | -1 | 4 | 4
 |
| s_store_name | STRING | -1 | -1 | -1 | -1
 |
| s_number_employees | INT | -1 | -1 | 4 | 4
 |
| s_floor_space | INT | -1 | -1 | 4 | 4
 |
| s_hours | STRING | -1 | -1 | -1 | -1
 |
| s_manager | STRING | -1 | -1 | -1 | -1
 |
| s_market_id | INT | -1 | -1 | 4 | 4
 |
| s_geography_class | STRING | -1 | -1 | -1 | -1
 |
| s_market_desc | STRING | -1 | -1 | -1 | -1
 |
| s_market_manager | STRING | -1 | -1 | -1 | -1
 |
| s_division_id | INT | -1 | -1 | 4 | 4
 |
| s_division_name | STRING | -1 | -1 | -1 | -1
 |
| s_company_id | INT | -1 | -1 | 4 | 4
 |
| s_company_name | STRING | -1 | -1 | -1 | -1
 |
| s_street_number | STRING | -1 | -1 | -1 | -1
 |
| s_street_name | STRING | -1 | -1 | -1 | -1
 |
| s_street_type | STRING | -1 | -1 | -1 | -1
 |
| s_suite_number | STRING | -1 | -1 | -1 | -1
 |
| s_city | STRING | -1 | -1 | -1 | -1
 |
| s_county | STRING | -1 | -1 | -1 | -1
 |
| s_state | STRING | -1 | -1 | -1 | -1
 |

 | Tuning Impala for Performance | 648

| s_zip | STRING | -1 | -1 | -1 | -1
 |
| s_country | STRING | -1 | -1 | -1 | -1
 |
| s_gmt_offset | FLOAT | -1 | -1 | 4 | 4
 |
| s_tax_percentage | FLOAT | -1 | -1 | 4 | 4
 |
+--------------------+-----------+------------------+--------+----------
+----------+
Returned 29 row(s) in 0.04s

With the Hive ANALYZE TABLE statement for column statistics, you had to specify each column for which to
gather statistics. The Impala COMPUTE STATS statement automatically gathers statistics for all columns, because
it reads through the entire table relatively quickly and can efficiently compute the values for all the columns. This
example shows how after running the COMPUTE STATS statement, statistics are filled in for both the table and all its
columns:

[localhost:21000] > compute stats store;
+--+
| summary |
+--+
| Updated 1 partition(s) and 29 column(s). |
+--+
Returned 1 row(s) in 1.88s
[localhost:21000] > show table stats store;
+-------+--------+--------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+--------+--------+
| 12 | 1 | 3.08KB | TEXT |
+-------+--------+--------+--------+
Returned 1 row(s) in 0.02s
[localhost:21000] > show column stats store;
+--------------------+-----------+------------------+--------+----------
+-------------------+
| Column | Type | #Distinct Values | #Nulls | Max Size |
 Avg Size |
+--------------------+-----------+------------------+--------+----------
+-------------------+
| s_store_sk | INT | 12 | -1 | 4 | 4
 |
| s_store_id | STRING | 6 | -1 | 16 | 16
 |
| s_rec_start_date | TIMESTAMP | 4 | -1 | 16 | 16
 |
| s_rec_end_date | TIMESTAMP | 3 | -1 | 16 | 16
 |
| s_closed_date_sk | INT | 3 | -1 | 4 | 4
 |
| s_store_name | STRING | 8 | -1 | 5 |
 4.25 |
| s_number_employees | INT | 9 | -1 | 4 | 4
 |
| s_floor_space | INT | 10 | -1 | 4 | 4
 |
| s_hours | STRING | 2 | -1 | 8 |
 7.083300113677979 |
| s_manager | STRING | 7 | -1 | 15 | 12
 |
| s_market_id | INT | 7 | -1 | 4 | 4
 |
| s_geography_class | STRING | 1 | -1 | 7 | 7
 |

 | Tuning Impala for Performance | 649

| s_market_desc | STRING | 10 | -1 | 94 |
 55.5 |
| s_market_manager | STRING | 7 | -1 | 16 | 14
 |
| s_division_id | INT | 1 | -1 | 4 | 4
 |
| s_division_name | STRING | 1 | -1 | 7 | 7
 |
| s_company_id | INT | 1 | -1 | 4 | 4
 |
| s_company_name | STRING | 1 | -1 | 7 | 7
 |
| s_street_number | STRING | 9 | -1 | 3 |
 2.833300113677979 |
| s_street_name | STRING | 12 | -1 | 11 |
 6.583300113677979 |
| s_street_type | STRING | 8 | -1 | 9 |
 4.833300113677979 |
| s_suite_number | STRING | 11 | -1 | 9 |
 8.25 |
| s_city | STRING | 2 | -1 | 8 |
 6.5 |
| s_county | STRING | 1 | -1 | 17 | 17
 |
| s_state | STRING | 1 | -1 | 2 | 2
 |
| s_zip | STRING | 2 | -1 | 5 | 5
 |
| s_country | STRING | 1 | -1 | 13 | 13
 |
| s_gmt_offset | FLOAT | 1 | -1 | 4 | 4
 |
| s_tax_percentage | FLOAT | 5 | -1 | 4 | 4
 |
+--------------------+-----------+------------------+--------+----------
+-------------------+
Returned 29 row(s) in 0.04s

The following example shows how statistics are represented for a partitioned table. In this case, we have set up a table
to hold the world's most trivial census data, a single STRING field, partitioned by a YEAR column. The table statistics
include a separate entry for each partition, plus final totals for the numeric fields. The column statistics include some
easily deducible facts for the partitioning column, such as the number of distinct values (the number of partition
subdirectories).

localhost:21000] > describe census;
+------+----------+---------+
| name | type | comment |
+------+----------+---------+
| name | string | |
| year | smallint | |
+------+----------+---------+
Returned 2 row(s) in 0.02s
[localhost:21000] > show table stats census;
+-------+-------+--------+------+---------+
| year | #Rows | #Files | Size | Format |
+-------+-------+--------+------+---------+
2000	-1	0	0B	TEXT
2004	-1	0	0B	TEXT
2008	-1	0	0B	TEXT
2010	-1	0	0B	TEXT
2011	0	1	22B	TEXT
2012	-1	1	22B	TEXT
2013	-1	1	231B	PARQUET

 | Tuning Impala for Performance | 650

| Total | 0 | 3 | 275B | |
+-------+-------+--------+------+---------+
Returned 8 row(s) in 0.02s
[localhost:21000] > show column stats census;
+--------+----------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+----------+------------------+--------+----------+----------+
| name | STRING | -1 | -1 | -1 | -1 |
| year | SMALLINT | 7 | -1 | 2 | 2 |
+--------+----------+------------------+--------+----------+----------+
Returned 2 row(s) in 0.02s

The following example shows how the statistics are filled in by a COMPUTE STATS statement in Impala.

[localhost:21000] > compute stats census;
+---+
| summary |
+---+
| Updated 3 partition(s) and 1 column(s). |
+---+
Returned 1 row(s) in 2.16s
[localhost:21000] > show table stats census;
+-------+-------+--------+------+---------+
| year | #Rows | #Files | Size | Format |
+-------+-------+--------+------+---------+
2000	-1	0	0B	TEXT
2004	-1	0	0B	TEXT
2008	-1	0	0B	TEXT
2010	-1	0	0B	TEXT
2011	4	1	22B	TEXT
2012	4	1	22B	TEXT
2013	1	1	231B	PARQUET
Total	9	3	275B	
+-------+-------+--------+------+---------+				
Returned 8 row(s) in 0.02s				
[localhost:21000] > show column stats census;				
+--------+----------+------------------+--------+----------+----------+				
Column	Type	#Distinct Values	#Nulls	Max Size
+--------+----------+------------------+--------+----------+----------+				
name	STRING	4	-1	5
year	SMALLINT	7	-1	2
+--------+----------+------------------+--------+----------+----------+
Returned 2 row(s) in 0.02s

For examples showing how some queries work differently when statistics are available, see Examples of Join Order
Optimization on page 630. You can see how Impala executes a query differently in each case by observing the
EXPLAIN output before and after collecting statistics. Measure the before and after query times, and examine the
throughput numbers in before and after SUMMARY or PROFILE output, to verify how much the improved plan speeds
up performance.

Benchmarking Impala Queries
Because Impala, like other Hadoop components, is designed to handle large data volumes in a distributed
environment, conduct any performance tests using realistic data and cluster configurations. Use a multi-node cluster
rather than a single node; run queries against tables containing terabytes of data rather than tens of gigabytes. The
parallel processing techniques used by Impala are most appropriate for workloads that are beyond the capacity of a
single server.

When you run queries returning large numbers of rows, the CPU time to pretty-print the output can be substantial,
giving an inaccurate measurement of the actual query time. Consider using the -B option on the impala-shell

 | Tuning Impala for Performance | 651

command to turn off the pretty-printing, and optionally the -o option to store query results in a file rather than
printing to the screen. See impala-shell Configuration Options on page 612 for details.

Controlling Impala Resource Usage
Sometimes, balancing raw query performance against scalability requires limiting the amount of resources, such as
memory or CPU, used by a single query or group of queries. Impala can use several mechanisms that help to smooth
out the load during heavy concurrent usage, resulting in faster overall query times and sharing of resources across
Impala queries, MapReduce jobs, and other kinds of workloads across a cluster:

• The Impala admission control feature uses a fast, distributed mechanism to hold back queries that exceed limits on
the number of concurrent queries or the amount of memory used. The queries are queued, and executed as other
queries finish and resources become available. You can control the concurrency limits, and specify different limits
for different groups of users to divide cluster resources according to the priorities of different classes of users. This
feature is new in Impala 1.3. See Admission Control and Query Queuing on page 67 for details.

• You can restrict the amount of memory Impala reserves during query execution by specifying the -mem_limit
option for the impalad daemon. See Modifying Impala Startup Options on page 32 for details. This limit
applies only to the memory that is directly consumed by queries; Impala reserves additional memory at startup, for
example to hold cached metadata.

• For production deployments, implement resource isolation using your cluster management tool.

Runtime Filtering for Impala Queries (Impala 2.5 or higher only)
Runtime filtering is a wide-ranging optimization feature available in Impala 2.5 and higher. When only a fraction of
the data in a table is needed for a query against a partitioned table or to evaluate a join condition, Impala determines
the appropriate conditions while the query is running, and broadcasts that information to all the impalad nodes that
are reading the table so that they can avoid unnecessary I/O to read partition data, and avoid unnecessary network
transmission by sending only the subset of rows that match the join keys across the network.

This feature is primarily used to optimize queries against large partitioned tables (under the name dynamic partition
pruning) and joins of large tables. The information in this section includes concepts, internals, and troubleshooting
information for the entire runtime filtering feature. For specific tuning steps for partitioned tables, see Dynamic
Partition Pruning on page 685.

Important:

When this feature made its debut in Impala 2.5, the default setting was RUNTIME_FILTER_MODE=LOCAL. Now
the default is RUNTIME_FILTER_MODE=GLOBAL in Impala 2.6 and higher, which enables more wide-ranging and
ambitious query optimization without requiring you to explicitly set any query options.

Background Information for Runtime Filtering

To understand how runtime filtering works at a detailed level, you must be familiar with some terminology from the
field of distributed database technology:

• What a plan fragment is. Impala decomposes each query into smaller units of work that are distributed across
the cluster. Wherever possible, a data block is read, filtered, and aggregated by plan fragments executing on the
same host. For some operations, such as joins and combining intermediate results into a final result set, data is
transmitted across the network from one DataNode to another.

• What SCAN and HASH JOIN plan nodes are, and their role in computing query results:

In the Impala query plan, a scan node performs the I/O to read from the underlying data files. Although this is an
expensive operation from the traditional database perspective, Hadoop clusters and Impala are optimized to do this
kind of I/O in a highly parallel fashion. The major potential cost savings come from using the columnar Parquet
format (where Impala can avoid reading data for unneeded columns) and partitioned tables (where Impala can
avoid reading data for unneeded partitions).

 | Tuning Impala for Performance | 652

Most Impala joins use the hash join mechanism. (It is only fairly recently that Impala started using the nested-loop
join technique, for certain kinds of non-equijoin queries.) In a hash join, when evaluating join conditions from two
tables, Impala constructs a hash table in memory with all the different column values from the table on one side of
the join. Then, for each row from the table on the other side of the join, Impala tests whether the relevant column
values are in this hash table or not.

A hash join node constructs such an in-memory hash table, then performs the comparisons to identify which rows
match the relevant join conditions and should be included in the result set (or at least sent on to the subsequent
intermediate stage of query processing). Because some of the input for a hash join might be transmitted across the
network from another host, it is especially important from a performance perspective to prune out ahead of time
any data that is known to be irrelevant.

The more distinct values are in the columns used as join keys, the larger the in-memory hash table and thus the
more memory required to process the query.

• The difference between a broadcast join and a shuffle join. (The Hadoop notion of a shuffle join is sometimes
referred to in Impala as a partitioned join.) In a broadcast join, the table from one side of the join (typically the
smaller table) is sent in its entirety to all the hosts involved in the query. Then each host can compare its portion of
the data from the other (larger) table against the full set of possible join keys. In a shuffle join, there is no obvious
“smaller” table, and so the contents of both tables are divided up, and corresponding portions of the data are
transmitted to each host involved in the query. See Query Hints in Impala SELECT Statements on page 352 for
information about how these different kinds of joins are processed.

• The notion of the build phase and probe phase when Impala processes a join query. The build phase is where
the rows containing the join key columns, typically for the smaller table, are transmitted across the network and
built into an in-memory hash table data structure on one or more destination nodes. The probe phase is where
data is read locally (typically from the larger table) and the join key columns are compared to the values in the in-
memory hash table. The corresponding input sources (tables, subqueries, and so on) for these phases are referred
to as the build side and the probe side.

• How to set Impala query options: interactively within an impala-shell session through the SET command,
for a JDBC or ODBC application through the SET statement, or globally for all impalad daemons through the
default_query_options configuration setting.

Runtime Filtering Internals

The filter that is transmitted between plan fragments is essentially a list of values for join key columns. When this list
is values is transmitted in time to a scan node, Impala can filter out non-matching values immediately after reading
them, rather than transmitting the raw data to another host to compare against the in-memory hash table on that host.

For HDFS-based tables, this data structure is implemented as a Bloom filter, which uses a probability-based algorithm
to determine all possible matching values. (The probability-based aspects means that the filter might include some
non-matching values, but if so, that does not cause any inaccuracy in the final results.)

Another kind of filter is the “min-max” filter. It currently only applies to Kudu tables. The filter is a data structure
representing a minimum and maximum value. These filters are passed to Kudu to reduce the number of rows returned
to Impala when scanning the probe side of the join.

There are different kinds of filters to match the different kinds of joins (partitioned and broadcast). A broadcast filter
reflects the complete list of relevant values and can be immediately evaluated by a scan node. A partitioned filter
reflects only the values processed by one host in the cluster; all the partitioned filters must be combined into one (by
the coordinator node) before the scan nodes can use the results to accurately filter the data as it is read from storage.

Broadcast filters are also classified as local or global. With a local broadcast filter, the information in the filter is used
by a subsequent query fragment that is running on the same host that produced the filter. A non-local broadcast filter
must be transmitted across the network to a query fragment that is running on a different host. Impala designates 3
hosts to each produce non-local broadcast filters, to guard against the possibility of a single slow host taking too long.
Depending on the setting of the RUNTIME_FILTER_MODE query option (LOCAL or GLOBAL), Impala either uses
a conservative optimization strategy where filters are only consumed on the same host that produced them, or a more
aggressive strategy where filters are eligible to be transmitted across the network.

Note: In Impala 2.6 and higher, the default for runtime filtering is the GLOBAL setting.

https://en.wikipedia.org/wiki/Hash_join

 | Tuning Impala for Performance | 653

File Format Considerations for Runtime Filtering

Parquet tables get the most benefit from the runtime filtering optimizations. Runtime filtering can speed up join
queries against partitioned or unpartitioned Parquet tables, and single-table queries against partitioned Parquet tables.
See Using the Parquet File Format with Impala Tables on page 699 for information about using Parquet tables
with Impala.

For other file formats (text, Avro, RCFile, and SequenceFile), runtime filtering speeds up queries against partitioned
tables only. Because partitioned tables can use a mixture of formats, Impala produces the filters in all cases, even if
they are not ultimately used to optimize the query.

Wait Intervals for Runtime Filters

Because it takes time to produce runtime filters, especially for partitioned filters that must be combined by the
coordinator node, there is a time interval above which it is more efficient for the scan nodes to go ahead and construct
their intermediate result sets, even if that intermediate data is larger than optimal. If it only takes a few seconds to
produce the filters, it is worth the extra time if pruning the unnecessary data can save minutes in the overall query
time. You can specify the maximum wait time in milliseconds using the RUNTIME_FILTER_WAIT_TIME_MS
query option.

By default, each scan node waits for up to 1 second (1000 milliseconds) for filters to arrive. If all filters have not
arrived within the specified interval, the scan node proceeds, using whatever filters did arrive to help avoid reading
unnecessary data. If a filter arrives after the scan node begins reading data, the scan node applies that filter to the data
that is read after the filter arrives, but not to the data that was already read.

If the cluster is relatively busy and your workload contains many resource-intensive or long-running queries, consider
increasing the wait time so that complicated queries do not miss opportunities for optimization. If the cluster is lightly
loaded and your workload contains many small queries taking only a few seconds, consider decreasing the wait time
to avoid the 1 second delay for each query.

Query Options for Runtime Filtering

See the following sections for information about the query options that control runtime filtering:

• The first query option adjusts the “sensitivity” of this feature. By default, it is set to the highest level (GLOBAL).
(This default applies to Impala 2.6 and higher. In previous releases, the default was LOCAL.)

• RUNTIME_FILTER_MODE Query Option (Impala 2.5 or higher only) on page 391
• The other query options are tuning knobs that you typically only adjust after doing performance testing, and that

you might want to change only for the duration of a single expensive query:

• MAX_NUM_RUNTIME_FILTERS Query Option (Impala 2.5 or higher only) on page 377
• DISABLE_ROW_RUNTIME_FILTERING Query Option (Impala 2.5 or higher only) on page 364
• RUNTIME_FILTER_MAX_SIZE Query Option (Impala 2.6 or higher only) on page 390
• RUNTIME_FILTER_MIN_SIZE Query Option (Impala 2.6 or higher only) on page 390
• RUNTIME_BLOOM_FILTER_SIZE Query Option (Impala 2.5 or higher only) on page 389; in Impala 2.6

and higher, this setting acts as a fallback when statistics are not available, rather than as a directive.

Runtime Filtering and Query Plans

In the same way the query plan displayed by the EXPLAIN statement includes information about predicates
used by each plan fragment, it also includes annotations showing whether a plan fragment produces or consumes
a runtime filter. A plan fragment that produces a filter includes an annotation such as runtime filters:
filter_id <- table.column, while a plan fragment that consumes a filter includes an annotation such as
runtime filters: filter_id -> table.column. Setting the query option EXPLAIN_LEVEL=2
adds additional annotations showing the type of the filter, either filter_id[bloom] (for HDFS-based tables) or
filter_id[min_max] (for Kudu tables).

 | Tuning Impala for Performance | 654

The following example shows a query that uses a single runtime filter (labelled RF00) to prune the partitions that are
scanned in one stage of the query, based on evaluating the result set of a subquery:

create table yy (s string) partitioned by (year int) stored as parquet;
insert into yy partition (year) values ('1999', 1999), ('2000', 2000),
 ('2001', 2001), ('2010',2010);
compute stats yy;

create table yy2 (s string) partitioned by (year int) stored as parquet;
insert into yy2 partition (year) values ('1999', 1999), ('2000', 2000),
 ('2001', 2001);
compute stats yy2;

-- The query reads an unknown number of partitions, whose key values are
 only
-- known at run time. The 'runtime filters' lines show how the information
 about
-- the partitions is calculated in query fragment 02, and then used in query
-- fragment 00 to decide which partitions to skip.
explain select s from yy2 where year in (select year from yy where year
 between 2000 and 2005);
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=16.00MB VCores=2 |
| |
| 04:EXCHANGE [UNPARTITIONED] |
| | |
| 02:HASH JOIN [LEFT SEMI JOIN, BROADCAST] |
	hash predicates: year = year	
	runtime filters: RF000 <- year	
	--03:EXCHANGE [BROADCAST]	
	01:SCAN HDFS [dpp.yy]	
	partitions=2/4 files=2 size=468B	
00:SCAN HDFS [dpp.yy2]		
partitions=2/3 files=2 size=468B		
runtime filters: RF000 -> year		
+--+

The query profile (displayed by the PROFILE command in impala-shell) contains both the EXPLAIN plan and
more detailed information about the internal workings of the query. The profile output includes a section labelled the
“filter routing table”, with information about each filter based on its ID.

Examples of Queries that Benefit from Runtime Filtering

In this example, Impala would normally do extra work to interpret the columns C1, C2, C3, and ID for each row in
HUGE_T1, before checking the ID value against the in-memory hash table constructed from all the TINY_T2.ID
values. By producing a filter containing all the TINY_T2.ID values even before the query starts scanning the
HUGE_T1 table, Impala can skip the unnecessary work to parse the column info as soon as it determines that an ID
value does not match any of the values from the other table.

The example shows COMPUTE STATS statements for both the tables (even though that is a one-time operation after
loading data into those tables) because Impala relies on up-to-date statistics to determine which one has more distinct
ID values than the other. That information lets Impala make effective decisions about which table to use to construct
the in-memory hash table, and which table to read from disk and compare against the entries in the hash table.

COMPUTE STATS huge_t1;

 | Tuning Impala for Performance | 655

COMPUTE STATS tiny_t2;
SELECT c1, c2, c3 FROM huge_t1 JOIN tiny_t2 WHERE huge_t1.id = tiny_t2.id;

In this example, T1 is a table partitioned by year. The subquery on T2 produces multiple values, and transmits those
values as a filter to the plan fragments that are reading from T1. Any non-matching partitions in T1 are skipped.

select c1 from t1 where year in (select distinct year from t2);

Now the WHERE clause contains an additional test that does not apply to the partition key column. A filter on a
column that is not a partition key is called a per-row filter. Because per-row filters only apply for Parquet, T1 must be
a Parquet table.

The subqueries result in two filters being transmitted to the scan nodes that read from T1. The filter on YEAR helps
the query eliminate entire partitions based on non-matching years. The filter on C2 lets Impala discard rows with non-
matching C2 values immediately after reading them. Without runtime filtering, Impala would have to keep the non-
matching values in memory, assemble C1, C2, and C3 into rows in the intermediate result set, and transmit all the
intermediate rows back to the coordinator node, where they would be eliminated only at the very end of the query.

select c1, c2, c3 from t1
 where year in (select distinct year from t2)
 and c2 in (select other_column from t3);

This example involves a broadcast join. The fact that the ON clause would return a small number of matching rows
(because there are not very many rows in TINY_T2) means that the corresponding filter is very selective. Therefore,
runtime filtering will probably be effective in optimizing this query.

select c1 from huge_t1 join [broadcast] tiny_t2
 on huge_t1.id = tiny_t2.id
 where huge_t1.year in (select distinct year from tiny_t2)
 and c2 in (select other_column from t3);

This example involves a shuffle or partitioned join. Assume that most rows in HUGE_T1 have a corresponding row
in HUGE_T2. The fact that the ON clause could return a large number of matching rows means that the corresponding
filter would not be very selective. Therefore, runtime filtering might be less effective in optimizing this query.

select c1 from huge_t1 join [shuffle] huge_t2
 on huge_t1.id = huge_t2.id
 where huge_t1.year in (select distinct year from huge_t2)
 and c2 in (select other_column from t3);

Tuning and Troubleshooting Queries that Use Runtime Filtering

These tuning and troubleshooting procedures apply to queries that are resource-intensive enough, long-running
enough, and frequent enough that you can devote special attention to optimizing them individually.

Use the EXPLAIN statement and examine the runtime filters: lines to determine whether runtime filters are
being applied to the WHERE predicates and join clauses that you expect. For example, runtime filtering does not apply
to queries that use the nested loop join mechanism due to non-equijoin operators.

Make sure statistics are up-to-date for all tables involved in the queries. Use the COMPUTE STATS statement after
loading data into non-partitioned tables, and COMPUTE INCREMENTAL STATS after adding new partitions to
partitioned tables.

If join queries involving large tables use unique columns as the join keys, for example joining a primary key column
with a foreign key column, the overhead of producing and transmitting the filter might outweigh the performance

 | Tuning Impala for Performance | 656

benefit because not much data could be pruned during the early stages of the query. For such queries, consider setting
the query option RUNTIME_FILTER_MODE=OFF.

Limitations and Restrictions for Runtime Filtering

The runtime filtering feature is most effective for the Parquet file formats. For other file formats, filtering only applies
for partitioned tables. See File Format Considerations for Runtime Filtering on page 653. For the ways in which
runtime filtering works for Kudu tables, see Impala Query Performance for Kudu Tables on page 737.

When the spill-to-disk mechanism is activated on a particular host during a query, that host does not produce any
filters while processing that query. This limitation does not affect the correctness of results; it only reduces the
amount of optimization that can be applied to the query.

Using HDFS Caching with Impala (Impala 2.1 or higher only)
HDFS caching provides performance and scalability benefits in production environments where Impala queries and
other Hadoop jobs operate on quantities of data much larger than the physical RAM on the DataNodes, making it
impractical to rely on the Linux OS cache, which only keeps the most recently used data in memory. Data read from
the HDFS cache avoids the overhead of checksumming and memory-to-memory copying involved when using data
from the Linux OS cache.

Note:

On a small or lightly loaded cluster, HDFS caching might not produce any speedup. It might even lead to slower
queries, if I/O read operations that were performed in parallel across the entire cluster are replaced by in-memory
operations operating on a smaller number of hosts. The hosts where the HDFS blocks are cached can become
bottlenecks because they experience high CPU load while processing the cached data blocks, while other hosts remain
idle. Therefore, always compare performance with and without this feature enabled, using a realistic workload.

In Impala 2.2 and higher, you can spread the CPU load more evenly by specifying the WITH REPLICATION clause
of the CREATE TABLE and ALTER TABLE statements. This clause lets you control the replication factor for HDFS
caching for a specific table or partition. By default, each cached block is only present on a single host, which can
lead to CPU contention if the same host processes each cached block. Increasing the replication factor lets Impala
choose different hosts to process different cached blocks, to better distribute the CPU load. Always use a WITH
REPLICATION setting of at least 3, and adjust upward if necessary to match the replication factor for the underlying
HDFS data files.

In Impala 2.5 and higher, Impala automatically randomizes which host processes a cached HDFS block, to
avoid CPU hotspots. For tables where HDFS caching is not applied, Impala designates which host to process
a data block using an algorithm that estimates the load on each host. If CPU hotspots still arise during queries,
you can enable additional randomization for the scheduling algorithm for non-HDFS cached data by setting the
SCHEDULE_RANDOM_REPLICA query option.

For background information about how to set up and manage HDFS caching for a cluster, see the documentation for
your Apache Hadoop distribution.

Overview of HDFS Caching for Impala

In Impala 1.4 and higher, Impala can use the HDFS caching feature to make more effective use of RAM, so that
repeated queries can take advantage of data “pinned” in memory regardless of how much data is processed overall.
The HDFS caching feature lets you designate a subset of frequently accessed data to be pinned permanently in
memory, remaining in the cache across multiple queries and never being evicted. This technique is suitable for tables
or partitions that are frequently accessed and are small enough to fit entirely within the HDFS memory cache. For
example, you might designate several dimension tables to be pinned in the cache, to speed up many different join
queries that reference them. Or in a partitioned table, you might pin a partition holding data from the most recent
time period because that data will be queried intensively; then when the next set of data arrives, you could unpin the
previous partition and pin the partition holding the new data.

 | Tuning Impala for Performance | 657

Because this Impala performance feature relies on HDFS infrastructure, it only applies to Impala tables that use
HDFS data files. HDFS caching for Impala does not apply to HBase tables, S3 tables, Kudu tables, or Isilon tables.

Setting Up HDFS Caching for Impala

To use HDFS caching with Impala, first set up that feature for your cluster:

• Decide how much memory to devote to the HDFS cache on each host. Remember that the total memory available
for cached data is the sum of the cache sizes on all the hosts. By default, any data block is only cached on one
host, although you can cache a block across multiple hosts by increasing the replication factor.

• Issue hdfs cacheadmin commands to set up one or more cache pools, owned by the same user as the
impalad daemon (typically impala). For example:

hdfs cacheadmin -addPool four_gig_pool -owner impala -limit 4000000000

For details about the hdfs cacheadmin command, see the documentation for your Apache Hadoop
distribution.

Once HDFS caching is enabled and one or more pools are available, see Enabling HDFS Caching for Impala Tables
and Partitions on page 657 for how to choose which Impala data to load into the HDFS cache. On the Impala
side, you specify the cache pool name defined by the hdfs cacheadmin command in the Impala DDL statements
that enable HDFS caching for a table or partition, such as CREATE TABLE ... CACHED IN pool or ALTER
TABLE ... SET CACHED IN pool.

Enabling HDFS Caching for Impala Tables and Partitions

Begin by choosing which tables or partitions to cache. For example, these might be lookup tables that are accessed by
many different join queries, or partitions corresponding to the most recent time period that are analyzed by different
reports or ad hoc queries.

In your SQL statements, you specify logical divisions such as tables and partitions to be cached. Impala translates
these requests into HDFS-level directives that apply to particular directories and files. For example, given a
partitioned table CENSUS with a partition key column YEAR, you could choose to cache all or part of the data as
follows:

In Impala 2.2 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE lets
you specify a replication factor, the number of hosts on which to cache the same data blocks. When Impala processes
a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host that has a
cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the same cached
data block is processed multiple times. Where practical, specify a value greater than or equal to the HDFS block
replication factor.

-- Cache the entire table (all partitions).
alter table census set cached in 'pool_name';

-- Remove the entire table from the cache.
alter table census set uncached;

-- Cache a portion of the table (a single partition).
-- If the table is partitioned by multiple columns (such as year, month,
 day),
-- the ALTER TABLE command must specify values for all those columns.
alter table census partition (year=1960) set cached in 'pool_name';

-- Cache the data from one partition on up to 4 hosts, to minimize CPU load
 on any
-- single host when the same data block is processed multiple times.
alter table census partition (year=1970)
 set cached in 'pool_name' with replication = 4;

-- At each stage, check the volume of cached data.

 | Tuning Impala for Performance | 658

-- For large tables or partitions, the background loading might take some
 time,
-- so you might have to wait and reissue the statement until all the data
-- has finished being loaded into the cache.
show table stats census;
+-------+-------+--------+------+--------------+--------+
| year | #Rows | #Files | Size | Bytes Cached | Format |
+-------+-------+--------+------+--------------+--------+
1900	-1	1	11B	NOT CACHED	TEXT
1940	-1	1	11B	NOT CACHED	TEXT
1960	-1	1	11B	11B	TEXT
1970	-1	1	11B	NOT CACHED	TEXT
Total	-1	4	44B	11B	
+-------+-------+--------+------+--------------+--------+

CREATE TABLE considerations:

The HDFS caching feature affects the Impala CREATE TABLE statement as follows:

• You can put a CACHED IN 'pool_name' clause and optionally a WITH REPLICATION =
number_of_hosts clause at the end of a CREATE TABLE statement to automatically cache the entire
contents of the table, including any partitions added later. The pool_name is a pool that you previously set up with
the hdfs cacheadmin command.

• Once a table is designated for HDFS caching through the CREATE TABLE statement, if new partitions are
added later through ALTER TABLE ... ADD PARTITION statements, the data in those new partitions is
automatically cached in the same pool.

• If you want to perform repetitive queries on a subset of data from a large table, and it is not practical to designate
the entire table or specific partitions for HDFS caching, you can create a new cached table with just a subset of the
data by using CREATE TABLE ... CACHED IN 'pool_name' AS SELECT ... WHERE When
you are finished with generating reports from this subset of data, drop the table and both the data files and the data
cached in RAM are automatically deleted.

See CREATE TABLE Statement on page 256 for the full syntax.

Other memory considerations:

Certain DDL operations, such as ALTER TABLE ... SET LOCATION, are blocked while the underlying HDFS
directories contain cached files. You must uncache the files first, before changing the location, dropping the table, and
so on.

When data is requested to be pinned in memory, that process happens in the background without blocking access
to the data while the caching is in progress. Loading the data from disk could take some time. Impala reads each
HDFS data block from memory if it has been pinned already, or from disk if it has not been pinned yet. When files
are added to a table or partition whose contents are cached, Impala automatically detects those changes and performs
a REFRESH automatically once the relevant data is cached.

The amount of data that you can pin on each node through the HDFS caching mechanism is subject to a quota that is
enforced by the underlying HDFS service. Before requesting to pin an Impala table or partition in memory, check that
its size does not exceed this quota.

Note: Because the HDFS cache consists of combined memory from all the DataNodes in the cluster, cached tables or
partitions can be bigger than the amount of HDFS cache memory on any single host.

Loading and Removing Data with HDFS Caching Enabled

When HDFS caching is enabled, extra processing happens in the background when you add or remove data through
statements such as INSERT and DROP TABLE.

Inserting or loading data:

• When Impala performs an INSERT or LOAD DATA statement for a table or partition that is cached, the new data
files are automatically cached and Impala recognizes that fact automatically.

 | Tuning Impala for Performance | 659

• If you perform an INSERT or LOAD DATA through Hive, as always, Impala only recognizes the new data files
after a REFRESH table_name statement in Impala.

• If the cache pool is entirely full, or becomes full before all the requested data can be cached, the Impala DDL
statement returns an error. This is to avoid situations where only some of the requested data could be cached.

• When HDFS caching is enabled for a table or partition, new data files are cached automatically when they are
added to the appropriate directory in HDFS, without the need for a REFRESH statement in Impala. Impala
automatically performs a REFRESH once the new data is loaded into the HDFS cache.

Dropping tables, partitions, or cache pools:

The HDFS caching feature interacts with the Impala DROP TABLE and ALTER TABLE ... DROP PARTITION
statements as follows:

• When you issue a DROP TABLE for a table that is entirely cached, or has some partitions cached, the DROP
TABLE succeeds and all the cache directives Impala submitted for that table are removed from the HDFS cache
system.

• The same applies to ALTER TABLE ... DROP PARTITION. The operation succeeds and any cache
directives are removed.

• As always, the underlying data files are removed if the dropped table is an internal table, or the dropped partition
is in its default location underneath an internal table. The data files are left alone if the dropped table is an external
table, or if the dropped partition is in a non-default location.

• If you designated the data files as cached through the hdfs cacheadmin command, and the data files are left
behind as described in the previous item, the data files remain cached. Impala only removes the cache directives
submitted by Impala through the CREATE TABLE or ALTER TABLE statements. It is OK to have multiple
redundant cache directives pertaining to the same files; the directives all have unique IDs and owners so that the
system can tell them apart.

• If you drop an HDFS cache pool through the hdfs cacheadmin command, all the Impala data files are
preserved, just no longer cached. After a subsequent REFRESH, SHOW TABLE STATS reports 0 bytes cached
for each associated Impala table or partition.

Relocating a table or partition:

The HDFS caching feature interacts with the Impala ALTER TABLE ... SET LOCATION statement as follows:

• If you have designated a table or partition as cached through the CREATE TABLE or ALTER TABLE statements,
subsequent attempts to relocate the table or partition through an ALTER TABLE ... SET LOCATION
statement will fail. You must issue an ALTER TABLE ... SET UNCACHED statement for the table or
partition first. Otherwise, Impala would lose track of some cached data files and have no way to uncache them
later.

Administration for HDFS Caching with Impala

Here are the guidelines and steps to check or change the status of HDFS caching for Impala data:

hdfs cacheadmin command:

• If you drop a cache pool with the hdfs cacheadmin command, Impala queries against the associated data files
will still work, by falling back to reading the files from disk. After performing a REFRESH on the table, Impala
reports the number of bytes cached as 0 for all associated tables and partitions.

• You might use hdfs cacheadmin to get a list of existing cache pools, or detailed information about the pools,
as follows:

hdfs cacheadmin -listDirectives # Basic info
Found 122 entries
 ID POOL REPL EXPIRY PATH
 123 testPool 1 never /user/hive/warehouse/tpcds.store_sales
 124 testPool 1 never /user/hive/warehouse/tpcds.store_sales/ss_date=1998-01-15
 125 testPool 1 never /user/hive/warehouse/tpcds.store_sales/ss_date=1998-02-01
...

hdfs cacheadmin -listDirectives -stats # More details
Found 122 entries
 ID POOL REPL EXPIRY PATH BYTES_NEEDED BYTES_CACHED
 FILES_NEEDED FILES_CACHED
 123 testPool 1 never /user/hive/warehouse/tpcds.store_sales 0 0
 0 0

 | Tuning Impala for Performance | 660

 124 testPool 1 never /user/hive/warehouse/tpcds.store_sales/ss_date=1998-01-15 143169 143169
 1 1
 125 testPool 1 never /user/hive/warehouse/tpcds.store_sales/ss_date=1998-02-01 112447 112447
 1 1
...

Impala SHOW statement:

• For each table or partition, the SHOW TABLE STATS or SHOW PARTITIONS statement displays the number
of bytes currently cached by the HDFS caching feature. If there are no cache directives in place for that table or
partition, the result set displays NOT CACHED. A value of 0, or a smaller number than the overall size of the
table or partition, indicates that the cache request has been submitted but the data has not been entirely loaded into
memory yet. See SHOW Statement on page 394 for details.

Impala memory limits:

The Impala HDFS caching feature interacts with the Impala memory limits as follows:

• The maximum size of each HDFS cache pool is specified externally to Impala, through the hdfs cacheadmin
command.

• All the memory used for HDFS caching is separate from the impalad daemon address space and does not count
towards the limits of the --mem_limit startup option, MEM_LIMIT query option, or further limits imposed
through YARN resource management or the Linux cgroups mechanism.

• Because accessing HDFS cached data avoids a memory-to-memory copy operation, queries involving cached
data require less memory on the Impala side than the equivalent queries on uncached data. In addition to any
performance benefits in a single-user environment, the reduced memory helps to improve scalability under high-
concurrency workloads.

Performance Considerations for HDFS Caching with Impala

In Impala 1.4.0 and higher, Impala supports efficient reads from data that is pinned in memory through HDFS
caching. Impala takes advantage of the HDFS API and reads the data from memory rather than from disk whether the
data files are pinned using Impala DDL statements, or using the command-line mechanism where you specify HDFS
paths.

When you examine the output of the impala-shell SUMMARY command, or look in the metrics report for the
impalad daemon, you see how many bytes are read from the HDFS cache. For example, this excerpt from a query
profile illustrates that all the data read during a particular phase of the query came from the HDFS cache, because the
BytesRead and BytesReadDataNodeCache values are identical.

HDFS_SCAN_NODE (id=0):(Total: 11s114ms, non-child: 11s114ms, % non-child:
 100.00%)
 - AverageHdfsReadThreadConcurrency: 0.00
 - AverageScannerThreadConcurrency: 32.75
 - BytesRead: 10.47 GB (11240756479)
 - BytesReadDataNodeCache: 10.47 GB (11240756479)
 - BytesReadLocal: 10.47 GB (11240756479)
 - BytesReadShortCircuit: 10.47 GB (11240756479)
 - DecompressionTime: 27s572ms

For queries involving smaller amounts of data, or in single-user workloads, you might not notice a significant
difference in query response time with or without HDFS caching. Even with HDFS caching turned off, the data for
the query might still be in the Linux OS buffer cache. The benefits become clearer as data volume increases, and
especially as the system processes more concurrent queries. HDFS caching improves the scalability of the overall
system. That is, it prevents query performance from declining when the workload outstrips the capacity of the Linux
OS cache.

Due to a limitation of HDFS, zero-copy reads are not supported with encryption. Where practical, avoid HDFS
caching for Impala data files in encryption zones. The queries fall back to the normal read path during query
execution, which might cause some performance overhead.

SELECT considerations:

 | Tuning Impala for Performance | 661

The Impala HDFS caching feature interacts with the SELECT statement and query performance as follows:

• Impala automatically reads from memory any data that has been designated as cached and actually loaded into
the HDFS cache. (It could take some time after the initial request to fully populate the cache for a table with large
size or many partitions.) The speedup comes from two aspects: reading from RAM instead of disk, and accessing
the data straight from the cache area instead of copying from one RAM area to another. This second aspect yields
further performance improvement over the standard OS caching mechanism, which still results in memory-to-
memory copying of cached data.

• For small amounts of data, the query speedup might not be noticeable in terms of wall clock time. The
performance might be roughly the same with HDFS caching turned on or off, due to recently used data being held
in the Linux OS cache. The difference is more pronounced with:

• Data volumes (for all queries running concurrently) that exceed the size of the Linux OS cache.
• A busy cluster running many concurrent queries, where the reduction in memory-to-memory copying and

overall memory usage during queries results in greater scalability and throughput.
• Thus, to really exercise and benchmark this feature in a development environment, you might need to simulate

realistic workloads and concurrent queries that match your production environment.
• One way to simulate a heavy workload on a lightly loaded system is to flush the OS buffer cache (on each

DataNode) between iterations of queries against the same tables or partitions:

$ sync
$ echo 1 > /proc/sys/vm/drop_caches

• Impala queries take advantage of HDFS cached data regardless of whether the cache directive was issued by
Impala or externally through the hdfs cacheadmin command, for example for an external table where the
cached data files might be accessed by several different Hadoop components.

• If your query returns a large result set, the time reported for the query could be dominated by the time needed to
print the results on the screen. To measure the time for the underlying query processing, query the COUNT() of
the big result set, which does all the same processing but only prints a single line to the screen.

Testing Impala Performance
Test to ensure that Impala is configured for optimal performance. If you have installed Impala with cluster
management software, complete the processes described in this topic to help ensure a proper configuration. These
procedures can be used to verify that Impala is set up correctly.

Checking Impala Configuration Values

You can inspect Impala configuration values by connecting to your Impala server using a browser.

To check Impala configuration values:

1. Use a browser to connect to one of the hosts running impalad in your environment. Connect using an address of
the form http://hostname:port/varz.

Note: In the preceding example, replace hostname and port with the name and port of your Impala server.
The default port is 25000.

2. Review the configured values.

For example, to check that your system is configured to use block locality tracking information, you would check
that the value for dfs.datanode.hdfs-blocks-metadata.enabled is true.

To check data locality:

1. Execute a query on a dataset that is available across multiple nodes. For example, for a table named MyTable
that has a reasonable chance of being spread across multiple DataNodes:

[impalad-host:21000] > SELECT COUNT (*) FROM MyTable

 | Tuning Impala for Performance | 662

2. After the query completes, review the contents of the Impala logs. You should find a recent message similar to the
following:

Total remote scan volume = 0

The presence of remote scans may indicate impalad is not running on the correct nodes. This can be because some
DataNodes do not have impalad running or it can be because the impalad instance that is starting the query is
unable to contact one or more of the impalad instances.

To understand the causes of this issue:

1. Connect to the debugging web server. By default, this server runs on port 25000. This page lists all impalad
instances running in your cluster. If there are fewer instances than you expect, this often indicates some
DataNodes are not running impalad. Ensure impalad is started on all DataNodes.

2. If you are using multi-homed hosts, ensure that the Impala daemon's hostname resolves to the interface on which
impalad is running. The hostname Impala is using is displayed when impalad starts. To explicitly set the
hostname, use the --hostname flag.

3. Check that statestored is running as expected. Review the contents of the state store log to ensure all
instances of impalad are listed as having connected to the state store.

Reviewing Impala Logs

You can review the contents of the Impala logs for signs that short-circuit reads or block location tracking are not
functioning. Before checking logs, execute a simple query against a small HDFS dataset. Completing a query task
generates log messages using current settings. Information on starting Impala and executing queries can be found in
Starting Impala on page 31 and Using the Impala Shell (impala-shell Command) on page 611. Information on
logging can be found in Using Impala Logging on page 764. Log messages and their interpretations are as follows:

Log Message Interpretation

Unknown disk id. This will negatively affect
 performance. Check your hdfs settings to enable block
 location metadata

Tracking block locality is
not enabled.

Unable to load native-hadoop library for your
 platform... using builtin-java classes where
 applicable

Native checksumming is
not enabled.

Understanding Impala Query Performance - EXPLAIN Plans and Query
Profiles

To understand the high-level performance considerations for Impala queries, read the output of the EXPLAIN
statement for the query. You can get the EXPLAIN plan without actually running the query itself.

For an overview of the physical performance characteristics for a query, issue the SUMMARY statement in impala-
shell immediately after executing a query. This condensed information shows which phases of execution took the
most time, and how the estimates for memory usage and number of rows at each phase compare to the actual values.

To understand the detailed performance characteristics for a query, issue the PROFILE statement in impala-
shell immediately after executing a query. This low-level information includes physical details about memory,
CPU, I/O, and network usage, and thus is only available after the query is actually run.

Also, see Performance Considerations for the Impala-HBase Integration on page 739 and Understanding and
Tuning Impala Query Performance for S3 Data on page 754 for examples of interpreting EXPLAIN plans for
queries against HBase tables and data stored in the Amazon Simple Storage System (S3).

 | Tuning Impala for Performance | 663

Using the EXPLAIN Plan for Performance Tuning

The EXPLAIN statement gives you an outline of the logical steps that a query will perform, such as how the work
will be distributed among the nodes and how intermediate results will be combined to produce the final result set. You
can see these details before actually running the query. You can use this information to check that the query will not
operate in some very unexpected or inefficient way.

[impalad-host:21000] > explain select count(*) from customer_address;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=42.00MB VCores=1 |
| |
| 03:AGGREGATE [MERGE FINALIZE] |
| | output: sum(count(*)) |
| | |
| 02:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 01:AGGREGATE |
| | output: count(*) |
| | |
| 00:SCAN HDFS [default.customer_address] |
| partitions=1/1 size=5.25MB |
+--+

Read the EXPLAIN plan from bottom to top:

• The last part of the plan shows the low-level details such as the expected amount of data that will be read, where
you can judge the effectiveness of your partitioning strategy and estimate how long it will take to scan a table
based on total data size and the size of the cluster.

• As you work your way up, next you see the operations that will be parallelized and performed on each Impala
node.

• At the higher levels, you see how data flows when intermediate result sets are combined and transmitted from one
node to another.

• See EXPLAIN_LEVEL Query Option on page 366 for details about the EXPLAIN_LEVEL query option, which
lets you customize how much detail to show in the EXPLAIN plan depending on whether you are doing high-level
or low-level tuning, dealing with logical or physical aspects of the query.

The EXPLAIN plan is also printed at the beginning of the query profile report described in Using the Query Profile
for Performance Tuning on page 664, for convenience in examining both the logical and physical aspects of the
query side-by-side.

The amount of detail displayed in the EXPLAIN output is controlled by the EXPLAIN_LEVEL query option. You
typically increase this setting from standard to extended (or from 1 to 2) when doublechecking the presence of
table and column statistics during performance tuning, or when estimating query resource usage in conjunction with
the resource management features.

Using the SUMMARY Report for Performance Tuning

The SUMMARY command within the impala-shell interpreter gives you an easy-to-digest overview of the timings
for the different phases of execution for a query. Like the EXPLAIN plan, it is easy to see potential performance
bottlenecks. Like the PROFILE output, it is available after the query is run and so displays actual timing numbers.

The SUMMARY report is also printed at the beginning of the query profile report described in Using the Query Profile
for Performance Tuning on page 664, for convenience in examining high-level and low-level aspects of the query
side-by-side.

For example, here is a query involving an aggregate function, on a single-node VM. The different stages of the
query and their timings are shown (rolled up for all nodes), along with estimated and actual values used in planning
the query. In this case, the AVG() function is computed for a subset of data on each node (stage 01) and then the
aggregated results from all nodes are combined at the end (stage 03). You can see which stages took the most time,

 | Tuning Impala for Performance | 664

and whether any estimates were substantially different than the actual data distribution. (When examining the time
values, be sure to consider the suffixes such as us for microseconds and ms for milliseconds, rather than just looking
for the largest numbers.)

[localhost:21000] > select avg(ss_sales_price) from store_sales where
 ss_coupon_amt = 0;
+---------------------+
| avg(ss_sales_price) |
+---------------------+
| 37.80770926328327 |
+---------------------+
[localhost:21000] > summary;
+--------------+--------+----------+----------+-------+------------
+----------+---------------+-----------------+
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows | Peak
 Mem | Est. Peak Mem | Detail |
+--------------+--------+----------+----------+-------+------------
+----------+---------------+-----------------+
| 03:AGGREGATE | 1 | 1.03ms | 1.03ms | 1 | 1 | 48.00
 KB | -1 B | MERGE FINALIZE |
| 02:EXCHANGE | 1 | 0ns | 0ns | 1 | 1 | 0 B
 | -1 B | UNPARTITIONED |
| 01:AGGREGATE | 1 | 30.79ms | 30.79ms | 1 | 1 | 80.00
 KB | 10.00 MB | |
| 00:SCAN HDFS | 1 | 5.45s | 5.45s | 2.21M | -1 | 64.05
 MB | 432.00 MB | tpc.store_sales |
+--------------+--------+----------+----------+-------+------------
+----------+---------------+-----------------+

Notice how the longest initial phase of the query is measured in seconds (s), while later phases working on smaller
intermediate results are measured in milliseconds (ms) or even nanoseconds (ns).

Here is an example from a more complicated query, as it would appear in the PROFILE output:

Operator #Hosts Avg Time Max Time #Rows Est. #Rows
 Peak Mem Est. Peak Mem Detail
--
09:MERGING-EXCHANGE 1 79.738us 79.738us 5 5
 0 -1.00 B UNPARTITIONED
05:TOP-N 3 84.693us 88.810us 5 5
 12.00 KB 120.00 B
04:AGGREGATE 3 5.263ms 6.432ms 5 5
 44.00 KB 10.00 MB MERGE FINALIZE
08:AGGREGATE 3 16.659ms 27.444ms 52.52K 600.12K
 3.20 MB 15.11 MB MERGE
07:EXCHANGE 3 2.644ms 5.1ms 52.52K 600.12K
 0 0 HASH(o_orderpriority)
03:AGGREGATE 3 342.913ms 966.291ms 52.52K 600.12K
 10.80 MB 15.11 MB
02:HASH JOIN 3 2s165ms 2s171ms 144.87K 600.12K
 13.63 MB 941.01 KB INNER JOIN, BROADCAST
|--06:EXCHANGE 3 8.296ms 8.692ms 57.22K 15.00K
 0 0 BROADCAST
| 01:SCAN HDFS 2 1s412ms 1s978ms 57.22K 15.00K
 24.21 MB 176.00 MB tpch.orders o
00:SCAN HDFS 3 8s032ms 8s558ms 3.79M 600.12K
 32.29 MB 264.00 MB tpch.lineitem l

Using the Query Profile for Performance Tuning

The PROFILE statement, available in the impala-shell interpreter, produces a detailed low-level report showing
how the most recent query was executed. Unlike the EXPLAIN plan described in Using the EXPLAIN Plan for

 | Tuning Impala for Performance | 665

Performance Tuning on page 663, this information is only available after the query has finished. It shows physical
details such as the number of bytes read, maximum memory usage, and so on for each node. You can use this
information to determine if the query is I/O-bound or CPU-bound, whether some network condition is imposing a
bottleneck, whether a slowdown is affecting some nodes but not others, and to check that recommended configuration
settings such as short-circuit local reads are in effect.

By default, time values in the profile output reflect the wall-clock time taken by an operation. For
values denoting system time or user time, the measurement unit is reflected in the metric name, such as
ScannerThreadsSysTime or ScannerThreadsUserTime. For example, a multi-threaded I/O operation
might show a small figure for wall-clock time, while the corresponding system time is larger, representing the sum of
the CPU time taken by each thread. Or a wall-clock time figure might be larger because it counts time spent waiting,
while the corresponding system and user time figures only measure the time while the operation is actively using CPU
cycles.

The EXPLAIN plan is also printed at the beginning of the query profile report, for convenience in examining both the
logical and physical aspects of the query side-by-side. The EXPLAIN_LEVEL query option also controls the verbosity
of the EXPLAIN output printed by the PROFILE command.

Here is an example of a query profile, from a relatively straightforward query on a single-node pseudo-distributed
cluster to keep the output relatively brief.

[localhost:21000] > profile;
Query Runtime Profile:
Query (id=6540a03d4bee0691:4963d6269b210ebd):
 Summary:
 Session ID: ea4a197f1c7bf858:c74e66f72e3a33ba
 Session Type: BEESWAX
 Start Time: 2013-12-02 17:10:30.263067000
 End Time: 2013-12-02 17:10:50.932044000
 Query Type: QUERY
 Query State: FINISHED
 Query Status: OK
 Impala Version: impalad version 1.2.1 RELEASE (build
 edb5af1bcad63d410bc5d47cc203df3a880e9324)
 User: doc_demo
 Network Address: 127.0.0.1:49161
 Default Db: stats_testing
 Sql Statement: select t1.s, t2.s from t1 join t2 on (t1.id = t2.parent)
 Plan:

Estimated Per-Host Requirements: Memory=2.09GB VCores=2

PLAN FRAGMENT 0
 PARTITION: UNPARTITIONED

 4:EXCHANGE
 cardinality: unavailable
 per-host memory: unavailable
 tuple ids: 0 1

PLAN FRAGMENT 1
 PARTITION: RANDOM

 STREAM DATA SINK
 EXCHANGE ID: 4
 UNPARTITIONED

 2:HASH JOIN
 | join op: INNER JOIN (BROADCAST)
 | hash predicates:
 | t1.id = t2.parent
 | cardinality: unavailable

 | Tuning Impala for Performance | 666

 | per-host memory: 2.00GB
 | tuple ids: 0 1
 |
 |----3:EXCHANGE
 | cardinality: unavailable
 | per-host memory: 0B
 | tuple ids: 1
 |
 0:SCAN HDFS
 table=stats_testing.t1 #partitions=1/1 size=33B
 table stats: unavailable
 column stats: unavailable
 cardinality: unavailable
 per-host memory: 32.00MB
 tuple ids: 0

PLAN FRAGMENT 2
 PARTITION: RANDOM

 STREAM DATA SINK
 EXCHANGE ID: 3
 UNPARTITIONED

 1:SCAN HDFS
 table=stats_testing.t2 #partitions=1/1 size=960.00KB
 table stats: unavailable
 column stats: unavailable
 cardinality: unavailable
 per-host memory: 96.00MB
 tuple ids: 1

 Query Timeline: 20s670ms
 - Start execution: 2.559ms (2.559ms)
 - Planning finished: 23.587ms (21.27ms)
 - Rows available: 666.199ms (642.612ms)
 - First row fetched: 668.919ms (2.719ms)
 - Unregister query: 20s668ms (20s000ms)
 ImpalaServer:
 - ClientFetchWaitTimer: 19s637ms
 - RowMaterializationTimer: 167.121ms
 Execution Profile 6540a03d4bee0691:4963d6269b210ebd:(Active: 837.815ms, %
 non-child: 0.00%)
 Per Node Peak Memory Usage: impala-1.example.com:22000(7.42 MB)
 - FinalizationTimer: 0ns
 Coordinator Fragment:(Active: 195.198ms, % non-child: 0.00%)
 MemoryUsage(500.0ms): 16.00 KB, 7.42 MB, 7.33 MB, 7.10 MB, 6.94 MB,
 6.71 MB, 6.56 MB, 6.40 MB, 6.17 MB, 6.02 MB, 5.79 MB, 5.63 MB, 5.48 MB,
 5.25 MB, 5.09 MB, 4.86 MB, 4.71 MB, 4.47 MB, 4.32 MB, 4.09 MB, 3.93 MB,
 3.78 MB, 3.55 MB, 3.39 MB, 3.16 MB, 3.01 MB, 2.78 MB, 2.62 MB, 2.39 MB,
 2.24 MB, 2.08 MB, 1.85 MB, 1.70 MB, 1.54 MB, 1.31 MB, 1.16 MB, 948.00 KB,
 790.00 KB, 553.00 KB, 395.00 KB, 237.00 KB
 ThreadUsage(500.0ms): 1
 - AverageThreadTokens: 1.00
 - PeakMemoryUsage: 7.42 MB
 - PrepareTime: 36.144us
 - RowsProduced: 98.30K (98304)
 - TotalCpuTime: 20s449ms
 - TotalNetworkWaitTime: 191.630ms
 - TotalStorageWaitTime: 0ns
 CodeGen:(Active: 150.679ms, % non-child: 77.19%)
 - CodegenTime: 0ns
 - CompileTime: 139.503ms
 - LoadTime: 10.7ms
 - ModuleFileSize: 95.27 KB

 | Tuning Impala for Performance | 667

 EXCHANGE_NODE (id=4):(Active: 194.858ms, % non-child: 99.83%)
 - BytesReceived: 2.33 MB
 - ConvertRowBatchTime: 2.732ms
 - DataArrivalWaitTime: 191.118ms
 - DeserializeRowBatchTimer: 14.943ms
 - FirstBatchArrivalWaitTime: 191.117ms
 - PeakMemoryUsage: 7.41 MB
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 504.49 K/sec
 - SendersBlockedTimer: 0ns
 - SendersBlockedTotalTimer(*): 0ns
 Averaged Fragment 1:(Active: 442.360ms, % non-child: 0.00%)
 split sizes: min: 33.00 B, max: 33.00 B, avg: 33.00 B, stddev: 0.00
 completion times: min:443.720ms max:443.720ms mean: 443.720ms
 stddev:0ns
 execution rates: min:74.00 B/sec max:74.00 B/sec mean:74.00 B/sec
 stddev:0.00 /sec
 num instances: 1
 - AverageThreadTokens: 1.00
 - PeakMemoryUsage: 6.06 MB
 - PrepareTime: 7.291ms
 - RowsProduced: 98.30K (98304)
 - TotalCpuTime: 784.259ms
 - TotalNetworkWaitTime: 388.818ms
 - TotalStorageWaitTime: 3.934ms
 CodeGen:(Active: 312.862ms, % non-child: 70.73%)
 - CodegenTime: 2.669ms
 - CompileTime: 302.467ms
 - LoadTime: 9.231ms
 - ModuleFileSize: 95.27 KB
 DataStreamSender (dst_id=4):(Active: 80.63ms, % non-child: 18.10%)
 - BytesSent: 2.33 MB
 - NetworkThroughput(*): 35.89 MB/sec
 - OverallThroughput: 29.06 MB/sec
 - PeakMemoryUsage: 5.33 KB
 - SerializeBatchTime: 26.487ms
 - ThriftTransmitTime(*): 64.814ms
 - UncompressedRowBatchSize: 6.66 MB
 HASH_JOIN_NODE (id=2):(Active: 362.25ms, % non-child: 3.92%)
 - BuildBuckets: 1.02K (1024)
 - BuildRows: 98.30K (98304)
 - BuildTime: 12.622ms
 - LoadFactor: 0.00
 - PeakMemoryUsage: 6.02 MB
 - ProbeRows: 3
 - ProbeTime: 3.579ms
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 271.54 K/sec
 EXCHANGE_NODE (id=3):(Active: 344.680ms, % non-child: 77.92%)
 - BytesReceived: 1.15 MB
 - ConvertRowBatchTime: 2.792ms
 - DataArrivalWaitTime: 339.936ms
 - DeserializeRowBatchTimer: 9.910ms
 - FirstBatchArrivalWaitTime: 199.474ms
 - PeakMemoryUsage: 156.00 KB
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 285.20 K/sec
 - SendersBlockedTimer: 0ns
 - SendersBlockedTotalTimer(*): 0ns
 HDFS_SCAN_NODE (id=0):(Active: 13.616us, % non-child: 0.00%)
 - AverageHdfsReadThreadConcurrency: 0.00
 - AverageScannerThreadConcurrency: 0.00
 - BytesRead: 33.00 B
 - BytesReadLocal: 33.00 B

 | Tuning Impala for Performance | 668

 - BytesReadShortCircuit: 33.00 B
 - NumDisksAccessed: 1
 - NumScannerThreadsStarted: 1
 - PeakMemoryUsage: 46.00 KB
 - PerReadThreadRawHdfsThroughput: 287.52 KB/sec
 - RowsRead: 3
 - RowsReturned: 3
 - RowsReturnedRate: 220.33 K/sec
 - ScanRangesComplete: 1
 - ScannerThreadsInvoluntaryContextSwitches: 26
 - ScannerThreadsTotalWallClockTime: 55.199ms
 - DelimiterParseTime: 2.463us
 - MaterializeTupleTime(*): 1.226us
 - ScannerThreadsSysTime: 0ns
 - ScannerThreadsUserTime: 42.993ms
 - ScannerThreadsVoluntaryContextSwitches: 1
 - TotalRawHdfsReadTime(*): 112.86us
 - TotalReadThroughput: 0.00 /sec
 Averaged Fragment 2:(Active: 190.120ms, % non-child: 0.00%)
 split sizes: min: 960.00 KB, max: 960.00 KB, avg: 960.00 KB, stddev:
 0.00
 completion times: min:191.736ms max:191.736ms mean: 191.736ms
 stddev:0ns
 execution rates: min:4.89 MB/sec max:4.89 MB/sec mean:4.89 MB/sec
 stddev:0.00 /sec
 num instances: 1
 - AverageThreadTokens: 0.00
 - PeakMemoryUsage: 906.33 KB
 - PrepareTime: 3.67ms
 - RowsProduced: 98.30K (98304)
 - TotalCpuTime: 403.351ms
 - TotalNetworkWaitTime: 34.999ms
 - TotalStorageWaitTime: 108.675ms
 CodeGen:(Active: 162.57ms, % non-child: 85.24%)
 - CodegenTime: 3.133ms
 - CompileTime: 148.316ms
 - LoadTime: 12.317ms
 - ModuleFileSize: 95.27 KB
 DataStreamSender (dst_id=3):(Active: 70.620ms, % non-child: 37.14%)
 - BytesSent: 1.15 MB
 - NetworkThroughput(*): 23.30 MB/sec
 - OverallThroughput: 16.23 MB/sec
 - PeakMemoryUsage: 5.33 KB
 - SerializeBatchTime: 22.69ms
 - ThriftTransmitTime(*): 49.178ms
 - UncompressedRowBatchSize: 3.28 MB
 HDFS_SCAN_NODE (id=1):(Active: 118.839ms, % non-child: 62.51%)
 - AverageHdfsReadThreadConcurrency: 0.00
 - AverageScannerThreadConcurrency: 0.00
 - BytesRead: 960.00 KB
 - BytesReadLocal: 960.00 KB
 - BytesReadShortCircuit: 960.00 KB
 - NumDisksAccessed: 1
 - NumScannerThreadsStarted: 1
 - PeakMemoryUsage: 869.00 KB
 - PerReadThreadRawHdfsThroughput: 130.21 MB/sec
 - RowsRead: 98.30K (98304)
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 827.20 K/sec
 - ScanRangesComplete: 15
 - ScannerThreadsInvoluntaryContextSwitches: 34
 - ScannerThreadsTotalWallClockTime: 189.774ms
 - DelimiterParseTime: 15.703ms
 - MaterializeTupleTime(*): 3.419ms

 | Tuning Impala for Performance | 669

 - ScannerThreadsSysTime: 1.999ms
 - ScannerThreadsUserTime: 44.993ms
 - ScannerThreadsVoluntaryContextSwitches: 118
 - TotalRawHdfsReadTime(*): 7.199ms
 - TotalReadThroughput: 0.00 /sec
 Fragment 1:
 Instance 6540a03d4bee0691:4963d6269b210ebf
 (host=impala-1.example.com:22000):(Active: 442.360ms, % non-child: 0.00%)
 Hdfs split stats (<volume id>:<# splits>/<split lengths>): 0:1/33.00
 B
 MemoryUsage(500.0ms): 69.33 KB
 ThreadUsage(500.0ms): 1
 - AverageThreadTokens: 1.00
 - PeakMemoryUsage: 6.06 MB
 - PrepareTime: 7.291ms
 - RowsProduced: 98.30K (98304)
 - TotalCpuTime: 784.259ms
 - TotalNetworkWaitTime: 388.818ms
 - TotalStorageWaitTime: 3.934ms
 CodeGen:(Active: 312.862ms, % non-child: 70.73%)
 - CodegenTime: 2.669ms
 - CompileTime: 302.467ms
 - LoadTime: 9.231ms
 - ModuleFileSize: 95.27 KB
 DataStreamSender (dst_id=4):(Active: 80.63ms, % non-child: 18.10%)
 - BytesSent: 2.33 MB
 - NetworkThroughput(*): 35.89 MB/sec
 - OverallThroughput: 29.06 MB/sec
 - PeakMemoryUsage: 5.33 KB
 - SerializeBatchTime: 26.487ms
 - ThriftTransmitTime(*): 64.814ms
 - UncompressedRowBatchSize: 6.66 MB
 HASH_JOIN_NODE (id=2):(Active: 362.25ms, % non-child: 3.92%)
 ExecOption: Build Side Codegen Enabled, Probe Side Codegen
 Enabled, Hash Table Built Asynchronously
 - BuildBuckets: 1.02K (1024)
 - BuildRows: 98.30K (98304)
 - BuildTime: 12.622ms
 - LoadFactor: 0.00
 - PeakMemoryUsage: 6.02 MB
 - ProbeRows: 3
 - ProbeTime: 3.579ms
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 271.54 K/sec
 EXCHANGE_NODE (id=3):(Active: 344.680ms, % non-child: 77.92%)
 - BytesReceived: 1.15 MB
 - ConvertRowBatchTime: 2.792ms
 - DataArrivalWaitTime: 339.936ms
 - DeserializeRowBatchTimer: 9.910ms
 - FirstBatchArrivalWaitTime: 199.474ms
 - PeakMemoryUsage: 156.00 KB
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 285.20 K/sec
 - SendersBlockedTimer: 0ns
 - SendersBlockedTotalTimer(*): 0ns
 HDFS_SCAN_NODE (id=0):(Active: 13.616us, % non-child: 0.00%)
 Hdfs split stats (<volume id>:<# splits>/<split lengths>):
 0:1/33.00 B
 Hdfs Read Thread Concurrency Bucket: 0:0% 1:0%
 File Formats: TEXT/NONE:1
 ExecOption: Codegen enabled: 1 out of 1
 - AverageHdfsReadThreadConcurrency: 0.00
 - AverageScannerThreadConcurrency: 0.00
 - BytesRead: 33.00 B

 | Tuning Impala for Performance | 670

 - BytesReadLocal: 33.00 B
 - BytesReadShortCircuit: 33.00 B
 - NumDisksAccessed: 1
 - NumScannerThreadsStarted: 1
 - PeakMemoryUsage: 46.00 KB
 - PerReadThreadRawHdfsThroughput: 287.52 KB/sec
 - RowsRead: 3
 - RowsReturned: 3
 - RowsReturnedRate: 220.33 K/sec
 - ScanRangesComplete: 1
 - ScannerThreadsInvoluntaryContextSwitches: 26
 - ScannerThreadsTotalWallClockTime: 55.199ms
 - DelimiterParseTime: 2.463us
 - MaterializeTupleTime(*): 1.226us
 - ScannerThreadsSysTime: 0ns
 - ScannerThreadsUserTime: 42.993ms
 - ScannerThreadsVoluntaryContextSwitches: 1
 - TotalRawHdfsReadTime(*): 112.86us
 - TotalReadThroughput: 0.00 /sec
 Fragment 2:
 Instance 6540a03d4bee0691:4963d6269b210ec0
 (host=impala-1.example.com:22000):(Active: 190.120ms, % non-child: 0.00%)
 Hdfs split stats (<volume id>:<# splits>/<split lengths>):
 0:15/960.00 KB
 - AverageThreadTokens: 0.00
 - PeakMemoryUsage: 906.33 KB
 - PrepareTime: 3.67ms
 - RowsProduced: 98.30K (98304)
 - TotalCpuTime: 403.351ms
 - TotalNetworkWaitTime: 34.999ms
 - TotalStorageWaitTime: 108.675ms
 CodeGen:(Active: 162.57ms, % non-child: 85.24%)
 - CodegenTime: 3.133ms
 - CompileTime: 148.316ms
 - LoadTime: 12.317ms
 - ModuleFileSize: 95.27 KB
 DataStreamSender (dst_id=3):(Active: 70.620ms, % non-child: 37.14%)
 - BytesSent: 1.15 MB
 - NetworkThroughput(*): 23.30 MB/sec
 - OverallThroughput: 16.23 MB/sec
 - PeakMemoryUsage: 5.33 KB
 - SerializeBatchTime: 22.69ms
 - ThriftTransmitTime(*): 49.178ms
 - UncompressedRowBatchSize: 3.28 MB
 HDFS_SCAN_NODE (id=1):(Active: 118.839ms, % non-child: 62.51%)
 Hdfs split stats (<volume id>:<# splits>/<split lengths>):
 0:15/960.00 KB
 Hdfs Read Thread Concurrency Bucket: 0:0% 1:0%
 File Formats: TEXT/NONE:15
 ExecOption: Codegen enabled: 15 out of 15
 - AverageHdfsReadThreadConcurrency: 0.00
 - AverageScannerThreadConcurrency: 0.00
 - BytesRead: 960.00 KB
 - BytesReadLocal: 960.00 KB
 - BytesReadShortCircuit: 960.00 KB
 - NumDisksAccessed: 1
 - NumScannerThreadsStarted: 1
 - PeakMemoryUsage: 869.00 KB
 - PerReadThreadRawHdfsThroughput: 130.21 MB/sec
 - RowsRead: 98.30K (98304)
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 827.20 K/sec
 - ScanRangesComplete: 15
 - ScannerThreadsInvoluntaryContextSwitches: 34

 | Tuning Impala for Performance | 671

 - ScannerThreadsTotalWallClockTime: 189.774ms
 - DelimiterParseTime: 15.703ms
 - MaterializeTupleTime(*): 3.419ms
 - ScannerThreadsSysTime: 1.999ms
 - ScannerThreadsUserTime: 44.993ms
 - ScannerThreadsVoluntaryContextSwitches: 118
 - TotalRawHdfsReadTime(*): 7.199ms
 - TotalReadThroughput: 0.00 /sec

Detecting and Correcting HDFS Block Skew Conditions
For best performance of Impala parallel queries, the work is divided equally across hosts in the cluster, and all hosts
take approximately equal time to finish their work. If one host takes substantially longer than others, the extra time
needed for the slow host can become the dominant factor in query performance. Therefore, one of the first steps in
performance tuning for Impala is to detect and correct such conditions.

The main cause of uneven performance that you can correct within Impala is skew in the number of HDFS data
blocks processed by each host, where some hosts process substantially more data blocks than others. This condition
can occur because of uneven distribution of the data values themselves, for example causing certain data files or
partitions to be large while others are very small. (Although it is possible to have unevenly distributed data without
any problems with the distribution of HDFS blocks.) Block skew could also be due to the underlying block allocation
policies within HDFS, the replication factor of the data files, and the way that Impala chooses the host to process each
data block.

The most convenient way to detect block skew, or slow-host issues in general, is to examine the “executive summary”
information from the query profile after running a query:

• In impala-shell, issue the SUMMARY command immediately after the query is complete, to see just the
summary information. If you detect issues involving skew, you might switch to issuing the PROFILE command,
which displays the summary information followed by a detailed performance analysis.

• In the Impala debug web UI, click on the Profile link associated with the query after it is complete. The executive
summary information is displayed early in the profile output.

For each phase of the query, you see an Avg Time and a Max Time value, along with #Hosts indicating how many
hosts are involved in that query phase. For all the phases with #Hosts greater than one, look for cases where the
maximum time is substantially greater than the average time. Focus on the phases that took the longest, for example,
those taking multiple seconds rather than milliseconds or microseconds.

If you detect that some hosts take longer than others, first rule out non-Impala causes. One reason that some hosts
could be slower than others is if those hosts have less capacity than the others, or if they are substantially busier due
to unevenly distributed non-Impala workloads:

• For clusters running Impala, keep the relative capacities of all hosts roughly equal. Any cost savings from
including some underpowered hosts in the cluster will likely be outweighed by poor or uneven performance, and
the time spent diagnosing performance issues.

• If non-Impala workloads cause slowdowns on some hosts but not others, use the appropriate load-balancing
techniques for the non-Impala components to smooth out the load across the cluster.

If the hosts on your cluster are evenly powered and evenly loaded, examine the detailed profile output to determine
which host is taking longer than others for the query phase in question. Examine how many bytes are processed
during that phase on that host, how much memory is used, and how many bytes are transmitted across the network.

The most common symptom is a higher number of bytes read on one host than others, due to one host being requested
to process a higher number of HDFS data blocks. This condition is more likely to occur when the number of blocks
accessed by the query is relatively small. For example, if you have a 10-node cluster and the query processes 10
HDFS blocks, each node might not process exactly one block. If one node sits idle while another node processes two
blocks, the query could take twice as long as if the data was perfectly distributed.

Possible solutions in this case include:

 | Scalability Considerations for Impala | 672

• If the query is artificially small, perhaps for benchmarking purposes, scale it up to process a larger data set.
For example, if some nodes read 10 HDFS data blocks while others read 11, the overall effect of the uneven
distribution is much lower than when some nodes did twice as much work as others. As a guideline, aim for a
“sweet spot” where each node reads 2 GB or more from HDFS per query. Queries that process lower volumes
than that could experience inconsistent performance that smooths out as queries become more data-intensive.

• If the query processes only a few large blocks, so that many nodes sit idle and cannot help to parallelize the query,
consider reducing the overall block size. For example, you might adjust the PARQUET_FILE_SIZE query option
before copying or converting data into a Parquet table. Or you might adjust the granularity of data files produced
earlier in the ETL pipeline by non-Impala components. In Impala 2.0 and later, the default Parquet block size is
256 MB, reduced from 1 GB, to improve parallelism for common cluster sizes and data volumes.

• Reduce the amount of compression applied to the data. For text data files, the highest degree of compression
(gzip) produces unsplittable files that are more difficult for Impala to process in parallel, and require extra memory
during processing to hold the compressed and uncompressed data simultaneously. For binary formats such as
Parquet and Avro, compression can result in fewer data blocks overall, but remember that when queries process
relatively few blocks, there is less opportunity for parallel execution and many nodes in the cluster might sit idle.
Note that when Impala writes Parquet data with the query option COMPRESSION_CODEC=NONE enabled, the
data is still typically compact due to the encoding schemes used by Parquet, independent of the final compression
step.

Scalability Considerations for Impala

This section explains how the size of your cluster and the volume of data influences SQL performance and schema
design for Impala tables. Typically, adding more cluster capacity reduces problems due to memory limits or disk
throughput. On the other hand, larger clusters are more likely to have other kinds of scalability issues, such as a single
slow node that causes performance problems for queries.

A good source of tips related to scalability and performance tuning is the Impala Cookbook presentation. These slides
are updated periodically as new features come out and new benchmarks are performed.

Impact of Many Tables or Partitions on Impala Catalog Performance and
Memory Usage

Because Hadoop I/O is optimized for reading and writing large files, Impala is optimized for tables containing
relatively few, large data files. Schemas containing thousands of tables, or tables containing thousands of partitions,
can encounter performance issues during startup or during DDL operations such as ALTER TABLE statements.

Important:

Because of a change in the default heap size for the catalogd daemon in Impala 2.5 and higher, the following
procedure to increase the catalogd memory limit might be required following an upgrade to Impala 2.5 even if not
needed previously.

For schemas with large numbers of tables, partitions, and data files, the catalogd daemon might encounter an out-
of-memory error. To increase the memory limit for the catalogd daemon:

1. Check current memory usage for the catalogd daemon by running the following commands on the host where
that daemon runs on your cluster:

 jcmd catalogd_pid VM.flags
 jmap -heap catalogd_pid

http://www.slideshare.net/cloudera/the-impala-cookbook-42530186

 | Scalability Considerations for Impala | 673

2. Decide on a large enough value for the catalogd heap. You express it as an environment variable value as
follows:

 JAVA_TOOL_OPTIONS="-Xmx8g"

3. On systems not using cluster management software, put this environment variable setting into the startup script for
the catalogd daemon, then restart the catalogd daemon.

4. Use the same jcmd and jmap commands as earlier to verify that the new settings are in effect.

Scalability Considerations for the Impala Statestore
Before Impala 2.1, the statestore sent only one kind of message to its subscribers. This message contained all updates
for any topics that a subscriber had subscribed to. It also served to let subscribers know that the statestore had not
failed, and conversely the statestore used the success of sending a heartbeat to a subscriber to decide whether or not
the subscriber had failed.

Combining topic updates and failure detection in a single message led to bottlenecks in clusters with large numbers
of tables, partitions, and HDFS data blocks. When the statestore was overloaded with metadata updates to transmit,
heartbeat messages were sent less frequently, sometimes causing subscribers to time out their connection with the
statestore. Increasing the subscriber timeout and decreasing the frequency of statestore heartbeats worked around the
problem, but reduced responsiveness when the statestore failed or restarted.

As of Impala 2.1, the statestore now sends topic updates and heartbeats in separate messages. This allows the
statestore to send and receive a steady stream of lightweight heartbeats, and removes the requirement to send topic
updates according to a fixed schedule, reducing statestore network overhead.

The statestore now has the following relevant configuration flags for the statestored daemon:

 -statestore_num_update_threads The number of threads inside the statestore dedicated to
sending topic updates. You should not typically need to
change this value.

Default: 10

 -statestore_update_frequency_ms The frequency, in milliseconds, with which the statestore
tries to send topic updates to each subscriber. This is a
best-effort value; if the statestore is unable to meet this
frequency, it sends topic updates as fast as it can. You
should not typically need to change this value.

Default: 2000

 -statestore_num_heartbeat_threads The number of threads inside the statestore dedicated
to sending heartbeats. You should not typically need to
change this value.

Default: 10

 -statestore_heartbeat_frequency_ms The frequency, in milliseconds, with which the statestore
tries to send heartbeats to each subscriber. This value
should be good for large catalogs and clusters up to
approximately 150 nodes. Beyond that, you might need
to increase this value to make the interval longer between
heartbeat messages.

Default: 1000 (one heartbeat message every second)

 | Scalability Considerations for Impala | 674

If it takes a very long time for a cluster to start up, and impala-shell consistently displays This Impala
daemon is not ready to accept user requests, the statestore might be taking too long to send the
entire catalog topic to the cluster. In this case, consider adding --load_catalog_in_background=false to
your catalog service configuration. This setting stops the statestore from loading the entire catalog into memory at
cluster startup. Instead, metadata for each table is loaded when the table is accessed for the first time.

Controlling which Hosts are Coordinators and Executors
By default, each host in the cluster that runs the impalad daemon can act as the coordinator for an Impala query,
execute the fragments of the execution plan for the query, or both. During highly concurrent workloads for large-scale
queries, especially on large clusters, the dual roles can cause scalability issues:

• The extra work required for a host to act as the coordinator could interfere with its capacity to perform other work
for the earlier phases of the query. For example, the coordinator can experience significant network and CPU
overhead during queries containing a large number of query fragments. Each coordinator caches metadata for
all table partitions and data files, which can be substantial and contend with memory needed to process joins,
aggregations, and other operations performed by query executors.

• Having a large number of hosts act as coordinators can cause unnecessary network overhead, or even timeout
errors, as each of those hosts communicates with the statestored daemon for metadata updates.

• The “soft limits” imposed by the admission control feature are more likely to be exceeded when there are a large
number of heavily loaded hosts acting as coordinators.

If such scalability bottlenecks occur, you can explicitly specify that certain hosts act as query coordinators, but not
executors for query fragments. These hosts do not participate in I/O-intensive operations such as scans, and CPU-
intensive operations such as aggregations.

Then, you specify that the other hosts act as executors but not coordinators. These hosts do not communicate with
the statestored daemon or process the final result sets from queries. You cannot connect to these hosts through
clients such as impala-shell or business intelligence tools.

This feature is available in Impala 2.9 and higher.

To use this feature, you specify one of the following startup flags for the impalad daemon on each host:

• is_executor=false for each host that does not act as an executor for Impala queries. These hosts act
exclusively as query coordinators. This setting typically applies to a relatively small number of hosts, because the
most common topology is to have nearly all DataNodes doing work for query execution.

• is_coordinator=false for each host that does not act as a coordinator for Impala queries. These hosts act
exclusively as executors. The number of hosts with this setting typically increases as the cluster grows larger and
handles more table partitions, data files, and concurrent queries. As the overhead for query coordination increases,
it becomes more important to centralize that work on dedicated hosts.

By default, both of these settings are enabled for each impalad instance, allowing all such hosts to act as both
executors and coordinators.

For example, on a 100-node cluster, you might specify is_executor=false for 10 hosts, to dedicate those hosts
as query coordinators. Then specify is_coordinator=false for the remaining 90 hosts. All explicit or load-
balanced connections must go to the 10 hosts acting as coordinators. These hosts perform the network communication
to keep metadata up-to-date and route query results to the appropriate clients. The remaining 90 hosts perform the
intensive I/O, CPU, and memory operations that make up the bulk of the work for each query. If a bottleneck or
other performance issue arises on a specific host, you can narrow down the cause more easily because each host is
dedicated to specific operations within the overall Impala workload.

Effect of Buffer Pool on Memory Usage (Impala 2.10 and higher)
The buffer pool feature, available in Impala 2.10 and higher, changes the way Impala allocates memory during a
query. Most of the memory needed is reserved at the beginning of the query, avoiding cases where a query might
run for a long time before failing with an out-of-memory error. The actual memory estimates and memory buffers

 | Scalability Considerations for Impala | 675

are typically smaller than before, so that more queries can run concurrently or process larger volumes of data than
previously.

The buffer pool feature includes some query options that you can fine-tune: BUFFER_POOL_LIMIT Query Option
on page 360, DEFAULT_SPILLABLE_BUFFER_SIZE Query Option on page 363, MAX_ROW_SIZE Query
Option on page 374, and MIN_SPILLABLE_BUFFER_SIZE Query Option on page 381.

Most of the effects of the buffer pool are transparent to you as an Impala user. Memory use during spilling is now
steadier and more predictable, instead of increasing rapidly as more data is spilled to disk. The main change from a
user perspective is the need to increase the MAX_ROW_SIZE query option setting when querying tables with columns
containing long strings, many columns, or other combinations of factors that produce very large rows. If Impala
encounters rows that are too large to process with the default query option settings, the query fails with an error
message suggesting to increase the MAX_ROW_SIZE setting.

SQL Operations that Spill to Disk
Certain memory-intensive operations write temporary data to disk (known as spilling to disk) when Impala is close to
exceeding its memory limit on a particular host.

The result is a query that completes successfully, rather than failing with an out-of-memory error. The tradeoff is
decreased performance due to the extra disk I/O to write the temporary data and read it back in. The slowdown could
be potentially be significant. Thus, while this feature improves reliability, you should optimize your queries, system
parameters, and hardware configuration to make this spilling a rare occurrence.

Note:

In Impala 2.10 and higher, also see Scalability Considerations for Impala on page 672 for changes to Impala
memory allocation that might change the details of which queries spill to disk, and how much memory and disk space
is involved in the spilling operation.

What kinds of queries might spill to disk:

Several SQL clauses and constructs require memory allocations that could activat the spilling mechanism:

• when a query uses a GROUP BY clause for columns with millions or billions of distinct values, Impala keeps a
similar number of temporary results in memory, to accumulate the aggregate results for each value in the group.

• When large tables are joined together, Impala keeps the values of the join columns from one table in memory, to
compare them to incoming values from the other table.

• When a large result set is sorted by the ORDER BY clause, each node sorts its portion of the result set in memory.
• The DISTINCT and UNION operators build in-memory data structures to represent all values found so far, to

eliminate duplicates as the query progresses.

When the spill-to-disk feature is activated for a join node within a query, Impala does not produce any runtime filters
for that join operation on that host. Other join nodes within the query are not affected.

How Impala handles scratch disk space for spilling:

By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored
in the directory /tmp/impala-scratch . These files are removed when the operation finishes. (Multiple
concurrent queries can perform operations that use the “spill to disk” technique, without any name conflicts
for these temporary files.) You can specify a different location by starting the impalad daemon with the --
scratch_dirs="path_to_directory" configuration option. You can specify a single directory, or a
comma-separated list of directories. The scratch directories must be on the local filesystem, not in HDFS. You might
specify different directory paths for different hosts, depending on the capacity and speed of the available storage
devices. In Impala 2.3 or higher, Impala successfully starts (with a warning Impala successfully starts (with a warning
written to the log) if it cannot create or read and write files in one of the scratch directories. If there is less than 1 GB
free on the filesystem where that directory resides, Impala still runs, but writes a warning message to its log. If Impala
encounters an error reading or writing files in a scratch directory during a query, Impala logs the error and the query
fails.

Memory usage for SQL operators:

 | Scalability Considerations for Impala | 676

In Impala 2.10 and higher, the way SQL operators such as GROUP BY, DISTINCT, and joins, transition between
using additional memory or activating the spill-to-disk feature is changed. The memory required to spill to disk is
reserved up front, and you can examine it in the EXPLAIN plan when the EXPLAIN_LEVEL query option is set to 2
or higher.

The infrastructure of the spilling feature affects the way the affected SQL operators, such as GROUP BY, DISTINCT,
and joins, use memory. On each host that participates in the query, each such operator in a query requires memory to
store rows of data and other data structures. Impala reserves a certain amount of memory up front for each operator
that supports spill-to-disk that is sufficient to execute the operator. If an operator accumulates more data than can fit
in the reserved memory, it can either reserve more memory to continue processing data in memory or start spilling
data to temporary scratch files on disk. Thus, operators with spill-to-disk support can adapt to different memory
constraints by using however much memory is available to speed up execution, yet tolerate low memory conditions
by spilling data to disk.

The amount data depends on the portion of the data being handled by that host, and thus the operator may end up
consuming different amounts of memory on different hosts.

Added in: This feature was added to the ORDER BY clause in Impala 1.4. This feature was extended to cover join
queries, aggregation functions, and analytic functions in Impala 2.0. The size of the memory work area required by
each operator that spills was reduced from 512 megabytes to 256 megabytes in Impala 2.2. The spilling mechanism
was reworked to take advantage of the Impala buffer pool feature and be more predictable and stable in Impala 2.10.

Avoiding queries that spill to disk:

Because the extra I/O can impose significant performance overhead on these types of queries, try to avoid this
situation by using the following steps:

1. Detect how often queries spill to disk, and how much temporary data is written. Refer to the following sources:

• The output of the PROFILE command in the impala-shell interpreter. This data shows the memory usage
for each host and in total across the cluster. The WriteIoBytes counter reports how much data was written
to disk for each operator during the query. (In Impala 2.9, the counter was named ScratchBytesWritten;
in Impala 2.8 and earlier, it was named BytesWritten.)

• The Queries tab in the Impala debug web user interface. Select the query to examine and click the
corresponding Profile link. This data breaks down the memory usage for a single host within the cluster, the
host whose web interface you are connected to.

2. Use one or more techniques to reduce the possibility of the queries spilling to disk:

• Increase the Impala memory limit if practical, for example, if you can increase the available memory by more
than the amount of temporary data written to disk on a particular node. Remember that in Impala 2.0 and later,
you can issue SET MEM_LIMIT as a SQL statement, which lets you fine-tune the memory usage for queries
from JDBC and ODBC applications.

• Increase the number of nodes in the cluster, to increase the aggregate memory available to Impala and reduce
the amount of memory required on each node.

• Increase the overall memory capacity of each DataNode at the hardware level.
• On a cluster with resources shared between Impala and other Hadoop components, use resource management

features to allocate more memory for Impala. See Resource Management for Impala on page 76 for
details.

• If the memory pressure is due to running many concurrent queries rather than a few memory-intensive ones,
consider using the Impala admission control feature to lower the limit on the number of concurrent queries. By
spacing out the most resource-intensive queries, you can avoid spikes in memory usage and improve overall
response times. See Admission Control and Query Queuing on page 67 for details.

• Tune the queries with the highest memory requirements, using one or more of the following techniques:

• Run the COMPUTE STATS statement for all tables involved in large-scale joins and aggregation queries.
• Minimize your use of STRING columns in join columns. Prefer numeric values instead.
• Examine the EXPLAIN plan to understand the execution strategy being used for the most resource-

intensive queries. See Using the EXPLAIN Plan for Performance Tuning on page 663 for details.

 | Scalability Considerations for Impala | 677

• If Impala still chooses a suboptimal execution strategy even with statistics available, or if it is impractical
to keep the statistics up to date for huge or rapidly changing tables, add hints to the most resource-intensive
queries to select the right execution strategy. See Query Hints in Impala SELECT Statements on page
352 for details.

• If your queries experience substantial performance overhead due to spilling, enable the
DISABLE_UNSAFE_SPILLS query option. This option prevents queries whose memory usage is likely to be
exorbitant from spilling to disk. See DISABLE_UNSAFE_SPILLS Query Option (Impala 2.0 or higher only)
on page 365 for details. As you tune problematic queries using the preceding steps, fewer and fewer will be
cancelled by this option setting.

Testing performance implications of spilling to disk:

To artificially provoke spilling, to test this feature and understand the performance implications, use a test
environment with a memory limit of at least 2 GB. Issue the SET command with no arguments to check the current
setting for the MEM_LIMIT query option. Set the query option DISABLE_UNSAFE_SPILLS=true. This
option limits the spill-to-disk feature to prevent runaway disk usage from queries that are known in advance to be
suboptimal. Within impala-shell, run a query that you expect to be memory-intensive, based on the criteria
explained earlier. A self-join of a large table is a good candidate:

select count(*) from big_table a join big_table b using
 (column_with_many_values);

Issue the PROFILE command to get a detailed breakdown of the memory usage on each node during the query.

Set the MEM_LIMIT query option to a value that is smaller than the peak memory usage reported in the profile
output. Now try the memory-intensive query again.

Check if the query fails with a message like the following:

WARNINGS: Spilling has been disabled for plans that do not have stats and
 are not hinted
to prevent potentially bad plans from using too many cluster resources.
 Compute stats on
these tables, hint the plan or disable this behavior via query options to
 enable spilling.

If so, the query could have consumed substantial temporary disk space, slowing down so much that it would not
complete in any reasonable time. Rather than rely on the spill-to-disk feature in this case, issue the COMPUTE
STATS statement for the table or tables in your sample query. Then run the query again, check the peak memory
usage again in the PROFILE output, and adjust the memory limit again if necessary to be lower than the peak
memory usage.

At this point, you have a query that is memory-intensive, but Impala can optimize it efficiently so that the memory
usage is not exorbitant. You have set an artificial constraint through the MEM_LIMIT option so that the query would
normally fail with an out-of-memory error. But the automatic spill-to-disk feature means that the query should
actually succeed, at the expense of some extra disk I/O to read and write temporary work data.

Try the query again, and confirm that it succeeds. Examine the PROFILE output again. This time, look for lines of
this form:

- SpilledPartitions: N

If you see any such lines with N greater than 0, that indicates the query would have failed in Impala releases
prior to 2.0, but now it succeeded because of the spill-to-disk feature. Examine the total time taken by the
AGGREGATION_NODE or other query fragments containing non-zero SpilledPartitions values. Compare the
times to similar fragments that did not spill, for example in the PROFILE output when the same query is run with a
higher memory limit. This gives you an idea of the performance penalty of the spill operation for a particular query
with a particular memory limit. If you make the memory limit just a little lower than the peak memory usage, the
query only needs to write a small amount of temporary data to disk. The lower you set the memory limit, the more
temporary data is written and the slower the query becomes.

 | Scalability Considerations for Impala | 678

Now repeat this procedure for actual queries used in your environment. Use the DISABLE_UNSAFE_SPILLS
setting to identify cases where queries used more memory than necessary due to lack of statistics on the relevant
tables and columns, and issue COMPUTE STATS where necessary.

When to use DISABLE_UNSAFE_SPILLS:

You might wonder, why not leave DISABLE_UNSAFE_SPILLS turned on all the time. Whether and how frequently
to use this option depends on your system environment and workload.

DISABLE_UNSAFE_SPILLS is suitable for an environment with ad hoc queries whose performance characteristics
and memory usage are not known in advance. It prevents “worst-case scenario” queries that use large amounts of
memory unnecessarily. Thus, you might turn this option on within a session while developing new SQL code, even
though it is turned off for existing applications.

Organizations where table and column statistics are generally up-to-date might leave this option turned on all the
time, again to avoid worst-case scenarios for untested queries or if a problem in the ETL pipeline results in a table
with no statistics. Turning on DISABLE_UNSAFE_SPILLS lets you “fail fast” in this case and immediately gather
statistics or tune the problematic queries.

Some organizations might leave this option turned off. For example, you might have tables large enough that the
COMPUTE STATS takes substantial time to run, making it impractical to re-run after loading new data. If you
have examined the EXPLAIN plans of your queries and know that they are operating efficiently, you might leave
DISABLE_UNSAFE_SPILLS turned off. In that case, you know that any queries that spill will not go overboard
with their memory consumption.

Limits on Query Size and Complexity
There are hardcoded limits on the maximum size and complexity of queries. Currently, the maximum number of
expressions in a query is 2000. You might exceed the limits with large or deeply nested queries produced by business
intelligence tools or other query generators.

If you have the ability to customize such queries or the query generation logic that produces them, replace sequences
of repetitive expressions with single operators such as IN or BETWEEN that can represent multiple values or ranges.
For example, instead of a large number of OR clauses:

WHERE val = 1 OR val = 2 OR val = 6 OR val = 100 ...

use a single IN clause:

WHERE val IN (1,2,6,100,...)

Scalability Considerations for Impala I/O
Impala parallelizes its I/O operations aggressively, therefore the more disks you can attach to each host, the better.
Impala retrieves data from disk so quickly using bulk read operations on large blocks, that most queries are CPU-
bound rather than I/O-bound.

Because the kind of sequential scanning typically done by Impala queries does not benefit much from the random-
access capabilities of SSDs, spinning disks typically provide the most cost-effective kind of storage for Impala data,
with little or no performance penalty as compared to SSDs.

Resource management features such as YARN, Llama, and admission control typically constrain the amount of
memory, CPU, or overall number of queries in a high-concurrency environment. Currently, there is no throttling
mechanism for Impala I/O.

 | Scalability Considerations for Impala | 679

Scalability Considerations for Table Layout
Due to the overhead of retrieving and updating table metadata in the metastore database, try to limit the number of
columns in a table to a maximum of approximately 2000. Although Impala can handle wider tables than this, the
metastore overhead can become significant, leading to query performance that is slower than expected based on the
actual data volume.

To minimize overhead related to the metastore database and Impala query planning, try to limit the number of
partitions for any partitioned table to a few tens of thousands.

If the volume of data within a table makes it impractical to run exploratory queries, consider using the
TABLESAMPLE clause to limit query processing to only a percentage of data within the table. This technique reduces
the overhead for query startup, I/O to read the data, and the amount of network, CPU, and memory needed to process
intermediate results during the query. See TABLESAMPLE Clause on page 344 for details.

Kerberos-Related Network Overhead for Large Clusters
When Impala starts up, or after each kinit refresh, Impala sends a number of simultaneous requests to the KDC.
For a cluster with 100 hosts, the KDC might be able to process all the requests within roughly 5 seconds. For a cluster
with 1000 hosts, the time to process the requests would be roughly 500 seconds. Impala also makes a number of DNS
requests at the same time as these Kerberos-related requests.

While these authentication requests are being processed, any submitted Impala queries will fail. During this period,
the KDC and DNS may be slow to respond to requests from components other than Impala, so other secure services
might be affected temporarily.

To reduce the frequency of the kinit renewal that initiates a new set of authentication requests, increase the
kerberos_reinit_interval configuration setting for the impalad daemons. Currently, the default is 60
minutes. Consider using a higher value such as 360 (6 hours).

Kerberos-Related Memory Overhead for Large Clusters
On a kerberized cluster with high memory utilization, kinit commands executed after every
'kerberos_reinit_interval' may cause out-of-memory errors, because executing the command involves a
fork of the Impala process. The error looks similar to the following:

Failed to obtain Kerberos ticket for principal: <varname>principal_details</
varname>
Failed to execute shell cmd: 'kinit -k -t <varname>keytab_details</
varname>',
error was: Error(12): Cannot allocate memory

The following command changes the vm.overcommit_memory setting immediately on a running host. However,
this setting is reset when the host is restarted.

echo 1 > /proc/sys/vm/overcommit_memory

To change the setting in a persistent way, add the following line to the /etc/sysctl.conf file:

vm.overcommit_memory=1

 | Scalability Considerations for Impala | 680

Then run sysctl -p. No reboot is needed.

Avoiding CPU Hotspots for HDFS Cached Data
You can use the HDFS caching feature, described in Using HDFS Caching with Impala (Impala 2.1 or higher
only) on page 656, with Impala to reduce I/O and memory-to-memory copying for frequently accessed tables or
partitions.

In the early days of this feature, you might have found that enabling HDFS caching resulted in little or no
performance improvement, because it could result in “hotspots”: instead of the I/O to read the table data being
parallelized across the cluster, the I/O was reduced but the CPU load to process the data blocks might be concentrated
on a single host.

To avoid hotspots, include the WITH REPLICATION clause with the CREATE TABLE or ALTER TABLE
statements for tables that use HDFS caching. This clause allows more than one host to cache the relevant data blocks,
so the CPU load can be shared, reducing the load on any one host. See CREATE TABLE Statement on page 256
and ALTER TABLE Statement on page 225 for details.

Hotspots with high CPU load for HDFS cached data could still arise in some cases, due to the way that Impala
schedules the work of processing data blocks on different hosts. In Impala 2.5 and higher, scheduling improvements
mean that the work for HDFS cached data is divided better among all the hosts that have cached replicas for a
particular data block. When more than one host has a cached replica for a data block, Impala assigns the work
of processing that block to whichever host has done the least work (in terms of number of bytes read) for the
current query. If hotspots persist even with this load-based scheduling algorithm, you can enable the query option
SCHEDULE_RANDOM_REPLICA=TRUE to further distribute the CPU load. This setting causes Impala to randomly
pick a host to process a cached data block if the scheduling algorithm encounters a tie when deciding which host has
done the least work.

Scalability Considerations for NameNode Traffic with File Handle Caching
One scalability aspect that affects heavily loaded clusters is the load on the HDFS NameNode, from looking up the
details as each HDFS file is opened. Impala queries often access many different HDFS files, for example if a query
does a full table scan on a table with thousands of partitions, each partition containing multiple data files. Accessing
each column of a Parquet file also involves a separate “open” call, further increasing the load on the NameNode. High
NameNode overhead can add startup time (that is, increase latency) to Impala queries, and reduce overall throughput
for non-Impala workloads that also require accessing HDFS files.

In Impala 2.10 and higher, you can reduce NameNode overhead by enabling a caching feature for HDFS file handles.
Data files that are accessed by different queries, or even multiple times within the same query, can be accessed
without a new “open” call and without fetching the file details again from the NameNode.

Because this feature only involves HDFS data files, it does not apply to non-HDFS tables, such as Kudu or HBase
tables, or tables that store their data on cloud services such as S3 or ADLS. Any read operations that perform remote
reads also skip the cached file handles.

This feature is turned off by default. To enable it, set the configuration option max_cached_file_handles to
a non-zero value for each impalad daemon. Consider an initial starting value of 20 thousand, and adjust upward
if NameNode overhead is still significant, or downward if it is more important to reduce the extra memory usage on
each host. Each cache entry consumes 6 KB, meaning that caching 20,000 file handles requires up to 120 MB on each
DataNode. The exact memory usage varies depending on how many file handles have actually been cached; memory
is freed as file handles are evicted from the cache.

If a manual HDFS operation moves a file to the HDFS Trashcan while the file handle is cached, Impala still accesses
the contents of that file. This is a change from prior behavior. Previously, accessing a file that was in the trashcan
would cause an error. This behavior only applies to non-Impala methods of removing HDFS files, not the Impala
mechanisms such as TRUNCATE TABLE or DROP TABLE.

 | Partitioning for Impala Tables | 681

If files are removed, replaced, or appended by HDFS operations outside of Impala, the way to bring the file
information up to date is to run the REFRESH statement on the table.

File handle cache entries are evicted as the cache fills up, or based on a timeout period when they have not been
accessed for some time.

To evaluate the effectiveness of file handle caching for a particular workload, issue the PROFILE
statement in impala-shell or examine query profiles in the Impala web UI. Look for the ratio of
CachedFileHandlesHitCount (ideally, should be high) to CachedFileHandlesMissCount (ideally,
should be low). Before starting any evaluation, run some representative queries to “warm up” the cache, because
the first time each data file is accessed is always recorded as a cache miss. To see metrics about file handle caching
for each impalad instance, examine the /metrics page in the Impala web UI, in particular the fields impala-
server.io.mgr.cached-file-handles-miss-count, impala-server.io.mgr.cached-file-handles-hit-count, and impala-
server.io.mgr.num-cached-file-handles.

Partitioning for Impala Tables

By default, all the data files for a table are located in a single directory. Partitioning is a technique for physically
dividing the data during loading, based on values from one or more columns, to speed up queries that test those
columns. For example, with a school_records table partitioned on a year column, there is a separate data
directory for each different year value, and all the data for that year is stored in a data file in that directory. A query
that includes a WHERE condition such as YEAR=1966, YEAR IN (1989,1999), or YEAR BETWEEN 1984
AND 1989 can examine only the data files from the appropriate directory or directories, greatly reducing the amount
of data to read and test.

See Attaching an External Partitioned Table to an HDFS Directory Structure on page 47 for an example that
illustrates the syntax for creating partitioned tables, the underlying directory structure in HDFS, and how to attach a
partitioned Impala external table to data files stored elsewhere in HDFS.

Parquet is a popular format for partitioned Impala tables because it is well suited to handle huge data volumes. See
Query Performance for Impala Parquet Tables on page 702 for performance considerations for partitioned Parquet
tables.

See NULL on page 186 for details about how NULL values are represented in partitioned tables.

See Using Impala with the Amazon S3 Filesystem on page 748 for details about setting up tables where some or all
partitions reside on the Amazon Simple Storage Service (S3).

When to Use Partitioned Tables
Partitioning is typically appropriate for:

• Tables that are very large, where reading the entire data set takes an impractical amount of time.
• Tables that are always or almost always queried with conditions on the partitioning columns. In our example of

a table partitioned by year, SELECT COUNT(*) FROM school_records WHERE year = 1985 is
efficient, only examining a small fraction of the data; but SELECT COUNT(*) FROM school_records
has to process a separate data file for each year, resulting in more overall work than in an unpartitioned table. You
would probably not partition this way if you frequently queried the table based on last name, student ID, and so on
without testing the year.

• Columns that have reasonable cardinality (number of different values). If a column only has a small number of
values, for example Male or Female, you do not gain much efficiency by eliminating only about 50% of the
data to read for each query. If a column has only a few rows matching each value, the number of directories to
process can become a limiting factor, and the data file in each directory could be too small to take advantage of the
Hadoop mechanism for transmitting data in multi-megabyte blocks. For example, you might partition census data
by year, store sales data by year and month, and web traffic data by year, month, and day. (Some users with high
volumes of incoming data might even partition down to the individual hour and minute.)

 | Partitioning for Impala Tables | 682

• Data that already passes through an extract, transform, and load (ETL) pipeline. The values of the partitioning
columns are stripped from the original data files and represented by directory names, so loading data into a
partitioned table involves some sort of transformation or preprocessing.

SQL Statements for Partitioned Tables
In terms of Impala SQL syntax, partitioning affects these statements:

• CREATE TABLE: you specify a PARTITIONED BY clause when creating the table to identify names and data
types of the partitioning columns. These columns are not included in the main list of columns for the table.

• In Impala 2.5 and higher, you can also use the PARTITIONED BY clause in a CREATE TABLE AS SELECT
statement. This syntax lets you use a single statement to create a partitioned table, copy data into it, and create new
partitions based on the values in the inserted data.

• ALTER TABLE: you can add or drop partitions, to work with different portions of a huge data set. You can
designate the HDFS directory that holds the data files for a specific partition. With data partitioned by date values,
you might “age out” data that is no longer relevant.

Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency, use
a single ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses, rather than
separate statements with ADD PARTITION and SET LOCATION clauses.

• INSERT: When you insert data into a partitioned table, you identify the partitioning columns. One or more values
from each inserted row are not stored in data files, but instead determine the directory where that row value is
stored. You can also specify which partition to load a set of data into, with INSERT OVERWRITE statements;
you can replace the contents of a specific partition but you cannot append data to a specific partition.

By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those
subdirectories are assigned default HDFS permissions for the impala user. To make each subdirectory have the
same permissions as its parent directory in HDFS, specify the --insert_inherit_permissions startup
option for the impalad daemon.

• Although the syntax of the SELECT statement is the same whether or not the table is partitioned, the way queries
interact with partitioned tables can have a dramatic impact on performance and scalability. The mechanism that
lets queries skip certain partitions during a query is known as partition pruning; see Partition Pruning for Queries
on page 683 for details.

• In Impala 1.4 and later, there is a SHOW PARTITIONS statement that displays information about each partition
in a table. See SHOW Statement on page 394 for details.

Static and Dynamic Partitioning Clauses
Specifying all the partition columns in a SQL statement is called static partitioning, because the statement affects a
single predictable partition. For example, you use static partitioning with an ALTER TABLE statement that affects
only one partition, or with an INSERT statement that inserts all values into the same partition:

insert into t1 partition(x=10, y='a') select c1 from some_other_table;

When you specify some partition key columns in an INSERT statement, but leave out the values, Impala determines
which partition to insert. This technique is called dynamic partitioning:

insert into t1 partition(x, y='b') select c1, c2 from some_other_table;
-- Create new partition if necessary based on variable year, month, and day;
 insert a single value.
insert into weather partition (year, month, day) select 'cloudy',2014,4,21;
-- Create new partition if necessary for specified year and month but
 variable day; insert a single value.
insert into weather partition (year=2014, month=04, day) select 'sunny',22;

 | Partitioning for Impala Tables | 683

The more key columns you specify in the PARTITION clause, the fewer columns you need in the SELECT list. The
trailing columns in the SELECT list are substituted in order for the partition key columns with no specified value.

Refreshing a Single Partition
The REFRESH statement is typically used with partitioned tables when new data files are loaded into a partition by
some non-Impala mechanism, such as a Hive or Spark job. The REFRESH statement makes Impala aware of the new
data files so that they can be used in Impala queries. Because partitioned tables typically contain a high volume of
data, the REFRESH operation for a full partitioned table can take significant time.

In Impala 2.7 and higher, you can include a PARTITION (partition_spec) clause in the REFRESH statement
so that only a single partition is refreshed. For example, REFRESH big_table PARTITION (year=2017,
month=9, day=30). The partition spec must include all the partition key columns. See REFRESH Statement on
page 317 for more details and examples of REFRESH syntax and usage.

Permissions for Partition Subdirectories
By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those
subdirectories are assigned default HDFS permissions for the impala user. To make each subdirectory have the
same permissions as its parent directory in HDFS, specify the --insert_inherit_permissions startup
option for the impalad daemon.

Partition Pruning for Queries
Partition pruning refers to the mechanism where a query can skip reading the data files corresponding to one or more
partitions. If you can arrange for queries to prune large numbers of unnecessary partitions from the query execution
plan, the queries use fewer resources and are thus proportionally faster and more scalable.

For example, if a table is partitioned by columns YEAR, MONTH, and DAY, then WHERE clauses such as WHERE
year = 2013, WHERE year < 2010, or WHERE year BETWEEN 1995 AND 1998 allow Impala to
skip the data files in all partitions outside the specified range. Likewise, WHERE year = 2013 AND month
BETWEEN 1 AND 3 could prune even more partitions, reading the data files for only a portion of one year.

Checking if Partition Pruning Happens for a Query

To check the effectiveness of partition pruning for a query, check the EXPLAIN output for the query before running
it. For example, this example shows a table with 3 partitions, where the query only reads 1 of them. The notation
#partitions=1/3 in the EXPLAIN plan confirms that Impala can do the appropriate partition pruning.

[localhost:21000] > insert into census partition (year=2010) values
 ('Smith'),('Jones');
[localhost:21000] > insert into census partition (year=2011) values
 ('Smith'),('Jones'),('Doe');
[localhost:21000] > insert into census partition (year=2012) values
 ('Smith'),('Doe');
[localhost:21000] > select name from census where year=2010;
+-------+
| name |
+-------+
| Smith |
| Jones |
+-------+
[localhost:21000] > explain select name from census where year=2010;
+--+
| Explain String |
+--+

 | Partitioning for Impala Tables | 684

| PLAN FRAGMENT 0 |
| PARTITION: UNPARTITIONED |
| |
| 1:EXCHANGE |
| |
| PLAN FRAGMENT 1 |
| PARTITION: RANDOM |
| |
| STREAM DATA SINK |
| EXCHANGE ID: 1 |
| UNPARTITIONED |
| |
| 0:SCAN HDFS |
| table=predicate_propagation.census #partitions=1/3 size=12B |
+--+

For a report of the volume of data that was actually read and processed at each stage of the query, check the output of
the SUMMARY command immediately after running the query. For a more detailed analysis, look at the output of the
PROFILE command; it includes this same summary report near the start of the profile output.

What SQL Constructs Work with Partition Pruning

Impala can even do partition pruning in cases where the partition key column is not directly compared to a constant,
by applying the transitive property to other parts of the WHERE clause. This technique is known as predicate
propagation, and is available in Impala 1.2.2 and later. In this example, the census table includes another column
indicating when the data was collected, which happens in 10-year intervals. Even though the query does not compare
the partition key column (YEAR) to a constant value, Impala can deduce that only the partition YEAR=2010 is
required, and again only reads 1 out of 3 partitions.

[localhost:21000] > drop table census;
[localhost:21000] > create table census (name string, census_year int)
 partitioned by (year int);
[localhost:21000] > insert into census partition (year=2010) values
 ('Smith',2010),('Jones',2010);
[localhost:21000] > insert into census partition (year=2011) values
 ('Smith',2020),('Jones',2020),('Doe',2020);
[localhost:21000] > insert into census partition (year=2012) values
 ('Smith',2020),('Doe',2020);
[localhost:21000] > select name from census where year = census_year and
 census_year=2010;
+-------+
| name |
+-------+
| Smith |
| Jones |
+-------+
[localhost:21000] > explain select name from census where year = census_year
 and census_year=2010;
+--+
| Explain String |
+--+
| PLAN FRAGMENT 0 |
| PARTITION: UNPARTITIONED |
| |
| 1:EXCHANGE |
| |
| PLAN FRAGMENT 1 |
| PARTITION: RANDOM |
| |
| STREAM DATA SINK |
| EXCHANGE ID: 1 |
| UNPARTITIONED |

 | Partitioning for Impala Tables | 685

| |
| 0:SCAN HDFS |
| table=predicate_propagation.census #partitions=1/3 size=22B |
| predicates: census_year = 2010, year = census_year |
+--+

If a view applies to a partitioned table, any partition pruning considers the clauses on both the original query and any
additional WHERE predicates in the query that refers to the view. Prior to Impala 1.4, only the WHERE clauses on the
original query from the CREATE VIEW statement were used for partition pruning.

In queries involving both analytic functions and partitioned tables, partition pruning only occurs for columns named
in the PARTITION BY clause of the analytic function call. For example, if an analytic function query has a clause
such as WHERE year=2016, the way to make the query prune all other YEAR partitions is to include PARTITION
BY yearin the analytic function call; for example, OVER (PARTITION BY year,other_columns
other_analytic_clauses).

Dynamic Partition Pruning

The original mechanism uses to prune partitions is static partition pruning, in which the conditions in the WHERE
clause are analyzed to determine in advance which partitions can be safely skipped. In Impala 2.5 and higher, Impala
can perform dynamic partition pruning, where information about the partitions is collected during the query, and
Impala prunes unnecessary partitions in ways that were impractical to predict in advance.

For example, if partition key columns are compared to literal values in a WHERE clause, Impala can perform static
partition pruning during the planning phase to only read the relevant partitions:

-- The query only needs to read 3 partitions whose key values are known
 ahead of time.
-- That's static partition pruning.
SELECT COUNT(*) FROM sales_table WHERE year IN (2005, 2010, 2015);

Dynamic partition pruning involves using information only available at run time, such as the result of a subquery:

create table yy (s string) partitioned by (year int) stored as parquet;
insert into yy partition (year) values ('1999', 1999), ('2000', 2000),
 ('2001', 2001), ('2010',2010);
compute stats yy;

create table yy2 (s string) partitioned by (year int) stored as parquet;
insert into yy2 partition (year) values ('1999', 1999), ('2000', 2000),
 ('2001', 2001);
compute stats yy2;

-- The query reads an unknown number of partitions, whose key values are
 only
-- known at run time. The 'runtime filters' lines show how the information
 about
-- the partitions is calculated in query fragment 02, and then used in query
-- fragment 00 to decide which partitions to skip.
explain select s from yy2 where year in (select year from yy where year
 between 2000 and 2005);
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=16.00MB VCores=2 |
| |
| 04:EXCHANGE [UNPARTITIONED] |
| | |
| 02:HASH JOIN [LEFT SEMI JOIN, BROADCAST] |
| | hash predicates: year = year |

 | Partitioning for Impala Tables | 686

	runtime filters: RF000 <- year	
	--03:EXCHANGE [BROADCAST]	
	01:SCAN HDFS [dpp.yy]	
	partitions=2/4 files=2 size=468B	
00:SCAN HDFS [dpp.yy2]		
partitions=2/3 files=2 size=468B		
runtime filters: RF000 -> year		
+--+

In this case, Impala evaluates the subquery, sends the subquery results to all Impala nodes participating in the query,
and then each impalad daemon uses the dynamic partition pruning optimization to read only the partitions with the
relevant key values.

Dynamic partition pruning is especially effective for queries involving joins of several large partitioned tables.
Evaluating the ON clauses of the join predicates might normally require reading data from all partitions of certain
tables. If the WHERE clauses of the query refer to the partition key columns, Impala can now often skip reading many
of the partitions while evaluating the ON clauses. The dynamic partition pruning optimization reduces the amount of I/
O and the amount of intermediate data stored and transmitted across the network during the query.

When the spill-to-disk feature is activated for a join node within a query, Impala does not produce any runtime filters
for that join operation on that host. Other join nodes within the query are not affected.

Dynamic partition pruning is part of the runtime filtering feature, which applies to other kinds of queries in addition
to queries against partitioned tables. See Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page
651 for full details about this feature.

Partition Key Columns
The columns you choose as the partition keys should be ones that are frequently used to filter query results in
important, large-scale queries. Popular examples are some combination of year, month, and day when the data has
associated time values, and geographic region when the data is associated with some place.

• For time-based data, split out the separate parts into their own columns, because Impala cannot partition based on
a TIMESTAMP column.

• The data type of the partition columns does not have a significant effect on the storage required, because the
values from those columns are not stored in the data files, rather they are represented as strings inside HDFS
directory names.

• In Impala 2.5 and higher, you can enable the OPTIMIZE_PARTITION_KEY_SCANS query option to speed up
queries that only refer to partition key columns, such as SELECT MAX(year). This setting is not enabled by
default because the query behavior is slightly different if the table contains partition directories without actual data
inside. See OPTIMIZE_PARTITION_KEY_SCANS Query Option (Impala 2.5 or higher only) on page 384 for
details.

• Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.
• Remember that when Impala queries data stored in HDFS, it is most efficient to use multi-megabyte files to take

advantage of the HDFS block size. For Parquet tables, the block size (and ideal size of the data files) is 256 MB in
Impala 2.0 and later. Therefore, avoid specifying too many partition key columns, which could result in individual
partitions containing only small amounts of data. For example, if you receive 1 GB of data per day, you might
partition by year, month, and day; while if you receive 5 GB of data per minute, you might partition by year,
month, day, hour, and minute. If you have data with a geographic component, you might partition based on postal
code if you have many megabytes of data for each postal code, but if not, you might partition by some larger
region such as city, state, or country. state

If you frequently run aggregate functions such as MIN(), MAX(), and COUNT(DISTINCT) on partition key
columns, consider enabling the OPTIMIZE_PARTITION_KEY_SCANS query option, which optimizes such queries.
This feature is available in Impala 2.5 and higher. See OPTIMIZE_PARTITION_KEY_SCANS Query Option (Impala

 | Partitioning for Impala Tables | 687

2.5 or higher only) on page 384 for the kinds of queries that this option applies to, and slight differences in how
partitions are evaluated when this query option is enabled.

Setting Different File Formats for Partitions
Partitioned tables have the flexibility to use different file formats for different partitions. (For background information
about the different file formats Impala supports, see How Impala Works with Hadoop File Formats on page 690.)
For example, if you originally received data in text format, then received new data in RCFile format, and eventually
began receiving data in Parquet format, all that data could reside in the same table for queries. You just need to ensure
that the table is structured so that the data files that use different file formats reside in separate partitions.

For example, here is how you might switch from text to Parquet data as you receive data for different years:

[localhost:21000] > create table census (name string) partitioned by (year
 smallint);
[localhost:21000] > alter table census add partition (year=2012); -- Text
 format;

[localhost:21000] > alter table census add partition (year=2013); -- Text
 format switches to Parquet before data loaded;
[localhost:21000] > alter table census partition (year=2013) set fileformat
 parquet;

[localhost:21000] > insert into census partition (year=2012) values
 ('Smith'),('Jones'),('Lee'),('Singh');
[localhost:21000] > insert into census partition (year=2013) values
 ('Flores'),('Bogomolov'),('Cooper'),('Appiah');

At this point, the HDFS directory for year=2012 contains a text-format data file, while the HDFS directory for
year=2013 contains a Parquet data file. As always, when loading non-trivial data, you would use INSERT ...
SELECT or LOAD DATA to import data in large batches, rather than INSERT ... VALUES which produces small
files that are inefficient for real-world queries.

For other file types that Impala cannot create natively, you can switch into Hive and issue the ALTER TABLE ...
SET FILEFORMAT statements and INSERT or LOAD DATA statements there. After switching back to Impala, issue
a REFRESH table_name statement so that Impala recognizes any partitions or new data added through Hive.

Managing Partitions
You can add, drop, set the expected file format, or set the HDFS location of the data files for individual partitions
within an Impala table. See ALTER TABLE Statement on page 225 for syntax details, and Setting Different File
Formats for Partitions on page 687 for tips on managing tables containing partitions with different file formats.

Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency, use a
single ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses, rather than separate
statements with ADD PARTITION and SET LOCATION clauses.

What happens to the data files when a partition is dropped depends on whether the partitioned table is designated as
internal or external. For an internal (managed) table, the data files are deleted. For example, if data in the partitioned
table is a copy of raw data files stored elsewhere, you might save disk space by dropping older partitions that are no
longer required for reporting, knowing that the original data is still available if needed later. For an external table, the
data files are left alone. For example, dropping a partition without deleting the associated files lets Impala consider
a smaller set of partitions, improving query efficiency and reducing overhead for DDL operations on the table; if the
data is needed again later, you can add the partition again. See Overview of Impala Tables on page 214 for details
and examples.

 | Partitioning for Impala Tables | 688

Using Partitioning with Kudu Tables
Kudu tables use a more fine-grained partitioning scheme than tables containing HDFS data files. You specify a
PARTITION BY clause with the CREATE TABLE statement to identify how to divide the values from the partition
key columns.

See Partitioning for Kudu Tables on page 730 for details and examples of the partitioning techniques for Kudu
tables.

Keeping Statistics Up to Date for Partitioned Tables
Because the COMPUTE STATS statement can be resource-intensive to run on a partitioned table as new partitions are
added, Impala includes a variation of this statement that allows computing statistics on a per-partition basis such that
stats can be incrementally updated when new partitions are added.

Important:

For a particular table, use either COMPUTE STATS or COMPUTE INCREMENTAL STATS, but never combine the
two or alternate between them. If you switch from COMPUTE STATS to COMPUTE INCREMENTAL STATS during
the lifetime of a table, or vice versa, drop all statistics (by running both DROP STATS and DROP INCREMENTAL
STATS) before making the switch.

When you run COMPUTE INCREMENTAL STATS on a table for the first time, the statistics are computed again
from scratch regardless of whether the table already has statistics. Therefore, expect a one-time resource-intensive
operation for scanning the entire table when running COMPUTE INCREMENTAL STATS for the first time on a
given table.

For a table with a huge number of partitions and many columns, the approximately 400 bytes of metadata per column
per partition can add up to significant memory overhead, as it must be cached on the catalogd host and on every
impalad host that is eligible to be a coordinator. If this metadata for all tables combined exceeds 2 GB, you might
experience service downtime.

The COMPUTE INCREMENTAL STATS variation computes statistics only for partitions that were added or changed
since the last COMPUTE INCREMENTAL STATS statement, rather than the entire table. It is typically used for tables
where a full COMPUTE STATS operation takes too long to be practical each time a partition is added or dropped. See
Overview of Incremental Statistics on page 641 for full usage details.

-- Initially the table has no incremental stats, as indicated
-- 'false' under Incremental stats.
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------
+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+------------------
| Books | -1 | 1 | 223.74KB | NOT CACHED | PARQUET | false
| Children | -1 | 1 | 230.05KB | NOT CACHED | PARQUET | false
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Home | -1 | 1 | 232.56KB | NOT CACHED | PARQUET | false
| Jewelry | -1 | 1 | 223.72KB | NOT CACHED | PARQUET | false
| Men | -1 | 1 | 231.25KB | NOT CACHED | PARQUET | false
| Music | -1 | 1 | 237.90KB | NOT CACHED | PARQUET | false
| Shoes | -1 | 1 | 234.90KB | NOT CACHED | PARQUET | false
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | -1 | 1 | 226.27KB | NOT CACHED | PARQUET | false
| Total | -1 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+------------------

 | Partitioning for Impala Tables | 689

-- After the first COMPUTE INCREMENTAL STATS,
-- all partitions have stats. The first
-- COMPUTE INCREMENTAL STATS scans the whole
-- table, discarding any previous stats from
-- a traditional COMPUTE STATS statement.
compute incremental stats item_partitioned;
+---+
| summary |
+---+
| Updated 10 partition(s) and 21 column(s). |
+---+
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------
+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+------------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+------------------

-- Add a new partition...
alter table item_partitioned add partition (i_category='Camping');
-- Add or replace files in HDFS outside of Impala,
-- rendering the stats for a partition obsolete.
!import_data_into_sports_partition.sh
refresh item_partitioned;
drop incremental stats item_partitioned partition (i_category='Sports');
-- Now some partitions have incremental stats
-- and some do not.
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------
+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+------------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Camping | -1 | 1 | 408.02KB | NOT CACHED | PARQUET | false
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 11 | 2.65MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+------------------

-- After another COMPUTE INCREMENTAL STATS,

 | How Impala Works with Hadoop File Formats | 690

-- all partitions have incremental stats, and only the 2
-- partitions without incremental stats were scanned.
compute incremental stats item_partitioned;
+--+
| summary |
+--+
| Updated 2 partition(s) and 21 column(s). |
+--+
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------
+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format |
 Incremental stats
+-------------+-------+--------+----------+--------------+---------
+------------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Camping | 5328 | 1 | 408.02KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 11 | 2.65MB | 0B | |
+-------------+-------+--------+----------+--------------+---------
+------------------

How Impala Works with Hadoop File Formats

Impala supports several familiar file formats used in Apache Hadoop. Impala can load and query data files produced
by other Hadoop components such as Pig or MapReduce, and data files produced by Impala can be used by other
components also. The following sections discuss the procedures, limitations, and performance considerations for
using each file format with Impala.

The file format used for an Impala table has significant performance consequences. Some file formats include
compression support that affects the size of data on the disk and, consequently, the amount of I/O and CPU resources
required to deserialize data. The amounts of I/O and CPU resources required can be a limiting factor in query
performance since querying often begins with moving and decompressing data. To reduce the potential impact of this
part of the process, data is often compressed. By compressing data, a smaller total number of bytes are transferred
from disk to memory. This reduces the amount of time taken to transfer the data, but a tradeoff occurs when the CPU
decompresses the content.

Impala can query files encoded with most of the popular file formats and compression codecs used in Hadoop. Impala
can create and insert data into tables that use some file formats but not others; for file formats that Impala cannot write
to, create the table in Hive, issue the INVALIDATE METADATA table_name statement in impala-shell, and
query the table through Impala. File formats can be structured, in which case they may include metadata and built-in
compression. Supported formats include:

 | How Impala Works with Hadoop File Formats | 691

Table 3: File Format Support in Impala

File
Type

Format Compression
Codecs

Impala Can CREATE? Impala Can INSERT?

Parquet Structured Snappy, gzip;
currently Snappy by
default

Yes. Yes: CREATE TABLE,
INSERT, LOAD DATA, and
query.

Text UnstructuredLZO, gzip, bzip2,
Snappy

Yes. For CREATE TABLE
with no STORED AS clause,
the default file format is
uncompressed text, with
values separated by ASCII
0x01 characters (typically
represented as Ctrl-A).

Yes: CREATE TABLE,
INSERT, LOAD DATA, and
query. If LZO compression
is used, you must create the
table and load data in Hive.
If other kinds of compression
are used, you must load data
through LOAD DATA, Hive, or
manually in HDFS.

Avro Structured Snappy, gzip,
deflate, bzip2

Yes, in Impala 1.4.0 and higher.
Before that, create the table
using Hive.

No. Import data by using LOAD
DATA on data files already
in the right format, or use
INSERT in Hive followed by
REFRESH table_name in
Impala.

RCFile Structured Snappy, gzip,
deflate, bzip2

Yes. No. Import data by using LOAD
DATA on data files already
in the right format, or use
INSERT in Hive followed by
REFRESH table_name in
Impala.

SequenceFileStructured Snappy, gzip,
deflate, bzip2

Yes. No. Import data by using LOAD
DATA on data files already
in the right format, or use
INSERT in Hive followed by
REFRESH table_name in
Impala.

Impala can only query the file formats listed in the preceding table. In particular, Impala does not support the ORC
file format.

Impala supports the following compression codecs:

• Snappy. Recommended for its effective balance between compression ratio and decompression speed. Snappy
compression is very fast, but gzip provides greater space savings. Supported for text files in Impala 2.0 and higher.

• Gzip. Recommended when achieving the highest level of compression (and therefore greatest disk-space savings)
is desired. Supported for text files in Impala 2.0 and higher.

• Deflate. Not supported for text files.
• Bzip2. Supported for text files in Impala 2.0 and higher.
• LZO, for text files only. Impala can query LZO-compressed text tables, but currently cannot create them or insert

data into them; perform these operations in Hive.

Choosing the File Format for a Table
Different file formats and compression codecs work better for different data sets. While Impala typically provides
performance gains regardless of file format, choosing the proper format for your data can yield further performance

 | How Impala Works with Hadoop File Formats | 692

improvements. Use the following considerations to decide which combination of file format and compression to use
for a particular table:

• If you are working with existing files that are already in a supported file format, use the same format for the
Impala table where practical. If the original format does not yield acceptable query performance or resource usage,
consider creating a new Impala table with different file format or compression characteristics, and doing a one-
time conversion by copying the data to the new table using the INSERT statement. Depending on the file format,
you might run the INSERT statement in impala-shell or in Hive.

• Text files are convenient to produce through many different tools, and are human-readable for ease of verification
and debugging. Those characteristics are why text is the default format for an Impala CREATE TABLE statement.
When performance and resource usage are the primary considerations, use one of the other file formats and
consider using compression. A typical workflow might involve bringing data into an Impala table by copying CSV
or TSV files into the appropriate data directory, and then using the INSERT ... SELECT syntax to copy the
data into a table using a different, more compact file format.

• If your architecture involves storing data to be queried in memory, do not compress the data. There is no I/O
savings since the data does not need to be moved from disk, but there is a CPU cost to decompress the data.

Using Text Data Files with Impala Tables
Impala supports using text files as the storage format for input and output. Text files are a convenient format to use
for interchange with other applications or scripts that produce or read delimited text files, such as CSV or TSV with
commas or tabs for delimiters.

Text files are also very flexible in their column definitions. For example, a text file could have more fields than the
Impala table, and those extra fields are ignored during queries; or it could have fewer fields than the Impala table,
and those missing fields are treated as NULL values in queries. You could have fields that were treated as numbers
or timestamps in a table, then use ALTER TABLE ... REPLACE COLUMNS to switch them to strings, or the
reverse.

Table 4: Text Format Support in Impala

File
Type

Format Compression
Codecs

Impala Can CREATE? Impala Can INSERT?

Text UnstructuredLZO, gzip, bzip2,
Snappy

Yes. For CREATE TABLE
with no STORED AS clause,
the default file format is
uncompressed text, with
values separated by ASCII
0x01 characters (typically
represented as Ctrl-A).

Yes: CREATE TABLE,
INSERT, LOAD DATA, and
query. If LZO compression
is used, you must create the
table and load data in Hive.
If other kinds of compression
are used, you must load data
through LOAD DATA, Hive, or
manually in HDFS.

Query Performance for Impala Text Tables

Data stored in text format is relatively bulky, and not as efficient to query as binary formats such as Parquet. You
typically use text tables with Impala if that is the format you receive the data and you do not have control over that
process, or if you are a relatively new Hadoop user and not familiar with techniques to generate files in other formats.
(Because the default format for CREATE TABLE is text, you might create your first Impala tables as text without
giving performance much thought.) Either way, look for opportunities to use more efficient file formats for the tables
used in your most performance-critical queries.

For frequently queried data, you might load the original text data files into one Impala table, then use an INSERT
statement to transfer the data to another table that uses the Parquet file format; the data is converted automatically as it
is stored in the destination table.

 | How Impala Works with Hadoop File Formats | 693

For more compact data, consider using LZO compression for the text files. LZO is the only compression codec that
Impala supports for text data, because the “splittable” nature of LZO data files lets different nodes work on different
parts of the same file in parallel. See Using LZO-Compressed Text Files on page 696 for details.

In Impala 2.0 and later, you can also use text data compressed in the gzip, bzip2, or Snappy formats. Because these
compressed formats are not “splittable” in the way that LZO is, there is less opportunity for Impala to parallelize
queries on them. Therefore, use these types of compressed data only for convenience if that is the format in which you
receive the data. Prefer to use LZO compression for text data if you have the choice, or convert the data to Parquet
using an INSERT ... SELECT statement to copy the original data into a Parquet table.

Note:

Impala supports bzip files created by the bzip2 command, but not bzip files with multiple streams created by the
pbzip2 command. Impala decodes only the data from the first part of such files, leading to incomplete results.

The maximum size that Impala can accommodate for an individual bzip file is 1 GB (after uncompression).

In Impala 2.6 and higher, Impala queries are optimized for files stored in Amazon S3. For Impala tables that use
the file formats Parquet, RCFile, SequenceFile, Avro, and uncompressed text, the setting fs.s3a.block.size
in the core-site.xml configuration file determines how Impala divides the I/O work of reading the data files.
This configuration setting is specified in bytes. By default, this value is 33554432 (32 MB), meaning that Impala
parallelizes S3 read operations on the files as if they were made up of 32 MB blocks. For example, if your S3 queries
primarily access Parquet files written by MapReduce or Hive, increase fs.s3a.block.size to 134217728 (128
MB) to match the row group size of those files. If most S3 queries involve Parquet files written by Impala, increase
fs.s3a.block.size to 268435456 (256 MB) to match the row group size produced by Impala.

Creating Text Tables

To create a table using text data files:

If the exact format of the text data files (such as the delimiter character) is not significant, use the CREATE TABLE
statement with no extra clauses at the end to create a text-format table. For example:

create table my_table(id int, s string, n int, t timestamp, b boolean);

The data files created by any INSERT statements will use the Ctrl-A character (hex 01) as a separator between each
column value.

A common use case is to import existing text files into an Impala table. The syntax is more verbose; the significant
part is the FIELDS TERMINATED BY clause, which must be preceded by the ROW FORMAT DELIMITED clause.
The statement can end with a STORED AS TEXTFILE clause, but that clause is optional because text format tables
are the default. For example:

create table csv(id int, s string, n int, t timestamp, b boolean)
 row format delimited
 fields terminated by ',';

create table tsv(id int, s string, n int, t timestamp, b boolean)
 row format delimited
 fields terminated by '\t';

create table pipe_separated(id int, s string, n int, t timestamp, b boolean)
 row format delimited
 fields terminated by '|'
 stored as textfile;

You can create tables with specific separator characters to import text files in familiar formats such as CSV, TSV,
or pipe-separated. You can also use these tables to produce output data files, by copying data into them through the
INSERT ... SELECT syntax and then extracting the data files from the Impala data directory.

 | How Impala Works with Hadoop File Formats | 694

In Impala 1.3.1 and higher, you can specify a delimiter character '\0' to use the ASCII 0 (nul) character for text
tables:

create table nul_separated(id int, s string, n int, t timestamp, b boolean)
 row format delimited
 fields terminated by '\0'
 stored as textfile;

Note:

Do not surround string values with quotation marks in text data files that you construct. If you need to include the
separator character inside a field value, for example to put a string value with a comma inside a CSV-format data
file, specify an escape character on the CREATE TABLE statement with the ESCAPED BY clause, and insert that
character immediately before any separator characters that need escaping.

Issue a DESCRIBE FORMATTED table_name statement to see the details of how each table is represented
internally in Impala.

Complex type considerations: Although you can create tables in this file format using the complex types (ARRAY,
STRUCT, and MAP) available in Impala 2.3 and higher, currently, Impala can query these types only in Parquet tables.
The one exception to the preceding rule is COUNT(*) queries on RCFile tables that include complex types. Such
queries are allowed in Impala 2.6 and higher.

Data Files for Text Tables

When Impala queries a table with data in text format, it consults all the data files in the data directory for that table,
with some exceptions:

• Impala ignores any hidden files, that is, files whose names start with a dot or an underscore.
• Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files

with extensions .tmp or .copying are not considered part of the Impala table. The suffix matching is case-
insensitive, so for example Impala ignores both .copying and .COPYING suffixes.

• Impala uses suffixes to recognize when text data files are compressed text. For Impala to recognize the
compressed text files, they must have the appropriate file extension corresponding to the compression codec,
either .gz, .bz2, or .snappy. The extensions can be in uppercase or lowercase.

• Otherwise, the file names are not significant. When you put files into an HDFS directory through ETL jobs, or
point Impala to an existing HDFS directory with the CREATE EXTERNAL TABLE statement, or move data files
under external control with the LOAD DATA statement, Impala preserves the original filenames.

Filenames for data produced through Impala INSERT statements are given unique names to avoid filename conflicts.

An INSERT ... SELECT statement produces one data file from each node that processes the SELECT part of the
statement. An INSERT ... VALUES statement produces a separate data file for each statement; because Impala is
more efficient querying a small number of huge files than a large number of tiny files, the INSERT ... VALUES
syntax is not recommended for loading a substantial volume of data. If you find yourself with a table that is inefficient
due to too many small data files, reorganize the data into a few large files by doing INSERT ... SELECT to
transfer the data to a new table.

Special values within text data files:

• Impala recognizes the literal strings inf for infinity and nan for “Not a Number”, for FLOAT and DOUBLE
columns.

• Impala recognizes the literal string \N to represent NULL. When using Sqoop, specify the options --null-non-
string and --null-string to ensure all NULL values are represented correctly in the Sqoop output files.
By default, Sqoop writes NULL values using the string null, which causes a conversion error when such rows
are evaluated by Impala. (A workaround for existing tables and data files is to change the table properties through
ALTER TABLE name SET TBLPROPERTIES("serialization.null.format"="null").)

 | How Impala Works with Hadoop File Formats | 695

• In Impala 2.6 and higher, Impala can optionally skip an arbitrary number of header lines from text input files on
HDFS based on the skip.header.line.count value in the TBLPROPERTIES field of the table metadata.
For example:

create table header_line(first_name string, age int)
 row format delimited fields terminated by ',';

-- Back in the shell, load data into the table with commands such as:
-- cat >data.csv
-- Name,Age
-- Alice,25
-- Bob,19
-- hdfs dfs -put data.csv /user/hive/warehouse/header_line

refresh header_line;

-- Initially, the Name,Age header line is treated as a row of the table.
select * from header_line limit 10;
+------------+------+
| first_name | age |
+------------+------+
Name	NULL
Alice	25
Bob	19
+------------+------+

alter table header_line set tblproperties('skip.header.line.count'='1');

-- Once the table property is set, queries skip the specified number of
 lines
-- at the beginning of each text data file. Therefore, all the files in
 the table
-- should follow the same convention for header lines.
select * from header_line limit 10;
+------------+-----+
| first_name | age |
+------------+-----+
| Alice | 25 |
| Bob | 19 |
+------------+-----+

Loading Data into Impala Text Tables

To load an existing text file into an Impala text table, use the LOAD DATA statement and specify the path of the file
in HDFS. That file is moved into the appropriate Impala data directory.

To load multiple existing text files into an Impala text table, use the LOAD DATA statement and specify the HDFS
path of the directory containing the files. All non-hidden files are moved into the appropriate Impala data directory.

To convert data to text from any other file format supported by Impala, use a SQL statement such as:

-- Text table with default delimiter, the hex 01 character.
CREATE TABLE text_table AS SELECT * FROM other_file_format_table;

-- Text table with user-specified delimiter. Currently, you cannot specify
-- the delimiter as part of CREATE TABLE LIKE or CREATE TABLE AS SELECT.
-- But you can change an existing text table to have a different delimiter.
CREATE TABLE csv LIKE other_file_format_table;
ALTER TABLE csv SET SERDEPROPERTIES ('serialization.format'=',',
 'field.delim'=',');
INSERT INTO csv SELECT * FROM other_file_format_table;

 | How Impala Works with Hadoop File Formats | 696

This can be a useful technique to see how Impala represents special values within a text-format data file. Use the
DESCRIBE FORMATTED statement to see the HDFS directory where the data files are stored, then use Linux
commands such as hdfs dfs -ls hdfs_directory and hdfs dfs -cat hdfs_file to display the
contents of an Impala-created text file.

To create a few rows in a text table for test purposes, you can use the INSERT ... VALUES syntax:

INSERT INTO text_table VALUES ('string_literal',100,hex('hello world'));

Note: Because Impala and the HDFS infrastructure are optimized for multi-megabyte files, avoid the INSERT ...
VALUES notation when you are inserting many rows. Each INSERT ... VALUES statement produces a new tiny
file, leading to fragmentation and reduced performance. When creating any substantial volume of new data, use one
of the bulk loading techniques such as LOAD DATA or INSERT ... SELECT. Or, use an HBase table for single-
row INSERT operations, because HBase tables are not subject to the same fragmentation issues as tables stored on
HDFS.

When you create a text file for use with an Impala text table, specify \N to represent a NULL value. For the
differences between NULL and empty strings, see NULL on page 186.

If a text file has fewer fields than the columns in the corresponding Impala table, all the corresponding columns are
set to NULL when the data in that file is read by an Impala query.

If a text file has more fields than the columns in the corresponding Impala table, the extra fields are ignored when the
data in that file is read by an Impala query.

You can also use manual HDFS operations such as hdfs dfs -put or hdfs dfs -cp to put data files in the
data directory for an Impala table. When you copy or move new data files into the HDFS directory for the Impala
table, issue a REFRESH table_name statement in impala-shell before issuing the next query against that
table, to make Impala recognize the newly added files.

Using LZO-Compressed Text Files

Impala supports using text data files that employ LZO compression. Where practical, apply compression to text data
files. Impala queries are usually I/O-bound; reducing the amount of data read from disk typically speeds up a query,
despite the extra CPU work to uncompress the data in memory.

Impala can work with LZO-compressed text files are preferable to files compressed by other codecs, because LZO-
compressed files are “splittable”, meaning that different portions of a file can be uncompressed and processed
independently by different nodes.

Impala does not currently support writing LZO-compressed text files.

Because Impala can query LZO-compressed files but currently cannot write them, you use Hive to do the initial
CREATE TABLE and load the data, then switch back to Impala to run queries. For instructions on setting up LZO
compression for Hive CREATE TABLE and INSERT statements, see the LZO page on the Hive wiki. Once you
have created an LZO text table, you can also manually add LZO-compressed text files to it, produced by the lzop
command or similar method.

Preparing to Use LZO-Compressed Text Files

Before using LZO-compressed tables in Impala, do the following one-time setup for each machine in the cluster.
Install the necessary packages using either the public repository, a private repository you establish, or by using
packages. You must do these steps manually, whether or not you are using cluster management software.

1. Prepare your systems to work with LZO by downloading and installing the appropriate libraries:

Download and install the appropriate file to each machine on which you intend to use LZO with Impala.
2. Configure Impala to use LZO:

Use one of the following sets of commands to refresh your package management system's repository information,
install the base LZO support for Hadoop, and install the LZO support for Impala.

Note:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+LZO
http://www.lzop.org/

 | How Impala Works with Hadoop File Formats | 697

The name of the Hadoop LZO package changed in the distant past. Currently, the package name is hadoop-lzo.

For RHEL/CentOS systems:

$ sudo yum update
$ sudo yum install hadoop-lzo
$ sudo yum install impala-lzo

For SUSE systems:

$ sudo apt-get update
$ sudo zypper install hadoop-lzo
$ sudo zypper install impala-lzo

For Debian/Ubuntu systems:

$ sudo zypper update
$ sudo apt-get install hadoop-lzo
$ sudo apt-get install impala-lzo

Note:

The level of the impala-lzo package is closely tied to the version of Impala you use. Any time you upgrade
Impala, re-do the installation command for impala-lzo on each applicable machine to make sure you have the
appropriate version of that package.

3. For core-site.xml on the client and server (that is, in the configuration directories for both Impala and
Hadoop), append com.hadoop.compression.lzo.LzopCodec to the comma-separated list of codecs. For
example:

<property>
 <name>io.compression.codecs</name>

 <value>org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress.GzipCodec,

 org.apache.hadoop.io.compress.BZip2Codec,org.apache.hadoop.io.compress.DeflateCodec,

 org.apache.hadoop.io.compress.SnappyCodec,com.hadoop.compression.lzo.LzopCodec</
value>
</property>

Note:

If this is the first time you have edited the Hadoop core-site.xml file, note that the /etc/hadoop/conf
directory is typically a symbolic link, so the canonical core-site.xml might reside in a different directory:

$ ls -l /etc/hadoop
total 8
lrwxrwxrwx. 1 root root 29 Feb 26 2013 conf -> /etc/alternatives/
hadoop-conf
lrwxrwxrwx. 1 root root 10 Feb 26 2013 conf.dist -> conf.empty
drwxr-xr-x. 2 root root 4096 Feb 26 2013 conf.empty
drwxr-xr-x. 2 root root 4096 Oct 28 15:46 conf.pseudo

If the io.compression.codecs property is missing from core-site.xml, only add
com.hadoop.compression.lzo.LzopCodec to the new property value, not all the names from the
preceding example.

4. Restart the MapReduce and Impala services.

 | How Impala Works with Hadoop File Formats | 698

Creating LZO Compressed Text Tables

A table containing LZO-compressed text files must be created in Hive with the following storage clause:

STORED AS
 INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
 OUTPUTFORMAT
 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

Also, certain Hive settings need to be in effect. For example:

hive> SET mapreduce.output.fileoutputformat.compress=true;
hive> SET hive.exec.compress.output=true;
hive> SET
 mapreduce.output.fileoutputformat.compress.codec=com.hadoop.compression.lzo.LzopCodec;
hive> CREATE TABLE lzo_t (s string) STORED AS
 > INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
 > OUTPUTFORMAT
 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat';
hive> INSERT INTO TABLE lzo_t SELECT col1, col2 FROM
 uncompressed_text_table;

Once you have created LZO-compressed text tables, you can convert data stored in other tables (regardless of file
format) by using the INSERT ... SELECT statement in Hive.

Files in an LZO-compressed table must use the .lzo extension. Examine the files in the HDFS data directory after
doing the INSERT in Hive, to make sure the files have the right extension. If the required settings are not in place,
you end up with regular uncompressed files, and Impala cannot access the table because it finds data files with the
wrong (uncompressed) format.

After loading data into an LZO-compressed text table, index the files so that they can be split. You index the files
by running a Java class, com.hadoop.compression.lzo.DistributedLzoIndexer, through the Linux
command line. This Java class is included in the hadoop-lzo package.

Run the indexer using a command like the following:

$ hadoop jar /usr/lib/hadoop/lib/hadoop-lzo-version-gplextras.jar
 com.hadoop.compression.lzo.DistributedLzoIndexer /hdfs_location_of_table/

Note: If the path of the JAR file in the preceding example is not recognized, do a find command to locate
hadoop-lzo-*-gplextras.jar and use that path.

Indexed files have the same name as the file they index, with the .index extension. If the data files are not indexed,
Impala queries still work, but the queries read the data from remote DataNodes, which is very inefficient.

Once the LZO-compressed tables are created, and data is loaded and indexed, you can query them through Impala. As
always, the first time you start impala-shell after creating a table in Hive, issue an INVALIDATE METADATA
statement so that Impala recognizes the new table. (In Impala 1.2 and higher, you only have to run INVALIDATE
METADATA on one node, rather than on all the Impala nodes.)

Using gzip, bzip2, or Snappy-Compressed Text Files

In Impala 2.0 and later, Impala supports using text data files that employ gzip, bzip2, or Snappy compression. These
compression types are primarily for convenience within an existing ETL pipeline rather than maximum performance.
Although it requires less I/O to read compressed text than the equivalent uncompressed text, files compressed by
these codecs are not “splittable” and therefore cannot take full advantage of the Impala parallel query capability.

As each bzip2- or Snappy-compressed text file is processed, the node doing the work reads the entire file into
memory and then decompresses it. Therefore, the node must have enough memory to hold both the compressed and
uncompressed data from the text file. The memory required to hold the uncompressed data is difficult to estimate in
advance, potentially causing problems on systems with low memory limits or with resource management enabled.

 | How Impala Works with Hadoop File Formats | 699

In Impala 2.1 and higher, this memory overhead is reduced for gzip-compressed text files. The gzipped data is
decompressed as it is read, rather than all at once.

To create a table to hold gzip, bzip2, or Snappy-compressed text, create a text table with no special compression
options. Specify the delimiter and escape character if required, using the ROW FORMAT clause.

Because Impala can query compressed text files but currently cannot write them, produce the compressed text files
outside Impala and use the LOAD DATA statement, manual HDFS commands to move them to the appropriate Impala
data directory. (Or, you can use CREATE EXTERNAL TABLE and point the LOCATION attribute at a directory
containing existing compressed text files.)

For Impala to recognize the compressed text files, they must have the appropriate file extension corresponding to the
compression codec, either .gz, .bz2, or .snappy. The extensions can be in uppercase or lowercase.

The following example shows how you can create a regular text table, put different kinds of compressed and
uncompressed files into it, and Impala automatically recognizes and decompresses each one based on their file
extensions:

create table csv_compressed (a string, b string, c string)
 row format delimited fields terminated by ",";

insert into csv_compressed values
 ('one - uncompressed', 'two - uncompressed', 'three - uncompressed'),
 ('abc - uncompressed', 'xyz - uncompressed', '123 - uncompressed');
...make equivalent .gz, .bz2, and .snappy files and load them into same
 table directory...

select * from csv_compressed;
+--------------------+--------------------+----------------------+
| a | b | c |
+--------------------+--------------------+----------------------+
one - snappy	two - snappy	three - snappy
one - uncompressed	two - uncompressed	three - uncompressed
abc - uncompressed	xyz - uncompressed	123 - uncompressed
one - bz2	two - bz2	three - bz2
abc - bz2	xyz - bz2	123 - bz2
one - gzip	two - gzip	three - gzip
abc - gzip	xyz - gzip	123 - gzip
+--------------------+--------------------+----------------------+

$ hdfs dfs -ls 'hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/
csv_compressed/';
...truncated for readability...
75 hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/
csv_compressed.snappy
79 hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/
csv_compressed_bz2.csv.bz2
80 hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/
csv_compressed_gzip.csv.gz
116 hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/
csv_compressed/dd414df64d67d49b_data.0.

Using the Parquet File Format with Impala Tables
Impala helps you to create, manage, and query Parquet tables. Parquet is a column-oriented binary file format
intended to be highly efficient for the types of large-scale queries that Impala is best at. Parquet is especially good
for queries scanning particular columns within a table, for example to query “wide” tables with many columns, or
to perform aggregation operations such as SUM() and AVG() that need to process most or all of the values from
a column. Each data file contains the values for a set of rows (the “row group”). Within a data file, the values from

 | How Impala Works with Hadoop File Formats | 700

each column are organized so that they are all adjacent, enabling good compression for the values from that column.
Queries against a Parquet table can retrieve and analyze these values from any column quickly and with minimal I/O.

Table 5: Parquet Format Support in Impala

File
Type

Format Compression
Codecs

Impala Can CREATE? Impala Can INSERT?

Parquet Structured Snappy, gzip;
currently Snappy by
default

Yes. Yes: CREATE TABLE,
INSERT, LOAD DATA, and
query.

Creating Parquet Tables in Impala

To create a table named PARQUET_TABLE that uses the Parquet format, you would use a command like the
following, substituting your own table name, column names, and data types:

[impala-host:21000] > create table parquet_table_name (x INT, y STRING)
 STORED AS PARQUET;

Or, to clone the column names and data types of an existing table:

[impala-host:21000] > create table parquet_table_name LIKE other_table_name
 STORED AS PARQUET;

In Impala 1.4.0 and higher, you can derive column definitions from a raw Parquet data file, even without an existing
Impala table. For example, you can create an external table pointing to an HDFS directory, and base the column
definitions on one of the files in that directory:

CREATE EXTERNAL TABLE ingest_existing_files LIKE PARQUET '/user/etl/
destination/datafile1.dat'
 STORED AS PARQUET
 LOCATION '/user/etl/destination';

Or, you can refer to an existing data file and create a new empty table with suitable column definitions. Then you can
use INSERT to create new data files or LOAD DATA to transfer existing data files into the new table.

CREATE TABLE columns_from_data_file LIKE PARQUET '/user/etl/destination/
datafile1.dat'
 STORED AS PARQUET;

The default properties of the newly created table are the same as for any other CREATE TABLE statement. For
example, the default file format is text; if you want the new table to use the Parquet file format, include the STORED
AS PARQUET file also.

In this example, the new table is partitioned by year, month, and day. These partition key columns are not part of the
data file, so you specify them in the CREATE TABLE statement:

CREATE TABLE columns_from_data_file LIKE PARQUET '/user/etl/destination/
datafile1.dat'
 PARTITION (year INT, month TINYINT, day TINYINT)
 STORED AS PARQUET;

See CREATE TABLE Statement on page 256 for more details about the CREATE TABLE LIKE PARQUET
syntax.

 | How Impala Works with Hadoop File Formats | 701

Once you have created a table, to insert data into that table, use a command similar to the following, again with your
own table names:

[impala-host:21000] > insert overwrite table parquet_table_name select *
 from other_table_name;

If the Parquet table has a different number of columns or different column names than the other table, specify the
names of columns from the other table rather than * in the SELECT statement.

Loading Data into Parquet Tables

Choose from the following techniques for loading data into Parquet tables, depending on whether the original data is
already in an Impala table, or exists as raw data files outside Impala.

If you already have data in an Impala or Hive table, perhaps in a different file format or partitioning scheme, you can
transfer the data to a Parquet table using the Impala INSERT...SELECT syntax. You can convert, filter, repartition,
and do other things to the data as part of this same INSERT statement. See Snappy and GZip Compression for
Parquet Data Files on page 704 for some examples showing how to insert data into Parquet tables.

When inserting into partitioned tables, especially using the Parquet file format, you can include a hint in the INSERT
statement to fine-tune the overall performance of the operation and its resource usage:

• You would only use hints if an INSERT into a partitioned Parquet table was failing due to capacity limits, or if
such an INSERT was succeeding but with less-than-optimal performance.

• To use a hint to influence the join order, put the hint keyword /* +SHUFFLE */ or /* +NOSHUFFLE */
(including the square brackets) after the PARTITION clause, immediately before the SELECT keyword.

• /* +SHUFFLE */ selects an execution plan that reduces the number of files being written simultaneously to
HDFS, and the number of memory buffers holding data for individual partitions. Thus it reduces overall resource
usage for the INSERT operation, allowing some INSERT operations to succeed that otherwise would fail. It does
involve some data transfer between the nodes so that the data files for a particular partition are all constructed on
the same node.

• /* +NOSHUFFLE */ selects an execution plan that might be faster overall, but might also produce a larger
number of small data files or exceed capacity limits, causing the INSERT operation to fail. Use /* +SHUFFLE
*/ in cases where an INSERT statement fails or runs inefficiently due to all nodes attempting to construct data for
all partitions.

• Impala automatically uses the /* +SHUFFLE */ method if any partition key column in the source table,
mentioned in the INSERT ... SELECT query, does not have column statistics. In this case, only the /*
+NOSHUFFLE */ hint would have any effect.

• If column statistics are available for all partition key columns in the source table mentioned in the INSERT ...
SELECT query, Impala chooses whether to use the /* +SHUFFLE */ or /* +NOSHUFFLE */ technique
based on the estimated number of distinct values in those columns and the number of nodes involved in the
INSERT operation. In this case, you might need the /* +SHUFFLE */ or the /* +NOSHUFFLE */ hint to
override the execution plan selected by Impala.

• In Impala 2.8 or higher, you can make the INSERT operation organize (“cluster”) the data for each partition to
avoid buffering data for multiple partitions and reduce the risk of an out-of-memory condition. Specify the hint as
/* +CLUSTERED */. This technique is primarily useful for inserts into Parquet tables, where the large block
size requires substantial memory to buffer data for multiple output files at once.

Any INSERT statement for a Parquet table requires enough free space in the HDFS filesystem to write one block.
Because Parquet data files use a block size of 1 GB by default, an INSERT might fail (even for a very small amount
of data) if your HDFS is running low on space.

Avoid the INSERT...VALUES syntax for Parquet tables, because INSERT...VALUES produces a separate tiny
data file for each INSERT...VALUES statement, and the strength of Parquet is in its handling of data (compressing,
parallelizing, and so on) in large chunks.

If you have one or more Parquet data files produced outside of Impala, you can quickly make the data queryable
through Impala by one of the following methods:

 | How Impala Works with Hadoop File Formats | 702

• The LOAD DATA statement moves a single data file or a directory full of data files into the data directory for an
Impala table. It does no validation or conversion of the data. The original data files must be somewhere in HDFS,
not the local filesystem.

• The CREATE TABLE statement with the LOCATION clause creates a table where the data continues to reside
outside the Impala data directory. The original data files must be somewhere in HDFS, not the local filesystem.
For extra safety, if the data is intended to be long-lived and reused by other applications, you can use the CREATE
EXTERNAL TABLE syntax so that the data files are not deleted by an Impala DROP TABLE statement.

• If the Parquet table already exists, you can copy Parquet data files directly into it, then use the REFRESH
statement to make Impala recognize the newly added data. Remember to preserve the block size of the Parquet
data files by using the hadoop distcp -pb command rather than a -put or -cp operation on the Parquet
files. See Example of Copying Parquet Data Files on page 706 for an example of this kind of operation.

Note:

Currently, Impala always decodes the column data in Parquet files based on the ordinal position of the columns, not
by looking up the position of each column based on its name. Parquet files produced outside of Impala must write
column data in the same order as the columns are declared in the Impala table. Any optional columns that are omitted
from the data files must be the rightmost columns in the Impala table definition.

If you created compressed Parquet files through some tool other than Impala, make sure that any compression
codecs are supported in Parquet by Impala. For example, Impala does not currently support LZO compression in
Parquet files. Also doublecheck that you used any recommended compatibility settings in the other tool, such as
spark.sql.parquet.binaryAsString when writing Parquet files through Spark.

Recent versions of Sqoop can produce Parquet output files using the --as-parquetfile option.

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT64 type, which
is represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was
imported this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

If the data exists outside Impala and is in some other format, combine both of the preceding techniques. First, use a
LOAD DATA or CREATE EXTERNAL TABLE ... LOCATION statement to bring the data into an Impala table
that uses the appropriate file format. Then, use an INSERT...SELECT statement to copy the data to the Parquet
table, converting to Parquet format as part of the process.

Loading data into Parquet tables is a memory-intensive operation, because the incoming data is buffered until it
reaches one data block in size, then that chunk of data is organized and compressed in memory before being written
out. The memory consumption can be larger when inserting data into partitioned Parquet tables, because a separate
data file is written for each combination of partition key column values, potentially requiring several large chunks to
be manipulated in memory at once.

When inserting into a partitioned Parquet table, Impala redistributes the data among the nodes to reduce memory
consumption. You might still need to temporarily increase the memory dedicated to Impala during the insert
operation, or break up the load operation into several INSERT statements, or both.

Note: All the preceding techniques assume that the data you are loading matches the structure of the destination
table, including column order, column names, and partition layout. To transform or reorganize the data, start by
loading the data into a Parquet table that matches the underlying structure of the data, then use one of the table-
copying techniques such as CREATE TABLE AS SELECT or INSERT ... SELECT to reorder or rename
columns, divide the data among multiple partitions, and so on. For example to take a single comprehensive Parquet
data file and load it into a partitioned table, you would use an INSERT ... SELECT statement with dynamic
partitioning to let Impala create separate data files with the appropriate partition values; for an example, see INSERT
Statement on page 301.

Query Performance for Impala Parquet Tables

Query performance for Parquet tables depends on the number of columns needed to process the SELECT list and
WHERE clauses of the query, the way data is divided into large data files with block size equal to file size, the

 | How Impala Works with Hadoop File Formats | 703

reduction in I/O by reading the data for each column in compressed format, which data files can be skipped (for
partitioned tables), and the CPU overhead of decompressing the data for each column.

For example, the following is an efficient query for a Parquet table:

select avg(income) from census_data where state = 'CA';

The query processes only 2 columns out of a large number of total columns. If the table is partitioned by the STATE
column, it is even more efficient because the query only has to read and decode 1 column from each data file, and it
can read only the data files in the partition directory for the state 'CA', skipping the data files for all the other states,
which will be physically located in other directories.

The following is a relatively inefficient query for a Parquet table:

select * from census_data;

Impala would have to read the entire contents of each large data file, and decompress the contents of each column
for each row group, negating the I/O optimizations of the column-oriented format. This query might still be faster
for a Parquet table than a table with some other file format, but it does not take advantage of the unique strengths of
Parquet data files.

Impala can optimize queries on Parquet tables, especially join queries, better when statistics are available for all
the tables. Issue the COMPUTE STATS statement for each table after substantial amounts of data are loaded into or
appended to it. See COMPUTE STATS Statement on page 240 for details.

The runtime filtering feature, available in Impala 2.5 and higher, works best with Parquet tables. The per-row filtering
aspect only applies to Parquet tables. See Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page
651 for details.

In Impala 2.6 and higher, Impala queries are optimized for files stored in Amazon S3. For Impala tables that use
the file formats Parquet, RCFile, SequenceFile, Avro, and uncompressed text, the setting fs.s3a.block.size
in the core-site.xml configuration file determines how Impala divides the I/O work of reading the data files.
This configuration setting is specified in bytes. By default, this value is 33554432 (32 MB), meaning that Impala
parallelizes S3 read operations on the files as if they were made up of 32 MB blocks. For example, if your S3 queries
primarily access Parquet files written by MapReduce or Hive, increase fs.s3a.block.size to 134217728 (128
MB) to match the row group size of those files. If most S3 queries involve Parquet files written by Impala, increase
fs.s3a.block.size to 268435456 (256 MB) to match the row group size produced by Impala.

In Impala 2.9 and higher, Parquet files written by Impala include embedded metadata specifying the minimum
and maximum values for each column, within each row group and each data page within the row group. Impala-
written Parquet files typically contain a single row group; a row group can contain many data pages. Impala uses this
information (currently, only the metadata for each row group) when reading each Parquet data file during a query,
to quickly determine whether each row group within the file potentially includes any rows that match the conditions
in the WHERE clause. For example, if the column X within a particular Parquet file has a minimum value of 1 and a
maximum value of 100, then a query including the clause WHERE x > 200 can quickly determine that it is safe to
skip that particular file, instead of scanning all the associated column values. This optimization technique is especially
effective for tables that use the SORT BY clause for the columns most frequently checked in WHERE clauses, because
any INSERT operation on such tables produces Parquet data files with relatively narrow ranges of column values
within each file.

Partitioning for Parquet Tables

As explained in Partitioning for Impala Tables on page 681, partitioning is an important performance technique
for Impala generally. This section explains some of the performance considerations for partitioned Parquet tables.

The Parquet file format is ideal for tables containing many columns, where most queries only refer to a small subset
of the columns. As explained in How Parquet Data Files Are Organized on page 709, the physical layout of
Parquet data files lets Impala read only a small fraction of the data for many queries. The performance benefits of this
approach are amplified when you use Parquet tables in combination with partitioning. Impala can skip the data files
for certain partitions entirely, based on the comparisons in the WHERE clause that refer to the partition key columns.

 | How Impala Works with Hadoop File Formats | 704

For example, queries on partitioned tables often analyze data for time intervals based on columns such as YEAR,
MONTH, and/or DAY, or for geographic regions. Remember that Parquet data files use a large block size, so when
deciding how finely to partition the data, try to find a granularity where each partition contains 256 MB or more of
data, rather than creating a large number of smaller files split among many partitions.

Inserting into a partitioned Parquet table can be a resource-intensive operation, because each Impala node could
potentially be writing a separate data file to HDFS for each combination of different values for the partition key
columns. The large number of simultaneous open files could exceed the HDFS “transceivers” limit. To avoid
exceeding this limit, consider the following techniques:

• Load different subsets of data using separate INSERT statements with specific values for the PARTITION clause,
such as PARTITION (year=2010).

• Increase the “transceivers” value for HDFS, sometimes spelled “xcievers” (sic). The property value in the hdfs-
site.xml configuration file is dfs.datanode.max.transfer.threads. For example, if you were
loading 12 years of data partitioned by year, month, and day, even a value of 4096 might not be high enough. This
blog post explores the considerations for setting this value higher or lower, using HBase examples for illustration.

• Use the COMPUTE STATS statement to collect column statistics on the source table from which data is being
copied, so that the Impala query can estimate the number of different values in the partition key columns and
distribute the work accordingly.

Snappy and GZip Compression for Parquet Data Files

When Impala writes Parquet data files using the INSERT statement, the underlying compression is
controlled by the COMPRESSION_CODEC query option. (Prior to Impala 2.0, the query option name was
PARQUET_COMPRESSION_CODEC.) The allowed values for this query option are snappy (the default), gzip, and
none. The option value is not case-sensitive. If the option is set to an unrecognized value, all kinds of queries will
fail due to the invalid option setting, not just queries involving Parquet tables.

Example of Parquet Table with Snappy Compression

By default, the underlying data files for a Parquet table are compressed with Snappy. The combination of fast
compression and decompression makes it a good choice for many data sets. To ensure Snappy compression is used,
for example after experimenting with other compression codecs, set the COMPRESSION_CODEC query option to
snappy before inserting the data:

[localhost:21000] > create database parquet_compression;
[localhost:21000] > use parquet_compression;
[localhost:21000] > create table parquet_snappy like raw_text_data;
[localhost:21000] > set COMPRESSION_CODEC=snappy;
[localhost:21000] > insert into parquet_snappy select * from raw_text_data;
Inserted 1000000000 rows in 181.98s

Example of Parquet Table with GZip Compression

If you need more intensive compression (at the expense of more CPU cycles for uncompressing during queries), set
the COMPRESSION_CODEC query option to gzip before inserting the data:

[localhost:21000] > create table parquet_gzip like raw_text_data;
[localhost:21000] > set COMPRESSION_CODEC=gzip;
[localhost:21000] > insert into parquet_gzip select * from raw_text_data;
Inserted 1000000000 rows in 1418.24s

Example of Uncompressed Parquet Table

If your data compresses very poorly, or you want to avoid the CPU overhead of compression and decompression
entirely, set the COMPRESSION_CODEC query option to none before inserting the data:

[localhost:21000] > create table parquet_none like raw_text_data;
[localhost:21000] > set COMPRESSION_CODEC=none;
[localhost:21000] > insert into parquet_none select * from raw_text_data;

http://blog.cloudera.com/blog/2012/03/hbase-hadoop-xceivers/

 | How Impala Works with Hadoop File Formats | 705

Inserted 1000000000 rows in 146.90s

Examples of Sizes and Speeds for Compressed Parquet Tables

Here are some examples showing differences in data sizes and query speeds for 1 billion rows of synthetic data,
compressed with each kind of codec. As always, run similar tests with realistic data sets of your own. The actual
compression ratios, and relative insert and query speeds, will vary depending on the characteristics of the actual data.

In this case, switching from Snappy to GZip compression shrinks the data by an additional 40% or so, while
switching from Snappy compression to no compression expands the data also by about 40%:

$ hdfs dfs -du -h /user/hive/warehouse/parquet_compression.db
23.1 G /user/hive/warehouse/parquet_compression.db/parquet_snappy
13.5 G /user/hive/warehouse/parquet_compression.db/parquet_gzip
32.8 G /user/hive/warehouse/parquet_compression.db/parquet_none

Because Parquet data files are typically large, each directory will have a different number of data files and the row
groups will be arranged differently.

At the same time, the less agressive the compression, the faster the data can be decompressed. In this case using a
table with a billion rows, a query that evaluates all the values for a particular column runs faster with no compression
than with Snappy compression, and faster with Snappy compression than with Gzip compression. Query performance
depends on several other factors, so as always, run your own benchmarks with your own data to determine the ideal
tradeoff between data size, CPU efficiency, and speed of insert and query operations.

[localhost:21000] > desc parquet_snappy;
Query finished, fetching results ...
+-----------+---------+---------+
| name | type | comment |
+-----------+---------+---------+
id	int	
val	int	
zfill	string	
name	string	
assertion	boolean	
+-----------+---------+---------+		
Returned 5 row(s) in 0.14s		
[localhost:21000] > select avg(val) from parquet_snappy;		
Query finished, fetching results ...		
+-----------------+		
_c0		
+-----------------+		
250000.93577915		
+-----------------+		
Returned 1 row(s) in 4.29s		
[localhost:21000] > select avg(val) from parquet_gzip;		
Query finished, fetching results ...		
+-----------------+		
_c0		
+-----------------+		
250000.93577915		
+-----------------+		
Returned 1 row(s) in 6.97s		
[localhost:21000] > select avg(val) from parquet_none;		
Query finished, fetching results ...		
+-----------------+		
_c0		
+-----------------+		
250000.93577915		
+-----------------+
Returned 1 row(s) in 3.67s

 | How Impala Works with Hadoop File Formats | 706

Example of Copying Parquet Data Files

Here is a final example, to illustrate how the data files using the various compression codecs are all compatible with
each other for read operations. The metadata about the compression format is written into each data file, and can be
decoded during queries regardless of the COMPRESSION_CODEC setting in effect at the time. In this example, we
copy data files from the PARQUET_SNAPPY, PARQUET_GZIP, and PARQUET_NONE tables used in the previous
examples, each containing 1 billion rows, all to the data directory of a new table PARQUET_EVERYTHING. A couple
of sample queries demonstrate that the new table now contains 3 billion rows featuring a variety of compression
codecs for the data files.

First, we create the table in Impala so that there is a destination directory in HDFS to put the data files:

[localhost:21000] > create table parquet_everything like parquet_snappy;
Query: create table parquet_everything like parquet_snappy

Then in the shell, we copy the relevant data files into the data directory for this new table. Rather than using hdfs
dfs -cp as with typical files, we use hadoop distcp -pb to ensure that the special block size of the Parquet
data files is preserved.

$ hadoop distcp -pb /user/hive/warehouse/parquet_compression.db/
parquet_snappy \
 /user/hive/warehouse/parquet_compression.db/parquet_everything
...MapReduce output...
$ hadoop distcp -pb /user/hive/warehouse/parquet_compression.db/parquet_gzip
 \
 /user/hive/warehouse/parquet_compression.db/parquet_everything
...MapReduce output...
$ hadoop distcp -pb /user/hive/warehouse/parquet_compression.db/parquet_none
 \
 /user/hive/warehouse/parquet_compression.db/parquet_everything
...MapReduce output...

Back in the impala-shell interpreter, we use the REFRESH statement to alert the Impala server to the new data
files for this table, then we can run queries demonstrating that the data files represent 3 billion rows, and the values
for one of the numeric columns match what was in the original smaller tables:

[localhost:21000] > refresh parquet_everything;
Query finished, fetching results ...

Returned 0 row(s) in 0.32s
[localhost:21000] > select count(*) from parquet_everything;
Query finished, fetching results ...
+------------+
| _c0 |
+------------+
| 3000000000 |
+------------+
Returned 1 row(s) in 8.18s
[localhost:21000] > select avg(val) from parquet_everything;
Query finished, fetching results ...
+-----------------+
| _c0 |
+-----------------+
| 250000.93577915 |
+-----------------+
Returned 1 row(s) in 13.35s

 | How Impala Works with Hadoop File Formats | 707

Parquet Tables for Impala Complex Types

In Impala 2.3 and higher, Impala supports the complex types ARRAY, STRUCT, and MAP See Complex Types (Impala
2.3 or higher only) on page 152 for details. Because these data types are currently supported only for the Parquet
file format, if you plan to use them, become familiar with the performance and storage aspects of Parquet first.

Exchanging Parquet Data Files with Other Hadoop Components

You can read and write Parquet data files from other components. See the documentation for your Apache Hadoop
distribution for details.

Previously, it was not possible to create Parquet data through Impala and reuse that table within Hive. Now that
Parquet support is available for Hive, reusing existing Impala Parquet data files in Hive requires updating the table
metadata. Use the following command if you are already running Impala 1.1.1 or higher:

ALTER TABLE table_name SET FILEFORMAT PARQUET;

If you are running a level of Impala that is older than 1.1.1, do the metadata update through Hive:

ALTER TABLE table_name SET SERDE 'parquet.hive.serde.ParquetHiveSerDe';
ALTER TABLE table_name SET FILEFORMAT
 INPUTFORMAT "parquet.hive.DeprecatedParquetInputFormat"
 OUTPUTFORMAT "parquet.hive.DeprecatedParquetOutputFormat";

Impala 1.1.1 and higher can reuse Parquet data files created by Hive, without any action required.

Impala supports the scalar data types that you can encode in a Parquet data file, but not composite or nested types
such as maps or arrays. In Impala 2.2 and higher, Impala can query Parquet data files that include composite or nested
types, as long as the query only refers to columns with scalar types.

If you copy Parquet data files between nodes, or even between different directories on the same node, make sure
to preserve the block size by using the command hadoop distcp -pb. To verify that the block size was
preserved, issue the command hdfs fsck -blocks HDFS_path_of_impala_table_dir and check
that the average block size is at or near 256 MB (or whatever other size is defined by the PARQUET_FILE_SIZE
query option).. (The hadoop distcp operation typically leaves some directories behind, with names matching
_distcp_logs_*, that you can delete from the destination directory afterward.) Issue the command hadoop
distcp for details about distcp command syntax.

Impala can query Parquet files that use the PLAIN, PLAIN_DICTIONARY, BIT_PACKED, and RLE encodings.
Currently, Impala does not support RLE_DICTIONARY encoding. When creating files outside of Impala
for use by Impala, make sure to use one of the supported encodings. In particular, for MapReduce jobs,
parquet.writer.version must not be defined (especially as PARQUET_2_0) for writing the configurations
of Parquet MR jobs. Use the default version (or format). The default format, 1.0, includes some enhancements that
are compatible with older versions. Data using the 2.0 format might not be consumable by Impala, due to use of the
RLE_DICTIONARY encoding.

To examine the internal structure and data of Parquet files, you can use the parquet-tools command. Make
sure this command is in your $PATH. (Typically, it is symlinked from /usr/bin; sometimes, depending on your
installation setup, you might need to locate it under an alternative bin directory.) The arguments to this command let
you perform operations such as:

• cat: Print a file's contents to standard out. In Impala 2.3 and higher, you can use the -j option to output JSON.
• head: Print the first few records of a file to standard output.
• schema: Print the Parquet schema for the file.
• meta: Print the file footer metadata, including key-value properties (like Avro schema), compression ratios,

encodings, compression used, and row group information.
• dump: Print all data and metadata.

 | How Impala Works with Hadoop File Formats | 708

Use parquet-tools -h to see usage information for all the arguments. Here are some examples showing
parquet-tools usage:

$ # Be careful doing this for a big file! Use parquet-tools head to be safe.
$ parquet-tools cat sample.parq
year = 1992
month = 1
day = 2
dayofweek = 4
dep_time = 748
crs_dep_time = 750
arr_time = 851
crs_arr_time = 846
carrier = US
flight_num = 53
actual_elapsed_time = 63
crs_elapsed_time = 56
arrdelay = 5
depdelay = -2
origin = CMH
dest = IND
distance = 182
cancelled = 0
diverted = 0

year = 1992
month = 1
day = 3
...

$ parquet-tools head -n 2 sample.parq
year = 1992
month = 1
day = 2
dayofweek = 4
dep_time = 748
crs_dep_time = 750
arr_time = 851
crs_arr_time = 846
carrier = US
flight_num = 53
actual_elapsed_time = 63
crs_elapsed_time = 56
arrdelay = 5
depdelay = -2
origin = CMH
dest = IND
distance = 182
cancelled = 0
diverted = 0

year = 1992
month = 1
day = 3
...

$ parquet-tools schema sample.parq

 | How Impala Works with Hadoop File Formats | 709

message schema {
 optional int32 year;
 optional int32 month;
 optional int32 day;
 optional int32 dayofweek;
 optional int32 dep_time;
 optional int32 crs_dep_time;
 optional int32 arr_time;
 optional int32 crs_arr_time;
 optional binary carrier;
 optional int32 flight_num;
...

$ parquet-tools meta sample.parq
creator: impala version 2.2.0-...

file schema: schema

year: OPTIONAL INT32 R:0 D:1
month: OPTIONAL INT32 R:0 D:1
day: OPTIONAL INT32 R:0 D:1
dayofweek: OPTIONAL INT32 R:0 D:1
dep_time: OPTIONAL INT32 R:0 D:1
crs_dep_time: OPTIONAL INT32 R:0 D:1
arr_time: OPTIONAL INT32 R:0 D:1
crs_arr_time: OPTIONAL INT32 R:0 D:1
carrier: OPTIONAL BINARY R:0 D:1
flight_num: OPTIONAL INT32 R:0 D:1
...

row group 1: RC:20636601 TS:265103674

year: INT32 SNAPPY DO:4 FPO:35 SZ:10103/49723/4.92
 VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
month: INT32 SNAPPY DO:10147 FPO:10210 SZ:11380/35732/3.14
 VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
day: INT32 SNAPPY DO:21572 FPO:21714
 SZ:3071658/9868452/3.21 VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
dayofweek: INT32 SNAPPY DO:3093276 FPO:3093319
 SZ:2274375/5941876/2.61 VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
dep_time: INT32 SNAPPY DO:5367705 FPO:5373967
 SZ:28281281/28573175/1.01 VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
crs_dep_time: INT32 SNAPPY DO:33649039 FPO:33654262
 SZ:10220839/11574964/1.13 VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
arr_time: INT32 SNAPPY DO:43869935 FPO:43876489
 SZ:28562410/28797767/1.01 VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
crs_arr_time: INT32 SNAPPY DO:72432398 FPO:72438151
 SZ:10908972/12164626/1.12 VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
carrier: BINARY SNAPPY DO:83341427 FPO:83341558
 SZ:114916/128611/1.12 VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
flight_num: INT32 SNAPPY DO:83456393 FPO:83488603
 SZ:10216514/11474301/1.12 VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
...

How Parquet Data Files Are Organized

Although Parquet is a column-oriented file format, do not expect to find one data file for each column. Parquet keeps
all the data for a row within the same data file, to ensure that the columns for a row are always available on the same

 | How Impala Works with Hadoop File Formats | 710

node for processing. What Parquet does is to set a large HDFS block size and a matching maximum data file size, to
ensure that I/O and network transfer requests apply to large batches of data.

Within that data file, the data for a set of rows is rearranged so that all the values from the first column are organized
in one contiguous block, then all the values from the second column, and so on. Putting the values from the same
column next to each other lets Impala use effective compression techniques on the values in that column.

Note:

Impala INSERT statements write Parquet data files using an HDFS block size that matches the data file size, to
ensure that each data file is represented by a single HDFS block, and the entire file can be processed on a single node
without requiring any remote reads.

If you create Parquet data files outside of Impala, such as through a MapReduce or Pig job, ensure that the HDFS
block size is greater than or equal to the file size, so that the “one file per block” relationship is maintained. Set the
dfs.block.size or the dfs.blocksize property large enough that each file fits within a single HDFS block,
even if that size is larger than the normal HDFS block size.

If the block size is reset to a lower value during a file copy, you will see lower performance for queries involving
those files, and the PROFILE statement will reveal that some I/O is being done suboptimally, through remote reads.
See Example of Copying Parquet Data Files on page 706 for an example showing how to preserve the block size
when copying Parquet data files.

When Impala retrieves or tests the data for a particular column, it opens all the data files, but only reads the portion
of each file containing the values for that column. The column values are stored consecutively, minimizing the I/
O required to process the values within a single column. If other columns are named in the SELECT list or WHERE
clauses, the data for all columns in the same row is available within that same data file.

If an INSERT statement brings in less than one Parquet block's worth of data, the resulting data file is smaller than
ideal. Thus, if you do split up an ETL job to use multiple INSERT statements, try to keep the volume of data for each
INSERT statement to approximately 256 MB, or a multiple of 256 MB.

RLE and Dictionary Encoding for Parquet Data Files

Parquet uses some automatic compression techniques, such as run-length encoding (RLE) and dictionary encoding,
based on analysis of the actual data values. Once the data values are encoded in a compact form, the encoded data can
optionally be further compressed using a compression algorithm. Parquet data files created by Impala can use Snappy,
GZip, or no compression; the Parquet spec also allows LZO compression, but currently Impala does not support LZO-
compressed Parquet files.

RLE and dictionary encoding are compression techniques that Impala applies automatically to groups of Parquet data
values, in addition to any Snappy or GZip compression applied to the entire data files. These automatic optimizations
can save you time and planning that are normally needed for a traditional data warehouse. For example, dictionary
encoding reduces the need to create numeric IDs as abbreviations for longer string values.

Run-length encoding condenses sequences of repeated data values. For example, if many consecutive rows all contain
the same value for a country code, those repeating values can be represented by the value followed by a count of how
many times it appears consecutively.

Dictionary encoding takes the different values present in a column, and represents each one in compact 2-byte form
rather than the original value, which could be several bytes. (Additional compression is applied to the compacted
values, for extra space savings.) This type of encoding applies when the number of different values for a column
is less than 2**16 (16,384). It does not apply to columns of data type BOOLEAN, which are already very short.
TIMESTAMP columns sometimes have a unique value for each row, in which case they can quickly exceed the 2**16
limit on distinct values. The 2**16 limit on different values within a column is reset for each data file, so if several
different data files each contained 10,000 different city names, the city name column in each data file could still be
condensed using dictionary encoding.

 | How Impala Works with Hadoop File Formats | 711

Compacting Data Files for Parquet Tables

If you reuse existing table structures or ETL processes for Parquet tables, you might encounter a “many small files”
situation, which is suboptimal for query efficiency. For example, statements like these might produce inefficiently
organized data files:

-- In an N-node cluster, each node produces a data file
-- for the INSERT operation. If you have less than
-- N GB of data to copy, some files are likely to be
-- much smaller than the default Parquet block size.
insert into parquet_table select * from text_table;

-- Even if this operation involves an overall large amount of data,
-- when split up by year/month/day, each partition might only
-- receive a small amount of data. Then the data files for
-- the partition might be divided between the N nodes in the cluster.
-- A multi-gigabyte copy operation might produce files of only
-- a few MB each.
insert into partitioned_parquet_table partition (year, month, day)
 select year, month, day, url, referer, user_agent, http_code,
 response_time
 from web_stats;

Here are techniques to help you produce large data files in Parquet INSERT operations, and to compact existing too-
small data files:

• When inserting into a partitioned Parquet table, use statically partitioned INSERT statements where the partition
key values are specified as constant values. Ideally, use a separate INSERT statement for each partition.

• You might set the NUM_NODES option to 1 briefly, during INSERT or CREATE TABLE AS SELECT
statements. Normally, those statements produce one or more data files per data node. If the write operation
involves small amounts of data, a Parquet table, and/or a partitioned table, the default behavior could produce
many small files when intuitively you might expect only a single output file. SET NUM_NODES=1 turns off the
“distributed” aspect of the write operation, making it more likely to produce only one or a few data files.

• Be prepared to reduce the number of partition key columns from what you are used to with traditional analytic
database systems.

• Do not expect Impala-written Parquet files to fill up the entire Parquet block size. Impala estimates on the
conservative side when figuring out how much data to write to each Parquet file. Typically, the of uncompressed
data in memory is substantially reduced on disk by the compression and encoding techniques in the Parquet
file format. The final data file size varies depending on the compressibility of the data. Therefore, it is not an
indication of a problem if 256 MB of text data is turned into 2 Parquet data files, each less than 256 MB.

• If you accidentally end up with a table with many small data files, consider using one or more of the preceding
techniques and copying all the data into a new Parquet table, either through CREATE TABLE AS SELECT or
INSERT ... SELECT statements.

To avoid rewriting queries to change table names, you can adopt a convention of always running important
queries against a view. Changing the view definition immediately switches any subsequent queries to use the new
underlying tables:

create view production_table as select * from table_with_many_small_files;
-- CTAS or INSERT...SELECT all the data into a more efficient layout...
alter view production_table as select * from table_with_few_big_files;
select * from production_table where c1 = 100 and c2 < 50 and ...;

Schema Evolution for Parquet Tables

Schema evolution refers to using the statement ALTER TABLE ... REPLACE COLUMNS to change the names,
data type, or number of columns in a table. You can perform schema evolution for Parquet tables as follows:

 | How Impala Works with Hadoop File Formats | 712

• The Impala ALTER TABLE statement never changes any data files in the tables. From the Impala side, schema
evolution involves interpreting the same data files in terms of a new table definition. Some types of schema
changes make sense and are represented correctly. Other types of changes cannot be represented in a sensible way,
and produce special result values or conversion errors during queries.

• The INSERT statement always creates data using the latest table definition. You might end up with data files
with different numbers of columns or internal data representations if you do a sequence of INSERT and ALTER
TABLE ... REPLACE COLUMNS statements.

• If you use ALTER TABLE ... REPLACE COLUMNS to define additional columns at the end, when the
original data files are used in a query, these final columns are considered to be all NULL values.

• If you use ALTER TABLE ... REPLACE COLUMNS to define fewer columns than before, when the original
data files are used in a query, the unused columns still present in the data file are ignored.

• Parquet represents the TINYINT, SMALLINT, and INT types the same internally, all stored in 32-bit integers.

• That means it is easy to promote a TINYINT column to SMALLINT or INT, or a SMALLINT column to INT.
The numbers are represented exactly the same in the data file, and the columns being promoted would not
contain any out-of-range values.

• If you change any of these column types to a smaller type, any values that are out-of-range for the new type are
returned incorrectly, typically as negative numbers.

• You cannot change a TINYINT, SMALLINT, or INT column to BIGINT, or the other way around. Although
the ALTER TABLE succeeds, any attempt to query those columns results in conversion errors.

• Any other type conversion for columns produces a conversion error during queries. For example, INT to
STRING, FLOAT to DOUBLE, TIMESTAMP to STRING, DECIMAL(9,0) to DECIMAL(5,2), and so on.

You might find that you have Parquet files where the columns do not line up in the same order as in your
Impala table. For example, you might have a Parquet file that was part of a table with columns C1,C2,C3,C4,
and now you want to reuse the same Parquet file in a table with columns C4,C2. By default, Impala expects
the columns in the data file to appear in the same order as the columns defined for the table, making it
impractical to do some kinds of file reuse or schema evolution. In Impala 2.6 and higher, the query option
PARQUET_FALLBACK_SCHEMA_RESOLUTION=name lets Impala resolve columns by name, and therefore handle
out-of-order or extra columns in the data file. For example:

create database schema_evolution;
use schema_evolution;
create table t1 (c1 int, c2 boolean, c3 string, c4 timestamp)
 stored as parquet;
insert into t1 values
 (1, true, 'yes', now()),
 (2, false, 'no', now() + interval 1 day);

select * from t1;
+----+-------+-----+-------------------------------+
| c1 | c2 | c3 | c4 |
+----+-------+-----+-------------------------------+
| 1 | true | yes | 2016-06-28 14:53:26.554369000 |
| 2 | false | no | 2016-06-29 14:53:26.554369000 |
+----+-------+-----+-------------------------------+

desc formatted t1;
...
| Location: | /user/hive/warehouse/schema_evolution.db/t1 |
...

-- Make T2 have the same data file as in T1, including 2
-- unused columns and column order different than T2 expects.
load data inpath '/user/hive/warehouse/schema_evolution.db/t1'
 into table t2;
+--+
| summary |
+--+

 | How Impala Works with Hadoop File Formats | 713

| Loaded 1 file(s). Total files in destination location: 1 |
+--+

-- 'position' is the default setting.
-- Impala cannot read the Parquet file if the column order does not match.
set PARQUET_FALLBACK_SCHEMA_RESOLUTION=position;
PARQUET_FALLBACK_SCHEMA_RESOLUTION set to position

select * from t2;
WARNINGS:
File 'schema_evolution.db/t2/45331705_data.0.parq'
has an incompatible Parquet schema for column 'schema_evolution.t2.c4'.
Column type: TIMESTAMP, Parquet schema: optional int32 c1 [i:0 d:1 r:0]

File 'schema_evolution.db/t2/45331705_data.0.parq'
has an incompatible Parquet schema for column 'schema_evolution.t2.c4'.
Column type: TIMESTAMP, Parquet schema: optional int32 c1 [i:0 d:1 r:0]

-- With the 'name' setting, Impala can read the Parquet data files
-- despite mismatching column order.
set PARQUET_FALLBACK_SCHEMA_RESOLUTION=name;
PARQUET_FALLBACK_SCHEMA_RESOLUTION set to name

select * from t2;
+-------------------------------+-------+
| c4 | c2 |
+-------------------------------+-------+
| 2016-06-28 14:53:26.554369000 | true |
| 2016-06-29 14:53:26.554369000 | false |
+-------------------------------+-------+

See PARQUET_FALLBACK_SCHEMA_RESOLUTION Query Option (Impala 2.6 or higher only) on page 387 for
more details.

Data Type Considerations for Parquet Tables

The Parquet format defines a set of data types whose names differ from the names of the corresponding Impala data
types. If you are preparing Parquet files using other Hadoop components such as Pig or MapReduce, you might
need to work with the type names defined by Parquet. The following figure lists the Parquet-defined types and the
equivalent types in Impala.

Primitive types:

BINARY -> STRING
BOOLEAN -> BOOLEAN
DOUBLE -> DOUBLE
FLOAT -> FLOAT
INT32 -> INT
INT64 -> BIGINT
INT96 -> TIMESTAMP

Logical types:

BINARY + OriginalType UTF8 -> STRING
BINARY + OriginalType ENUM -> STRING
BINARY + OriginalType DECIMAL -> DECIMAL

Complex types:

For the complex types (ARRAY, MAP, and STRUCT) available in Impala 2.3 and higher, Impala only supports queries
against those types in Parquet tables.

 | How Impala Works with Hadoop File Formats | 714

Using the Avro File Format with Impala Tables
Impala supports using tables whose data files use the Avro file format. Impala can query Avro tables, and in Impala
1.4.0 and higher can create them, but currently cannot insert data into them. For insert operations, use Hive, then
switch back to Impala to run queries.

Table 6: Avro Format Support in Impala

File
Type

Format Compression
Codecs

Impala Can CREATE? Impala Can INSERT?

Avro Structured Snappy, gzip,
deflate, bzip2

Yes, in Impala 1.4.0 and higher.
Before that, create the table
using Hive.

No. Import data by using LOAD
DATA on data files already
in the right format, or use
INSERT in Hive followed by
REFRESH table_name in
Impala.

Creating Avro Tables

To create a new table using the Avro file format, issue the CREATE TABLE statement through Impala with the
STORED AS AVRO clause, or through Hive. If you create the table through Impala, you must include column
definitions that match the fields specified in the Avro schema. With Hive, you can omit the columns and just specify
the Avro schema.

In Impala 2.3 and higher, the CREATE TABLE for Avro tables can include SQL-style column definitions rather than
specifying Avro notation through the TBLPROPERTIES clause. Impala issues warning messages if there are any
mismatches between the types specified in the SQL column definitions and the underlying types; for example, any
TINYINT or SMALLINT columns are treated as INT in the underlying Avro files, and therefore are displayed as
INT in any DESCRIBE or SHOW CREATE TABLE output.

Note:

Currently, Avro tables cannot contain TIMESTAMP columns. If you need to store date and time values in Avro
tables, as a workaround you can use a STRING representation of the values, convert the values to BIGINT with the
UNIX_TIMESTAMP() function, or create separate numeric columns for individual date and time fields using the
EXTRACT() function.

The following examples demonstrate creating an Avro table in Impala, using either an inline column specification or
one taken from a JSON file stored in HDFS:

[localhost:21000] > CREATE TABLE avro_only_sql_columns
 > (
 > id INT,
 > bool_col BOOLEAN,
 > tinyint_col TINYINT, /* Gets promoted to INT */
 > smallint_col SMALLINT, /* Gets promoted to INT */
 > int_col INT,
 > bigint_col BIGINT,
 > float_col FLOAT,
 > double_col DOUBLE,
 > date_string_col STRING,
 > string_col STRING
 >)
 > STORED AS AVRO;

[localhost:21000] > CREATE TABLE impala_avro_table

 | How Impala Works with Hadoop File Formats | 715

 > (bool_col BOOLEAN, int_col INT, long_col BIGINT,
 float_col FLOAT, double_col DOUBLE, string_col STRING, nullable_int INT)
 > STORED AS AVRO
 > TBLPROPERTIES ('avro.schema.literal'='{
 > "name": "my_record",
 > "type": "record",
 > "fields": [
 > {"name":"bool_col", "type":"boolean"},
 > {"name":"int_col", "type":"int"},
 > {"name":"long_col", "type":"long"},
 > {"name":"float_col", "type":"float"},
 > {"name":"double_col", "type":"double"},
 > {"name":"string_col", "type":"string"},
 > {"name": "nullable_int", "type": ["null",
 "int"]}]}');

[localhost:21000] > CREATE TABLE avro_examples_of_all_types (
 > id INT,
 > bool_col BOOLEAN,
 > tinyint_col TINYINT,
 > smallint_col SMALLINT,
 > int_col INT,
 > bigint_col BIGINT,
 > float_col FLOAT,
 > double_col DOUBLE,
 > date_string_col STRING,
 > string_col STRING
 >)
 > STORED AS AVRO
 > TBLPROPERTIES ('avro.schema.url'='hdfs://
localhost:8020/avro_schemas/alltypes.json');

The following example demonstrates creating an Avro table in Hive:

hive> CREATE TABLE hive_avro_table
 > ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
 > STORED AS INPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
 > OUTPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
 > TBLPROPERTIES ('avro.schema.literal'='{
 > "name": "my_record",
 > "type": "record",
 > "fields": [
 > {"name":"bool_col", "type":"boolean"},
 > {"name":"int_col", "type":"int"},
 > {"name":"long_col", "type":"long"},
 > {"name":"float_col", "type":"float"},
 > {"name":"double_col", "type":"double"},
 > {"name":"string_col", "type":"string"},
 > {"name": "nullable_int", "type": ["null", "int"]}]}');

Each field of the record becomes a column of the table. Note that any other information, such as the record name, is
ignored.

Note: For nullable Avro columns, make sure to put the "null" entry before the actual type name. In Impala,
all columns are nullable; Impala currently does not have a NOT NULL clause. Any non-nullable property is only
enforced on the Avro side.

 | How Impala Works with Hadoop File Formats | 716

Most column types map directly from Avro to Impala under the same names. These are the exceptions and special
cases to consider:

• The DECIMAL type is defined in Avro as a BYTE type with the logicalType property set to "decimal" and
a specified precision and scale.

• The Avro long type maps to BIGINT in Impala.

If you create the table through Hive, switch back to impala-shell and issue an INVALIDATE METADATA
table_name statement. Then you can run queries for that table through impala-shell.

In rare instances, a mismatch could occur between the Avro schema and the column definitions in the metastore
database. In Impala 2.3 and higher, Impala checks for such inconsistencies during a CREATE TABLE statement and
each time it loads the metadata for a table (for example, after INVALIDATE METADATA). Impala uses the following
rules to determine how to treat mismatching columns, a process known as schema reconciliation:

• If there is a mismatch in the number of columns, Impala uses the column definitions from the Avro schema.
• If there is a mismatch in column name or type, Impala uses the column definition from the Avro schema. Because

a CHAR or VARCHAR column in Impala maps to an Avro STRING, this case is not considered a mismatch and the
column is preserved as CHAR or VARCHAR in the reconciled schema. Prior to Impala 2.7 the column name and
comment for such CHAR and VARCHAR columns was also taken from the SQL column definition. In Impala 2.7
and higher, the column name and comment from the Avro schema file take precedence for such columns, and only
the CHAR or VARCHAR type is preserved from the SQL column definition.

• An Impala TIMESTAMP column definition maps to an Avro STRING and is presented as a STRING in the
reconciled schema, because Avro has no binary TIMESTAMP representation. As a result, no Avro table can have a
TIMESTAMP column; this restriction is the same as in earlier Impala releases.

Complex type considerations: Although you can create tables in this file format using the complex types (ARRAY,
STRUCT, and MAP) available in Impala 2.3 and higher, currently, Impala can query these types only in Parquet tables.
The one exception to the preceding rule is COUNT(*) queries on RCFile tables that include complex types. Such
queries are allowed in Impala 2.6 and higher.

Using a Hive-Created Avro Table in Impala

If you have an Avro table created through Hive, you can use it in Impala as long as it contains only Impala-
compatible data types. It cannot contain:

• Complex types: array, map, record, struct, union other than [supported_type,null] or
[null,supported_type]

• The Avro-specific types enum, bytes, and fixed
• Any scalar type other than those listed in Data Types on page 107

Because Impala and Hive share the same metastore database, Impala can directly access the table definitions and data
for tables that were created in Hive.

If you create an Avro table in Hive, issue an INVALIDATE METADATA the next time you connect to Impala through
impala-shell. This is a one-time operation to make Impala aware of the new table. You can issue the statement
while connected to any Impala node, and the catalog service broadcasts the change to all other Impala nodes.

If you load new data into an Avro table through Hive, either through a Hive LOAD DATA or INSERT statement, or
by manually copying or moving files into the data directory for the table, issue a REFRESH table_name statement
the next time you connect to Impala through impala-shell. You can issue the statement while connected to any
Impala node, and the catalog service broadcasts the change to all other Impala nodes. If you issue the LOAD DATA
statement through Impala, you do not need a REFRESH afterward.

Impala only supports fields of type boolean, int, long, float, double, and string, or unions of these types
with null; for example, ["string", "null"]. Unions with null essentially create a nullable type.

Specifying the Avro Schema through JSON

While you can embed a schema directly in your CREATE TABLE statement, as shown above, column width
restrictions in the Hive metastore limit the length of schema you can specify. If you encounter problems with long

 | How Impala Works with Hadoop File Formats | 717

schema literals, try storing your schema as a JSON file in HDFS instead. Specify your schema in HDFS using table
properties similar to the following:

tblproperties ('avro.schema.url'='hdfs//your-name-node:port/path/to/
schema.json');

Loading Data into an Avro Table

Currently, Impala cannot write Avro data files. Therefore, an Avro table cannot be used as the destination of an
Impala INSERT statement or CREATE TABLE AS SELECT.

To copy data from another table, issue any INSERT statements through Hive. For information about loading data into
Avro tables through Hive, see Avro page on the Hive wiki.

If you already have data files in Avro format, you can also issue LOAD DATA in either Impala or Hive. Impala can
move existing Avro data files into an Avro table, it just cannot create new Avro data files.

Enabling Compression for Avro Tables

To enable compression for Avro tables, specify settings in the Hive shell to enable compression and to specify a
codec, then issue a CREATE TABLE statement as in the preceding examples. Impala supports the snappy and
deflate codecs for Avro tables.

For example:

hive> set hive.exec.compress.output=true;
hive> set avro.output.codec=snappy;

How Impala Handles Avro Schema Evolution

Starting in Impala 1.1, Impala can deal with Avro data files that employ schema evolution, where different data files
within the same table use slightly different type definitions. (You would perform the schema evolution operation by
issuing an ALTER TABLE statement in the Hive shell.) The old and new types for any changed columns must be
compatible, for example a column might start as an int and later change to a bigint or float.

As with any other tables where the definitions are changed or data is added outside of the current impalad node,
ensure that Impala loads the latest metadata for the table if the Avro schema is modified through Hive. Issue a
REFRESH table_name or INVALIDATE METADATA table_name statement. REFRESH reloads the
metadata immediately, INVALIDATE METADATA reloads the metadata the next time the table is accessed.

When Avro data files or columns are not consulted during a query, Impala does not check for consistency. Thus,
if you issue SELECT c1, c2 FROM t1, Impala does not return any error if the column c3 changed in an
incompatible way. If a query retrieves data from some partitions but not others, Impala does not check the data files
for the unused partitions.

In the Hive DDL statements, you can specify an avro.schema.literal table property (if the schema definition
is short) or an avro.schema.url property (if the schema definition is long, or to allow convenient editing for the
definition).

For example, running the following SQL code in the Hive shell creates a table using the Avro file format and puts
some sample data into it:

CREATE TABLE avro_table (a string, b string)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS INPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
TBLPROPERTIES (
 'avro.schema.literal'='{
 "type": "record",
 "name": "my_record",

https://cwiki.apache.org/confluence/display/Hive/AvroSerDe

 | How Impala Works with Hadoop File Formats | 718

 "fields": [
 {"name": "a", "type": "int"},
 {"name": "b", "type": "string"}
]}');

INSERT OVERWRITE TABLE avro_table SELECT 1, "avro" FROM functional.alltypes
 LIMIT 1;

Once the Avro table is created and contains data, you can query it through the impala-shell command:

[localhost:21000] > select * from avro_table;
+---+------+
| a | b |
+---+------+
| 1 | avro |
+---+------+

Now in the Hive shell, you change the type of a column and add a new column with a default value:

-- Promote column "a" from INT to FLOAT (no need to update Avro schema)
ALTER TABLE avro_table CHANGE A A FLOAT;

-- Add column "c" with default
ALTER TABLE avro_table ADD COLUMNS (c int);
ALTER TABLE avro_table SET TBLPROPERTIES (
 'avro.schema.literal'='{
 "type": "record",
 "name": "my_record",
 "fields": [
 {"name": "a", "type": "int"},
 {"name": "b", "type": "string"},
 {"name": "c", "type": "int", "default": 10}
]}');

Once again in impala-shell, you can query the Avro table based on its latest schema definition. Because the table
metadata was changed outside of Impala, you issue a REFRESH statement first so that Impala has up-to-date metadata
for the table.

[localhost:21000] > refresh avro_table;
[localhost:21000] > select * from avro_table;
+---+------+----+
| a | b | c |
+---+------+----+
| 1 | avro | 10 |
+---+------+----+

Data Type Considerations for Avro Tables

The Avro format defines a set of data types whose names differ from the names of the corresponding Impala data
types. If you are preparing Avro files using other Hadoop components such as Pig or MapReduce, you might need to
work with the type names defined by Avro. The following figure lists the Avro-defined types and the equivalent types
in Impala.

Primitive Types (Avro -> Impala)

STRING -> STRING
STRING -> CHAR
STRING -> VARCHAR
INT -> INT
BOOLEAN -> BOOLEAN
LONG -> BIGINT

 | How Impala Works with Hadoop File Formats | 719

FLOAT -> FLOAT
DOUBLE -> DOUBLE

Logical Types

BYTES + logicalType = "decimal" -> DECIMAL

Avro Types with No Impala Equivalent

RECORD, MAP, ARRAY, UNION, ENUM, FIXED, NULL

Impala Types with No Avro Equivalent

TIMESTAMP

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit
integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query
fails. In earlier releases, encountering such long values in an Avro table could cause a crash.

Query Performance for Impala Avro Tables

In general, expect query performance with Avro tables to be faster than with tables using text data, but slower than
with Parquet tables. See Using the Parquet File Format with Impala Tables on page 699 for information about
using the Parquet file format for high-performance analytic queries.

In Impala 2.6 and higher, Impala queries are optimized for files stored in Amazon S3. For Impala tables that use
the file formats Parquet, RCFile, SequenceFile, Avro, and uncompressed text, the setting fs.s3a.block.size
in the core-site.xml configuration file determines how Impala divides the I/O work of reading the data files.
This configuration setting is specified in bytes. By default, this value is 33554432 (32 MB), meaning that Impala
parallelizes S3 read operations on the files as if they were made up of 32 MB blocks. For example, if your S3 queries
primarily access Parquet files written by MapReduce or Hive, increase fs.s3a.block.size to 134217728 (128
MB) to match the row group size of those files. If most S3 queries involve Parquet files written by Impala, increase
fs.s3a.block.size to 268435456 (256 MB) to match the row group size produced by Impala.

Using the RCFile File Format with Impala Tables
Impala supports using RCFile data files.

Table 7: RCFile Format Support in Impala

File
Type

Format Compression
Codecs

Impala Can CREATE? Impala Can INSERT?

RCFile Structured Snappy, gzip,
deflate, bzip2

Yes. No. Import data by using LOAD
DATA on data files already
in the right format, or use
INSERT in Hive followed by
REFRESH table_name in
Impala.

Creating RCFile Tables and Loading Data

If you do not have an existing data file to use, begin by creating one in the appropriate format.

To create an RCFile table:

 | How Impala Works with Hadoop File Formats | 720

In the impala-shell interpreter, issue a command similar to:

create table rcfile_table (column_specs) stored as rcfile;

Because Impala can query some kinds of tables that it cannot currently write to, after creating tables of certain
file formats, you might use the Hive shell to load the data. See How Impala Works with Hadoop File Formats on
page 690 for details. After loading data into a table through Hive or other mechanism outside of Impala, issue
a REFRESH table_name statement the next time you connect to the Impala node, before querying the table, to
make Impala recognize the new data.

Important: See Known Issues and Workarounds in Impala on page 815 for potential compatibility issues with
RCFile tables created in Hive 0.12, due to a change in the default RCFile SerDe for Hive.

For example, here is how you might create some RCFile tables in Impala (by specifying the columns explicitly, or
cloning the structure of another table), load data through Hive, and query them through Impala:

$ impala-shell -i localhost
[localhost:21000] > create table rcfile_table (x int) stored as rcfile;
[localhost:21000] > create table rcfile_clone like some_other_table stored
 as rcfile;
[localhost:21000] > quit;

$ hive
hive> insert into table rcfile_table select x from some_other_table;
3 Rows loaded to rcfile_table
Time taken: 19.015 seconds
hive> quit;

$ impala-shell -i localhost
[localhost:21000] > select * from rcfile_table;
Returned 0 row(s) in 0.23s
[localhost:21000] > -- Make Impala recognize the data loaded through Hive;
[localhost:21000] > refresh rcfile_table;
[localhost:21000] > select * from rcfile_table;
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
+---+
Returned 3 row(s) in 0.23s

Complex type considerations: Although you can create tables in this file format using the complex types (ARRAY,
STRUCT, and MAP) available in Impala 2.3 and higher, currently, Impala can query these types only in Parquet tables.
The one exception to the preceding rule is COUNT(*) queries on RCFile tables that include complex types. Such
queries are allowed in Impala 2.6 and higher.

Enabling Compression for RCFile Tables

You may want to enable compression on existing tables. Enabling compression provides performance gains in
most cases and is supported for RCFile tables. For example, to enable Snappy compression, you would specify the
following additional settings when loading data through the Hive shell:

hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET
 mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> INSERT OVERWRITE TABLE new_table SELECT * FROM old_table;

 | How Impala Works with Hadoop File Formats | 721

If you are converting partitioned tables, you must complete additional steps. In such a case, specify additional settings
similar to the following:

hive> CREATE TABLE new_table (your_cols) PARTITIONED BY (partition_cols)
 STORED AS new_format;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE new_table
 PARTITION(comma_separated_partition_cols) SELECT * FROM old_table;

Remember that Hive does not require that you specify a source format for it. Consider the case of converting a table
with two partition columns called year and month to a Snappy compressed RCFile. Combining the components
outlined previously to complete this table conversion, you would specify settings similar to the following:

hive> CREATE TABLE tbl_rc (int_col INT, string_col STRING) STORED AS RCFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET
 mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_rc SELECT * FROM tbl;

To complete a similar process for a table that includes partitions, you would specify settings similar to the following:

hive> CREATE TABLE tbl_rc (int_col INT, string_col STRING) PARTITIONED BY
 (year INT) STORED AS RCFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET
 mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_rc PARTITION(year) SELECT * FROM tbl;

Note:

The compression type is specified in the following command:

SET
 mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;

You could elect to specify alternative codecs such as GzipCodec here.

Query Performance for Impala RCFile Tables

In general, expect query performance with RCFile tables to be faster than with tables using text data, but slower than
with Parquet tables. See Using the Parquet File Format with Impala Tables on page 699 for information about
using the Parquet file format for high-performance analytic queries.

In Impala 2.6 and higher, Impala queries are optimized for files stored in Amazon S3. For Impala tables that use
the file formats Parquet, RCFile, SequenceFile, Avro, and uncompressed text, the setting fs.s3a.block.size
in the core-site.xml configuration file determines how Impala divides the I/O work of reading the data files.
This configuration setting is specified in bytes. By default, this value is 33554432 (32 MB), meaning that Impala
parallelizes S3 read operations on the files as if they were made up of 32 MB blocks. For example, if your S3 queries
primarily access Parquet files written by MapReduce or Hive, increase fs.s3a.block.size to 134217728 (128
MB) to match the row group size of those files. If most S3 queries involve Parquet files written by Impala, increase
fs.s3a.block.size to 268435456 (256 MB) to match the row group size produced by Impala.

 | How Impala Works with Hadoop File Formats | 722

Using the SequenceFile File Format with Impala Tables
Impala supports using SequenceFile data files.

Table 8: SequenceFile Format Support in Impala

File
Type

Format Compression
Codecs

Impala Can CREATE? Impala Can INSERT?

SequenceFileStructured Snappy, gzip,
deflate, bzip2

Yes. No. Import data by using LOAD
DATA on data files already
in the right format, or use
INSERT in Hive followed by
REFRESH table_name in
Impala.

Creating SequenceFile Tables and Loading Data

If you do not have an existing data file to use, begin by creating one in the appropriate format.

To create a SequenceFile table:

In the impala-shell interpreter, issue a command similar to:

create table sequencefile_table (column_specs) stored as sequencefile;

Because Impala can query some kinds of tables that it cannot currently write to, after creating tables of certain
file formats, you might use the Hive shell to load the data. See How Impala Works with Hadoop File Formats on
page 690 for details. After loading data into a table through Hive or other mechanism outside of Impala, issue
a REFRESH table_name statement the next time you connect to the Impala node, before querying the table, to
make Impala recognize the new data.

For example, here is how you might create some SequenceFile tables in Impala (by specifying the columns explicitly,
or cloning the structure of another table), load data through Hive, and query them through Impala:

$ impala-shell -i localhost
[localhost:21000] > create table seqfile_table (x int) stored as
 sequencefile;
[localhost:21000] > create table seqfile_clone like some_other_table stored
 as sequencefile;
[localhost:21000] > quit;

$ hive
hive> insert into table seqfile_table select x from some_other_table;
3 Rows loaded to seqfile_table
Time taken: 19.047 seconds
hive> quit;

$ impala-shell -i localhost
[localhost:21000] > select * from seqfile_table;
Returned 0 row(s) in 0.23s
[localhost:21000] > -- Make Impala recognize the data loaded through Hive;
[localhost:21000] > refresh seqfile_table;
[localhost:21000] > select * from seqfile_table;
+---+
| x |
+---+
| 1 |
| 2 |

 | How Impala Works with Hadoop File Formats | 723

| 3 |
+---+
Returned 3 row(s) in 0.23s

Complex type considerations: Although you can create tables in this file format using the complex types (ARRAY,
STRUCT, and MAP) available in Impala 2.3 and higher, currently, Impala can query these types only in Parquet tables.
The one exception to the preceding rule is COUNT(*) queries on RCFile tables that include complex types. Such
queries are allowed in Impala 2.6 and higher.

Enabling Compression for SequenceFile Tables

You may want to enable compression on existing tables. Enabling compression provides performance gains in most
cases and is supported for SequenceFile tables. For example, to enable Snappy compression, you would specify the
following additional settings when loading data through the Hive shell:

hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET
 mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> insert overwrite table new_table select * from old_table;

If you are converting partitioned tables, you must complete additional steps. In such a case, specify additional settings
similar to the following:

hive> create table new_table (your_cols) partitioned by (partition_cols)
 stored as new_format;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> insert overwrite table new_table
 partition(comma_separated_partition_cols) select * from old_table;

Remember that Hive does not require that you specify a source format for it. Consider the case of converting a
table with two partition columns called year and month to a Snappy compressed SequenceFile. Combining
the components outlined previously to complete this table conversion, you would specify settings similar to the
following:

hive> create table TBL_SEQ (int_col int, string_col string) STORED AS
 SEQUENCEFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET
 mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_seq SELECT * FROM tbl;

To complete a similar process for a table that includes partitions, you would specify settings similar to the following:

hive> CREATE TABLE tbl_seq (int_col INT, string_col STRING) PARTITIONED BY
 (year INT) STORED AS SEQUENCEFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET
 mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_seq PARTITION(year) SELECT * FROM tbl;

 | Using Impala to Query Kudu Tables | 724

Note:

The compression type is specified in the following command:

SET
 mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;

You could elect to specify alternative codecs such as GzipCodec here.

Query Performance for Impala SequenceFile Tables

In general, expect query performance with SequenceFile tables to be faster than with tables using text data, but slower
than with Parquet tables. See Using the Parquet File Format with Impala Tables on page 699 for information
about using the Parquet file format for high-performance analytic queries.

In Impala 2.6 and higher, Impala queries are optimized for files stored in Amazon S3. For Impala tables that use
the file formats Parquet, RCFile, SequenceFile, Avro, and uncompressed text, the setting fs.s3a.block.size
in the core-site.xml configuration file determines how Impala divides the I/O work of reading the data files.
This configuration setting is specified in bytes. By default, this value is 33554432 (32 MB), meaning that Impala
parallelizes S3 read operations on the files as if they were made up of 32 MB blocks. For example, if your S3 queries
primarily access Parquet files written by MapReduce or Hive, increase fs.s3a.block.size to 134217728 (128
MB) to match the row group size of those files. If most S3 queries involve Parquet files written by Impala, increase
fs.s3a.block.size to 268435456 (256 MB) to match the row group size produced by Impala.

Using Impala to Query Kudu Tables

You can use Impala to query tables stored by Apache Kudu. This capability allows convenient access to a storage
system that is tuned for different kinds of workloads than the default with Impala.

By default, Impala tables are stored on HDFS using data files with various file formats. HDFS files are ideal for bulk
loads (append operations) and queries using full-table scans, but do not support in-place updates or deletes. Kudu is
an alternative storage engine used by Impala which can do both in-place updates (for mixed read/write workloads)
and fast scans (for data-warehouse/analytic operations). Using Kudu tables with Impala can simplify the ETL pipeline
by avoiding extra steps to segregate and reorganize newly arrived data.

Certain Impala SQL statements and clauses, such as DELETE, UPDATE, UPSERT, and PRIMARY KEY work
only with Kudu tables. Other statements and clauses, such as LOAD DATA, TRUNCATE TABLE, and INSERT
OVERWRITE, are not applicable to Kudu tables.

Benefits of Using Kudu Tables with Impala
The combination of Kudu and Impala works best for tables where scan performance is important, but data arrives
continuously, in small batches, or needs to be updated without being completely replaced. HDFS-backed tables can
require substantial overhead to replace or reorganize data files as new data arrives. Impala can perform efficient
lookups and scans within Kudu tables, and Impala can also perform update or delete operations efficiently. You can
also use the Kudu Java, C++, and Python APIs to do ingestion or transformation operations outside of Impala, and
Impala can query the current data at any time.

Configuring Impala for Use with Kudu
The -kudu_master_hosts configuration property must be set correctly for the impalad daemon, for CREATE
TABLE ... STORED AS KUDU statements to connect to the appropriate Kudu server. Typically, the required
value for this setting is kudu_host:7051. In a high-availability Kudu deployment, specify the names of multiple
Kudu hosts separated by commas.

 | Using Impala to Query Kudu Tables | 725

If the -kudu_master_hosts configuration property is not set, you can still associate the appropriate value for
each table by specifying a TBLPROPERTIES('kudu.master_addresses') clause in the CREATE TABLE
statement or changing the TBLPROPERTIES('kudu.master_addresses') value with an ALTER TABLE
statement.

Cluster Topology for Kudu Tables

With HDFS-backed tables, you are typically concerned with the number of DataNodes in the cluster, how many and
how large HDFS data files are read during a query, and therefore the amount of work performed by each DataNode
and the network communication to combine intermediate results and produce the final result set.

With Kudu tables, the topology considerations are different, because:

• The underlying storage is managed and organized by Kudu, not represented as HDFS data files.
• Kudu handles some of the underlying mechanics of partitioning the data. You can specify the partitioning scheme

with combinations of hash and range partitioning, so that you can decide how much effort to expend to manage
the partitions as new data arrives. For example, you can construct partitions that apply to date ranges rather than a
separate partition for each day or each hour.

• Data is physically divided based on units of storage called tablets. Tablets are stored by tablet servers. Each
tablet server can store multiple tablets, and each tablet is replicated across multiple tablet servers, managed
automatically by Kudu. Where practical, colocate the tablet servers on the same hosts as the DataNodes, although
that is not required.

One consideration for the cluster topology is that the number of replicas for a Kudu table must be odd.

Impala DDL Enhancements for Kudu Tables (CREATE TABLE and ALTER
TABLE)

You can use the Impala CREATE TABLE and ALTER TABLE statements to create and fine-tune the characteristics
of Kudu tables. Because Kudu tables have features and properties that do not apply to other kinds of Impala tables,
familiarize yourself with Kudu-related concepts and syntax first. For the general syntax of the CREATE TABLE
statement for Kudu tables, see CREATE TABLE Statement on page 256.

Primary Key Columns for Kudu Tables

Kudu tables introduce the notion of primary keys to Impala for the first time. The primary key is made up of one or
more columns, whose values are combined and used as a lookup key during queries. The tuple represented by these
columns must be unique and cannot contain any NULL values, and can never be updated once inserted. For a Kudu
table, all the partition key columns must come from the set of primary key columns.

The primary key has both physical and logical aspects:

• On the physical side, it is used to map the data values to particular tablets for fast retrieval. Because the tuples
formed by the primary key values are unique, the primary key columns are typically highly selective.

• On the logical side, the uniqueness constraint allows you to avoid duplicate data in a table. For example, if an
INSERT operation fails partway through, only some of the new rows might be present in the table. You can re-
run the same INSERT, and only the missing rows will be added. Or if data in the table is stale, you can run an
UPSERT statement that brings the data up to date, without the possibility of creating duplicate copies of existing
rows.

Note:

Impala only allows PRIMARY KEY clauses and NOT NULL constraints on columns for Kudu tables. These
constraints are enforced on the Kudu side.

 | Using Impala to Query Kudu Tables | 726

Kudu-Specific Column Attributes for CREATE TABLE

For the general syntax of the CREATE TABLE statement for Kudu tables, see CREATE TABLE Statement on page
256. The following sections provide more detail for some of the Kudu-specific keywords you can use in column
definitions.

The column list in a CREATE TABLE statement can include the following attributes, which only apply to Kudu
tables:

 PRIMARY KEY
| [NOT] NULL
| ENCODING codec
| COMPRESSION algorithm
| DEFAULT constant_expression
| BLOCK_SIZE number

See the following sections for details about each column attribute.

PRIMARY KEY Attribute

The primary key for a Kudu table is a column, or set of columns, that uniquely identifies every row. The primary key
value also is used as the natural sort order for the values from the table. The primary key value for each row is based
on the combination of values for the columns.

Because all of the primary key columns must have non-null values, specifying a column in the PRIMARY KEY clause
implicitly adds the NOT NULL attribute to that column.

The primary key columns must be the first ones specified in the CREATE TABLE statement. For a single-column
primary key, you can include a PRIMARY KEY attribute inline with the column definition. For a multi-column
primary key, you include a PRIMARY KEY (c1, c2, ...) clause as a separate entry at the end of the column
list.

You can specify the PRIMARY KEY attribute either inline in a single column definition, or as a separate clause at the
end of the column list:

CREATE TABLE pk_inline
(
 col1 BIGINT PRIMARY KEY,
 col2 STRING,
 col3 BOOLEAN
) PARTITION BY HASH(col1) PARTITIONS 2 STORED AS KUDU;

CREATE TABLE pk_at_end
(
 col1 BIGINT,
 col2 STRING,
 col3 BOOLEAN,
 PRIMARY KEY (col1)
) PARTITION BY HASH(col1) PARTITIONS 2 STORED AS KUDU;

When the primary key is a single column, these two forms are equivalent. If the primary key consists of more than
one column, you must specify the primary key using a separate entry in the column list:

CREATE TABLE pk_multiple_columns
(
 col1 BIGINT,
 col2 STRING,
 col3 BOOLEAN,
 PRIMARY KEY (col1, col2)

 | Using Impala to Query Kudu Tables | 727

) PARTITION BY HASH(col2) PARTITIONS 2 STORED AS KUDU;

The SHOW CREATE TABLE statement always represents the PRIMARY KEY specification as a separate item in the
column list:

CREATE TABLE inline_pk_rewritten (id BIGINT PRIMARY KEY, s STRING)
 PARTITION BY HASH(id) PARTITIONS 2 STORED AS KUDU;

SHOW CREATE TABLE inline_pk_rewritten;
+--
+
| result
 |
+--
+
| CREATE TABLE user.inline_pk_rewritten (
 |
| id BIGINT NOT NULL ENCODING AUTO_ENCODING COMPRESSION
 DEFAULT_COMPRESSION, |
| s STRING NULL ENCODING AUTO_ENCODING COMPRESSION DEFAULT_COMPRESSION,
 |
| PRIMARY KEY (id)
 |
|)
 |
| PARTITION BY HASH (id) PARTITIONS 2
 |
| STORED AS KUDU
 |
| TBLPROPERTIES ('kudu.master_addresses'='host.example.com')
 |
+--
+

The notion of primary key only applies to Kudu tables. Every Kudu table requires a primary key. The primary key
consists of one or more columns. You must specify any primary key columns first in the column list.

The contents of the primary key columns cannot be changed by an UPDATE or UPSERT statement. Including too
many columns in the primary key (more than 5 or 6) can also reduce the performance of write operations. Therefore,
pick the most selective and most frequently tested non-null columns for the primary key specification. If a column
must always have a value, but that value might change later, leave it out of the primary key and use a NOT NULL
clause for that column instead. If an existing row has an incorrect or outdated key column value, delete the old row
and insert an entirely new row with the correct primary key.

NULL | NOT NULL Attribute

For Kudu tables, you can specify which columns can contain nulls or not. This constraint offers an extra level of
consistency enforcement for Kudu tables. If an application requires a field to always be specified, include a NOT
NULL clause in the corresponding column definition, and Kudu prevents rows from being inserted with a NULL in
that column.

For example, a table containing geographic information might require the latitude and longitude coordinates to always
be specified. Other attributes might be allowed to be NULL. For example, a location might not have a designated place
name, its altitude might be unimportant, and its population might be initially unknown, to be filled in later.

Because all of the primary key columns must have non-null values, specifying a column in the PRIMARY KEY clause
implicitly adds the NOT NULL attribute to that column.

 | Using Impala to Query Kudu Tables | 728

For non-Kudu tables, Impala allows any column to contain NULL values, because it is not practical to enforce a “not
null” constraint on HDFS data files that could be prepared using external tools and ETL processes.

CREATE TABLE required_columns
(
 id BIGINT PRIMARY KEY,
 latitude DOUBLE NOT NULL,
 longitude DOUBLE NOT NULL,
 place_name STRING,
 altitude DOUBLE,
 population BIGINT
) PARTITION BY HASH(id) PARTITIONS 2 STORED AS KUDU;

During performance optimization, Kudu can use the knowledge that nulls are not allowed to skip certain checks on
each input row, speeding up queries and join operations. Therefore, specify NOT NULL constraints when appropriate.

The NULL clause is the default condition for all columns that are not part of the primary key. You can omit it, or
specify it to clarify that you have made a conscious design decision to allow nulls in a column.

Because primary key columns cannot contain any NULL values, the NOT NULL clause is not required for the primary
key columns, but you might still specify it to make your code self-describing.

DEFAULT Attribute

You can specify a default value for columns in Kudu tables. The default value can be any constant expression, for
example, a combination of literal values, arithmetic and string operations. It cannot contain references to columns or
non-deterministic function calls.

The following example shows different kinds of expressions for the DEFAULT clause. The requirement to use a
constant value means that you can fill in a placeholder value such as NULL, empty string, 0, -1, 'N/A' and so on,
but you cannot reference functions or column names. Therefore, you cannot use DEFAULT to do things such as
automatically making an uppercase copy of a string value, storing Boolean values based on tests of other columns, or
add or subtract one from another column representing a sequence number.

CREATE TABLE default_vals
(
 id BIGINT PRIMARY KEY,
 name STRING NOT NULL DEFAULT 'unknown',
 address STRING DEFAULT upper('no fixed address'),
 age INT DEFAULT -1,
 earthling BOOLEAN DEFAULT TRUE,
 planet_of_origin STRING DEFAULT 'Earth',
 optional_col STRING DEFAULT NULL
) PARTITION BY HASH(id) PARTITIONS 2 STORED AS KUDU;

Note:

When designing an entirely new schema, prefer to use NULL as the placeholder for any unknown or missing values,
because that is the universal convention among database systems. Null values can be stored efficiently, and easily
checked with the IS NULL or IS NOT NULL operators. The DEFAULT attribute is appropriate when ingesting data
that already has an established convention for representing unknown or missing values, or where the vast majority of
rows have some common non-null value.

ENCODING Attribute

Each column in a Kudu table can optionally use an encoding, a low-overhead form of compression that reduces the
size on disk, then requires additional CPU cycles to reconstruct the original values during queries. Typically, highly
compressible data benefits from the reduced I/O to read the data back from disk. By default, each column uses the
“plain” encoding where the data is stored unchanged.

 | Using Impala to Query Kudu Tables | 729

The encoding keywords that Impala recognizes are:

• AUTO_ENCODING: use the default encoding based on the column type; currently always the same as
PLAIN_ENCODING, but subject to change in the future.

• PLAIN_ENCODING: leave the value in its original binary format.
• RLE: compress repeated values (when sorted in primary key order) by including a count.
• DICT_ENCODING: when the number of different string values is low, replace the original string with a numeric

ID.
• BIT_SHUFFLE: rearrange the bits of the values to efficiently compress sequences of values that are identical or

vary only slightly based on primary key order. The resulting encoded data is also compressed with LZ4.
• PREFIX_ENCODING: compress common prefixes in string values; mainly for use internally within Kudu.

The following example shows the Impala keywords representing the encoding types. (The Impala keywords match
the symbolic names used within Kudu.) For usage guidelines on the different kinds of encoding, see the Kudu
documentation. The DESCRIBE output shows how the encoding is reported after the table is created, and that
omitting the encoding (in this case, for the ID column) is the same as specifying DEFAULT_ENCODING.

CREATE TABLE various_encodings
(
 id BIGINT PRIMARY KEY,
 c1 BIGINT ENCODING PLAIN_ENCODING,
 c2 BIGINT ENCODING AUTO_ENCODING,
 c3 TINYINT ENCODING BIT_SHUFFLE,
 c4 DOUBLE ENCODING BIT_SHUFFLE,
 c5 BOOLEAN ENCODING RLE,
 c6 STRING ENCODING DICT_ENCODING,
 c7 STRING ENCODING PREFIX_ENCODING
) PARTITION BY HASH(id) PARTITIONS 2 STORED AS KUDU;

-- Some columns are omitted from the output for readability.
describe various_encodings;
+------+---------+-------------+----------+-----------------+
| name | type | primary_key | nullable | encoding |
+------+---------+-------------+----------+-----------------+
id	bigint	true	false	AUTO_ENCODING
c1	bigint	false	true	PLAIN_ENCODING
c2	bigint	false	true	AUTO_ENCODING
c3	tinyint	false	true	BIT_SHUFFLE
c4	double	false	true	BIT_SHUFFLE
c5	boolean	false	true	RLE
c6	string	false	true	DICT_ENCODING
c7	string	false	true	PREFIX_ENCODING
+------+---------+-------------+----------+-----------------+

COMPRESSION Attribute

You can specify a compression algorithm to use for each column in a Kudu table. This attribute imposes more CPU
overhead when retrieving the values than the ENCODING attribute does. Therefore, use it primarily for columns with
long strings that do not benefit much from the less-expensive ENCODING attribute.

The choices for COMPRESSION are LZ4, SNAPPY, and ZLIB.

Note:

Columns that use the BITSHUFFLE encoding are already compressed using LZ4, and so typically do not need any
additional COMPRESSION attribute.

The following example shows design considerations for several STRING columns with different distribution
characteristics, leading to choices for both the ENCODING and COMPRESSION attributes. The country values
come from a specific set of strings, therefore this column is a good candidate for dictionary encoding. The post_id
column contains an ascending sequence of integers, where several leading bits are likely to be all zeroes, therefore

https://kudu.apache.org/docs/schema_design.html
https://kudu.apache.org/docs/schema_design.html

 | Using Impala to Query Kudu Tables | 730

this column is a good candidate for bitshuffle encoding. The body column and the corresponding columns for
translated versions tend to be long unique strings that are not practical to use with any of the encoding schemes,
therefore they employ the COMPRESSION attribute instead. The ideal compression codec in each case would require
some experimentation to determine how much space savings it provided and how much CPU overhead it added, based
on real-world data.

CREATE TABLE blog_posts
(
 user_id STRING ENCODING DICT_ENCODING,
 post_id BIGINT ENCODING BIT_SHUFFLE,
 subject STRING ENCODING PLAIN_ENCODING,
 body STRING COMPRESSION LZ4,
 spanish_translation STRING COMPRESSION SNAPPY,
 esperanto_translation STRING COMPRESSION ZLIB,
 PRIMARY KEY (user_id, post_id)
) PARTITION BY HASH(user_id, post_id) PARTITIONS 2 STORED AS KUDU;

BLOCK_SIZE Attribute

Although Kudu does not use HDFS files internally, and thus is not affected by the HDFS block size, it does have an
underlying unit of I/O called the block size. The BLOCK_SIZE attribute lets you set the block size for any column.

The block size attribute is a relatively advanced feature. Refer to the Kudu documentation for usage details.

Partitioning for Kudu Tables

Kudu tables use special mechanisms to distribute data among the underlying tablet servers. Although we refer to such
tables as partitioned tables, they are distinguished from traditional Impala partitioned tables by use of different clauses
on the CREATE TABLE statement. Kudu tables use PARTITION BY, HASH, RANGE, and range specification
clauses rather than the PARTITIONED BY clause for HDFS-backed tables, which specifies only a column name and
creates a new partition for each different value.

For background information and architectural details about the Kudu partitioning mechanism, see the Kudu white
paper, section 3.2.

Note:

The Impala DDL syntax for Kudu tables is different than in early Kudu versions, which used an experimental fork
of the Impala code. For example, the DISTRIBUTE BY clause is now PARTITION BY, the INTO n BUCKETS
clause is now PARTITIONS n and the range partitioning syntax is reworked to replace the SPLIT ROWS clause
with more expressive syntax involving comparison operators.

Hash Partitioning

Hash partitioning is the simplest type of partitioning for Kudu tables. For hash-partitioned Kudu tables, inserted
rows are divided up between a fixed number of “buckets” by applying a hash function to the values of the columns
specified in the HASH clause. Hashing ensures that rows with similar values are evenly distributed, instead of
clumping together all in the same bucket. Spreading new rows across the buckets this way lets insertion operations
work in parallel across multiple tablet servers. Separating the hashed values can impose additional overhead on
queries, where queries with range-based predicates might have to read multiple tablets to retrieve all the relevant
values.

-- 1M rows with 50 hash partitions = approximately 20,000 rows per
 partition.
-- The values in each partition are not sequential, but rather based on a
 hash function.
-- Rows 1, 99999, and 123456 might be in the same partition.
CREATE TABLE million_rows (id string primary key, s string)
 PARTITION BY HASH(id) PARTITIONS 50

https://kudu.apache.org/docs/index.html
https://kudu.apache.org/kudu.pdf
https://kudu.apache.org/kudu.pdf

 | Using Impala to Query Kudu Tables | 731

 STORED AS KUDU;

-- Because the ID values are unique, we expect the rows to be roughly
-- evenly distributed between the buckets in the destination table.
INSERT INTO million_rows SELECT * FROM billion_rows ORDER BY id LIMIT 1e6;

Note:

The largest number of buckets that you can create with a PARTITIONS clause varies depending on the number of
tablet servers in the cluster, while the smallest is 2. For simplicity, some of the simple CREATE TABLE statements
throughout this section use PARTITIONS 2 to illustrate the minimum requirements for a Kudu table. For large
tables, prefer to use roughly 10 partitions per server in the cluster.

Range Partitioning

Range partitioning lets you specify partitioning precisely, based on single values or ranges of values within one or
more columns. You add one or more RANGE clauses to the CREATE TABLE statement, following the PARTITION
BY clause.

Range-partitioned Kudu tables use one or more range clauses, which include a combination of constant expressions,
VALUE or VALUES keywords, and comparison operators. (This syntax replaces the SPLIT ROWS clause used with
early Kudu versions.) For the full syntax, see CREATE TABLE Statement on page 256.

-- 50 buckets, all for IDs beginning with a lowercase letter.
-- Having only a single range enforces the allowed range of values
-- but does not add any extra parallelism.
create table million_rows_one_range (id string primary key, s string)
 partition by hash(id) partitions 50,
 range (partition 'a' <= values < '{')
 stored as kudu;

-- 50 buckets for IDs beginning with a lowercase letter
-- plus 50 buckets for IDs beginning with an uppercase letter.
-- Total number of buckets = number in the PARTITIONS clause x number of
 ranges.
-- We are still enforcing constraints on the primary key values
-- allowed in the table, and the 2 ranges provide better parallelism
-- as rows are inserted or the table is scanned.
create table million_rows_two_ranges (id string primary key, s string)
 partition by hash(id) partitions 50,
 range (partition 'a' <= values < '{', partition 'A' <= values < '[')
 stored as kudu;

-- Same as previous table, with an extra range covering the single key value
 '00000'.
create table million_rows_three_ranges (id string primary key, s string)
 partition by hash(id) partitions 50,
 range (partition 'a' <= values < '{', partition 'A' <= values < '[',
 partition value = '00000')
 stored as kudu;

-- The range partitioning can be displayed with a SHOW command in impala-
shell.
show range partitions million_rows_three_ranges;
+---------------------+
| RANGE (id) |
+---------------------+
| VALUE = "00000" |
| "A" <= VALUES < "[" |
| "a" <= VALUES < "{" |
+---------------------+

 | Using Impala to Query Kudu Tables | 732

Note:

When defining ranges, be careful to avoid “fencepost errors” where values at the extreme ends might be included or
omitted by accident. For example, in the tables defined in the preceding code listings, the range "a" <= VALUES
< "{" ensures that any values starting with z, such as za or zzz or zzz-ZZZ, are all included, by using a less-than
operator for the smallest value after all the values starting with z.

For range-partitioned Kudu tables, an appropriate range must exist before a data value can be created in the table.
Any INSERT, UPDATE, or UPSERT statements fail if they try to create column values that fall outside the specified
ranges. The error checking for ranges is performed on the Kudu side; Impala passes the specified range information to
Kudu, and passes back any error or warning if the ranges are not valid. (A nonsensical range specification causes an
error for a DDL statement, but only a warning for a DML statement.)

Ranges can be non-contiguous:

partition by range (year) (partition 1885 <= values <= 1889, partition 1893
 <= values <= 1897)

partition by range (letter_grade) (partition value = 'A', partition value =
 'B',
 partition value = 'C', partition value = 'D', partition value = 'F')

The ALTER TABLE statement with the ADD PARTITION or DROP PARTITION clauses can be used to add or
remove ranges from an existing Kudu table.

ALTER TABLE foo ADD PARTITION 30 <= VALUES < 50;
ALTER TABLE foo DROP PARTITION 1 <= VALUES < 5;

When a range is added, the new range must not overlap with any of the previous ranges; that is, it can only fill in gaps
within the previous ranges.

alter table test_scores add range partition value = 'E';

alter table year_ranges add range partition 1890 <= values < 1893;

When a range is removed, all the associated rows in the table are deleted. (This is true whether the table is internal or
external.)

alter table test_scores drop range partition value = 'E';

alter table year_ranges drop range partition 1890 <= values < 1893;

Kudu tables can also use a combination of hash and range partitioning.

partition by hash (school) partitions 10,
 range (letter_grade) (partition value = 'A', partition value = 'B',
 partition value = 'C', partition value = 'D', partition value = 'F')

 | Using Impala to Query Kudu Tables | 733

Working with Partitioning in Kudu Tables

To see the current partitioning scheme for a Kudu table, you can use the SHOW CREATE TABLE statement or the
SHOW PARTITIONS statement. The CREATE TABLE syntax displayed by this statement includes all the hash,
range, or both clauses that reflect the original table structure plus any subsequent ALTER TABLE statements that
changed the table structure.

To see the underlying buckets and partitions for a Kudu table, use the SHOW TABLE STATS or SHOW
PARTITIONS statement.

Handling Date, Time, or Timestamp Data with Kudu

In Impala 2.9 and higher, you can include TIMESTAMP columns in Kudu tables, instead of representing the date and
time as a BIGINT value. The behavior of TIMESTAMP for Kudu tables has some special considerations:

• Any nanoseconds in the original 96-bit value produced by Impala are not stored, because Kudu represents date/
time columns using 64-bit values. The nanosecond portion of the value is rounded, not truncated. Therefore, a
TIMESTAMP value that you store in a Kudu table might not be bit-for-bit identical to the value returned by a
query.

• The conversion between the Impala 96-bit representation and the Kudu 64-bit representation introduces some
performance overhead when reading or writing TIMESTAMP columns. You can minimize the overhead during
writes by performing inserts through the Kudu API. Because the overhead during reads applies to each query, you
might continue to use a BIGINT column to represent date/time values in performance-critical applications.

• The Impala TIMESTAMP type has a narrower range for years than the underlying Kudu data type. Impala
can represent years 1400-9999. If year values outside this range are written to a Kudu table by a non-Impala
client, Impala returns NULL by default when reading those TIMESTAMP values during a query. Or, if the
ABORT_ON_ERROR query option is enabled, the query fails when it encounters a value with an out-of-range year.

--- Make a table representing a date/time value as TIMESTAMP.
-- The strings representing the partition bounds are automatically
-- cast to TIMESTAMP values.
create table native_timestamp(id bigint, when_exactly timestamp, event
 string, primary key (id, when_exactly))
 partition by hash (id) partitions 20,
 range (when_exactly)
 (
 partition '2015-01-01' <= values < '2016-01-01',
 partition '2016-01-01' <= values < '2017-01-01',
 partition '2017-01-01' <= values < '2018-01-01'
)
 stored as kudu;

insert into native_timestamp values (12345, now(), 'Working on doc
 examples');

select * from native_timestamp;
+-------+-------------------------------+-------------------------+
| id | when_exactly | event |
+-------+-------------------------------+-------------------------+
| 12345 | 2017-05-31 16:27:42.667542000 | Working on doc examples |
+-------+-------------------------------+-------------------------+

Because Kudu tables have some performance overhead to convert TIMESTAMP columns to the Impala 96-bit internal
representation, for performance-critical applications you might store date/time information as the number of seconds,
milliseconds, or microseconds since the Unix epoch date of January 1, 1970. Specify the column as BIGINT in the
Impala CREATE TABLE statement, corresponding to an 8-byte integer (an int64) in the underlying Kudu table).
Then use Impala date/time conversion functions as necessary to produce a numeric, TIMESTAMP, or STRING value
depending on the context.

 | Using Impala to Query Kudu Tables | 734

For example, the unix_timestamp() function returns an integer result representing the number of seconds
past the epoch. The now() function produces a TIMESTAMP representing the current date and time, which can be
passed as an argument to unix_timestamp(). And string literals representing dates and date/times can be cast to
TIMESTAMP, and from there converted to numeric values. The following examples show how you might store a date/
time column as BIGINT in a Kudu table, but still use string literals and TIMESTAMP values for convenience.

-- now() returns a TIMESTAMP and shows the format for string literals you
 can cast to TIMESTAMP.
select now();
+-------------------------------+
| now() |
+-------------------------------+
| 2017-01-25 23:50:10.132385000 |
+-------------------------------+

-- unix_timestamp() accepts either a TIMESTAMP or an equivalent string
 literal.
select unix_timestamp(now());
+------------------+
| unix_timestamp() |
+------------------+
| 1485386670 |
+------------------+

select unix_timestamp('2017-01-01');
+------------------------------+
| unix_timestamp('2017-01-01') |
+------------------------------+
| 1483228800 |
+------------------------------+

-- Make a table representing a date/time value as BIGINT.
-- Construct 1 range partition and 20 associated hash partitions for each
 year.
-- Use date/time conversion functions to express the ranges as human-
readable dates.
create table time_series(id bigint, when_exactly bigint, event string,
 primary key (id, when_exactly))
 partition by hash (id) partitions 20,
 range (when_exactly)
 (
 partition unix_timestamp('2015-01-01') <= values <
 unix_timestamp('2016-01-01'),
 partition unix_timestamp('2016-01-01') <= values <
 unix_timestamp('2017-01-01'),
 partition unix_timestamp('2017-01-01') <= values <
 unix_timestamp('2018-01-01')
)
 stored as kudu;

-- On insert, we can transform a human-readable date/time into a numeric
 value.
insert into time_series values (12345, unix_timestamp('2017-01-25
 23:24:56'), 'Working on doc examples');

-- On retrieval, we can examine the numeric date/time value or turn it back
 into a string for readability.
select id, when_exactly, from_unixtime(when_exactly) as 'human-readable
 date/time', event
 from time_series order by when_exactly limit 100;
+-------+--------------+--------------------------+-------------------------
+

 | Using Impala to Query Kudu Tables | 735

| id | when_exactly | human-readable date/time | event
 |
+-------+--------------+--------------------------+-------------------------
+
| 12345 | 1485386696 | 2017-01-25 23:24:56 | Working on doc examples
 |
+-------+--------------+--------------------------+-------------------------
+

Note:

If you do high-precision arithmetic involving numeric date/time values, when dividing millisecond values by 1000, or
microsecond values by 1 million, always cast the integer numerator to a DECIMAL with sufficient precision and scale
to avoid any rounding or loss of precision.

-- 1 million and 1 microseconds = 1.000001 seconds.
select microseconds,
 cast (microseconds as decimal(20,7)) / 1e6 as fractional_seconds
 from table_with_microsecond_column;
+--------------+----------------------+
| microseconds | fractional_seconds |
+--------------+----------------------+
| 1000001 | 1.000001000000000000 |
+--------------+----------------------+

How Impala Handles Kudu Metadata

Much of the metadata for Kudu tables is handled by the underlying storage layer. Kudu tables have less reliance
on the metastore database, and require less metadata caching on the Impala side. For example, information about
partitions in Kudu tables is managed by Kudu, and Impala does not cache any block locality metadata for Kudu
tables.

The REFRESH and INVALIDATE METADATA statements are needed less frequently for Kudu tables than for
HDFS-backed tables. Neither statement is needed when data is added to, removed, or updated in a Kudu table, even if
the changes are made directly to Kudu through a client program using the Kudu API. Run REFRESH table_name
or INVALIDATE METADATA table_name for a Kudu table only after making a change to the Kudu table
schema, such as adding or dropping a column, by a mechanism other than Impala.

Because Kudu manages the metadata for its own tables separately from the metastore database, there is a table
name stored in the metastore database for Impala to use, and a table name on the Kudu side, and these names can be
modified independently through ALTER TABLE statements.

To avoid potential name conflicts, the prefix impala:: and the Impala database name are encoded into the
underlying Kudu table name:

create database some_database;
use some_database;

create table table_name_demo (x int primary key, y int)
 partition by hash (x) partitions 2 stored as kudu;

describe formatted table_name_demo;
...
kudu.table_name | impala::some_database.table_name_demo

 | Using Impala to Query Kudu Tables | 736

See Overview of Impala Tables on page 214 for examples of how to change the name of the Impala table in the
metastore database, the name of the underlying Kudu table, or both.

Loading Data into Kudu Tables
Kudu tables are well-suited to use cases where data arrives continuously, in small or moderate volumes. To bring data
into Kudu tables, use the Impala INSERT and UPSERT statements. The LOAD DATA statement does not apply to
Kudu tables.

Because Kudu manages its own storage layer that is optimized for smaller block sizes than HDFS, and performs
its own housekeeping to keep data evenly distributed, it is not subject to the “many small files” issue and does not
need explicit reorganization and compaction as the data grows over time. The partitions within a Kudu table can be
specified to cover a variety of possible data distributions, instead of hardcoding a new partition for each new day,
hour, and so on, which can lead to inefficient, hard-to-scale, and hard-to-manage partition schemes with HDFS tables.

Your strategy for performing ETL or bulk updates on Kudu tables should take into account the limitations on
consistency for DML operations.

Make INSERT, UPDATE, and UPSERT operations idempotent: that is, able to be applied multiple times and still
produce an identical result.

If a bulk operation is in danger of exceeding capacity limits due to timeouts or high memory usage, split it into a
series of smaller operations.

Avoid running concurrent ETL operations where the end results depend on precise ordering. In particular, do not
rely on an INSERT ... SELECT statement that selects from the same table into which it is inserting, unless you
include extra conditions in the WHERE clause to avoid reading the newly inserted rows within the same statement.

Because relationships between tables cannot be enforced by Impala and Kudu, and cannot be committed or rolled
back together, do not expect transactional semantics for multi-table operations.

Impala DML Support for Kudu Tables (INSERT, UPDATE, DELETE,
UPSERT)

Impala supports certain DML statements for Kudu tables only. The UPDATE and DELETE statements let you
modify data within Kudu tables without rewriting substantial amounts of table data. The UPSERT statement acts as a
combination of INSERT and UPDATE, inserting rows where the primary key does not already exist, and updating the
non-primary key columns where the primary key does already exist in the table.

The INSERT statement for Kudu tables honors the unique and NOT NULL requirements for the primary key
columns.

Because Impala and Kudu do not support transactions, the effects of any INSERT, UPDATE, or DELETE statement
are immediately visible. For example, you cannot do a sequence of UPDATE statements and only make the changes
visible after all the statements are finished. Also, if a DML statement fails partway through, any rows that were
already inserted, deleted, or changed remain in the table; there is no rollback mechanism to undo the changes.

In particular, an INSERT ... SELECT statement that refers to the table being inserted into might insert more rows
than expected, because the SELECT part of the statement sees some of the new rows being inserted and processes
them again.

Note:

The LOAD DATA statement, which involves manipulation of HDFS data files, does not apply to Kudu tables.

 | Using Impala to Query Kudu Tables | 737

Consistency Considerations for Kudu Tables
Kudu tables have consistency characteristics such as uniqueness, controlled by the primary key columns, and non-
nullable columns. The emphasis for consistency is on preventing duplicate or incomplete data from being stored in a
table.

Currently, Kudu does not enforce strong consistency for order of operations, total success or total failure of a multi-
row statement, or data that is read while a write operation is in progress. Changes are applied atomically to each row,
but not applied as a single unit to all rows affected by a multi-row DML statement. That is, Kudu does not currently
have atomic multi-row statements or isolation between statements.

If some rows are rejected during a DML operation because of a mismatch with duplicate primary key values, NOT
NULL constraints, and so on, the statement succeeds with a warning. Impala still inserts, deletes, or updates the other
rows that are not affected by the constraint violation.

Consequently, the number of rows affected by a DML operation on a Kudu table might be different than you expect.

Because there is no strong consistency guarantee for information being inserted into, deleted from, or updated
across multiple tables simultaneously, consider denormalizing the data where practical. That is, if you run separate
INSERT statements to insert related rows into two different tables, one INSERT might fail while the other succeeds,
leaving the data in an inconsistent state. Even if both inserts succeed, a join query might happen during the interval
between the completion of the first and second statements, and the query would encounter incomplete inconsistent
data. Denormalizing the data into a single wide table can reduce the possibility of inconsistency due to multi-table
operations.

Information about the number of rows affected by a DML operation is reported in impala-shell output, and in
the PROFILE output, but is not currently reported to HiveServer2 clients such as JDBC or ODBC applications.

Security Considerations for Kudu Tables
Security for Kudu tables involves:

• Sentry authorization.

Access to Kudu tables must be granted to and revoked from roles as usual. Only users with ALL privileges on
SERVER can create external Kudu tables. Currently, access to a Kudu table is “all or nothing”: enforced at the
table level rather than the column level, and applying to all SQL operations rather than individual statements such
as INSERT. Because non-SQL APIs can access Kudu data without going through Sentry authorization, currently
the Sentry support is considered preliminary and subject to change.

• Kerberos authentication. See Kudu Security for details.
• TLS encryption. See Kudu Security for details.
• Lineage tracking.
• Auditing.
• Redaction of sensitive information from log files.

Impala Query Performance for Kudu Tables
For queries involving Kudu tables, Impala can delegate much of the work of filtering the result set to Kudu, avoiding
some of the I/O involved in full table scans of tables containing HDFS data files. This type of optimization is
especially effective for partitioned Kudu tables, where the Impala query WHERE clause refers to one or more primary
key columns that are also used as partition key columns. For example, if a partitioned Kudu table uses a HASH clause
for col1 and a RANGE clause for col2, a query using a clause such as WHERE col1 IN (1,2,3) AND col2
> 100 can determine exactly which tablet servers contain relevant data, and therefore parallelize the query very
efficiently.

https://kudu.apache.org/docs/security.html
https://kudu.apache.org/docs/security.html

 | Using Impala to Query HBase Tables | 738

In Impala 2.11 and higher, Impala can push down additional information to optimize join queries involving
Kudu tables. If the join clause contains predicates of the form column = expression, after Impala
constructs a hash table of possible matching values for the join columns from the bigger table (either an
HDFS table or a Kudu table), Impala can “push down” the minimum and maximum matching column
values to Kudu, so that Kudu can more efficiently locate matching rows in the second (smaller) table. These
min/max filters are affected by the RUNTIME_FILTER_MODE, RUNTIME_FILTER_WAIT_TIME_MS,
and DISABLE_ROW_RUNTIME_FILTERING query options; the min/max filters are not affected by the
RUNTIME_BLOOM_FILTER_SIZE, RUNTIME_FILTER_MIN_SIZE, RUNTIME_FILTER_MAX_SIZE, and
MAX_NUM_RUNTIME_FILTERS query options.

See EXPLAIN Statement on page 297 for examples of evaluating the effectiveness of the predicate pushdown for a
specific query against a Kudu table.

The TABLESAMPLE clause of the SELECT statement does not apply to a table reference derived from a view, a
subquery, or anything other than a real base table. This clause only works for tables backed by HDFS or HDFS-like
data files, therefore it does not apply to Kudu or HBase tables.

Using Impala to Query HBase Tables

You can use Impala to query HBase tables. This capability allows convenient access to a storage system that is tuned
for different kinds of workloads than the default with Impala. The default Impala tables use data files stored on
HDFS, which are ideal for bulk loads and queries using full-table scans. In contrast, HBase can do efficient queries
for data organized for OLTP-style workloads, with lookups of individual rows or ranges of values.

From the perspective of an Impala user, coming from an RDBMS background, HBase is a kind of key-value store
where the value consists of multiple fields. The key is mapped to one column in the Impala table, and the various
fields of the value are mapped to the other columns in the Impala table.

For background information on HBase, see the Apache HBase documentation.

Overview of Using HBase with Impala
When you use Impala with HBase:

• You create the tables on the Impala side using the Hive shell, because the Impala CREATE TABLE statement
currently does not support custom SerDes and some other syntax needed for these tables:

• You designate it as an HBase table using the STORED BY
'org.apache.hadoop.hive.hbase.HBaseStorageHandler' clause on the Hive CREATE
TABLE statement.

• You map these specially created tables to corresponding tables that exist in HBase, with the clause
TBLPROPERTIES("hbase.table.name" = "table_name_in_hbase") on the Hive CREATE
TABLE statement.

• See Examples of Querying HBase Tables from Impala on page 746 for a full example.
• You define the column corresponding to the HBase row key as a string with the #string keyword, or map it to a

STRING column.
• Because Impala and Hive share the same metastore database, once you create the table in Hive, you can query

or insert into it through Impala. (After creating a new table through Hive, issue the INVALIDATE METADATA
statement in impala-shell to make Impala aware of the new table.)

• You issue queries against the Impala tables. For efficient queries, use WHERE clauses to find a single key value
or a range of key values wherever practical, by testing the Impala column corresponding to the HBase row key.
Avoid queries that do full-table scans, which are efficient for regular Impala tables but inefficient in HBase.

https://hbase.apache.org/book.html

 | Using Impala to Query HBase Tables | 739

To work with an HBase table from Impala, ensure that the impala user has read/write privileges for the HBase
table, using the GRANT command in the HBase shell. For details about HBase security, see the Security chapter in the
Apache HBase documentation.

Configuring HBase for Use with Impala
HBase works out of the box with Impala. There is no mandatory configuration needed to use these two components
together.

To avoid delays if HBase is unavailable during Impala startup or after an INVALIDATE METADATA statement, set
timeout values similar to the following in /etc/impala/conf/hbase-site.xml:

<property>
 <name>hbase.client.retries.number</name>
 <value>3</value>
</property>
<property>
 <name>hbase.rpc.timeout</name>
 <value>3000</value>
</property>

Supported Data Types for HBase Columns
To understand how Impala column data types are mapped to fields in HBase, you should have some background
knowledge about HBase first. You set up the mapping by running the CREATE TABLE statement in the Hive shell.
See the Hive wiki for a starting point, and Examples of Querying HBase Tables from Impala on page 746 for
examples.

HBase works as a kind of “bit bucket”, in the sense that HBase does not enforce any typing for the key or value fields.
All the type enforcement is done on the Impala side.

For best performance of Impala queries against HBase tables, most queries will perform comparisons in the WHERE
against the column that corresponds to the HBase row key. When creating the table through the Hive shell, use
the STRING data type for the column that corresponds to the HBase row key. Impala can translate conditional
tests (through operators such as =, <, BETWEEN, and IN) against this column into fast lookups in HBase, but this
optimization (“predicate pushdown”) only works when that column is defined as STRING.

Starting in Impala 1.1, Impala also supports reading and writing to columns that are defined in the Hive CREATE
TABLE statement using binary data types, represented in the Hive table definition using the #binary keyword, often
abbreviated as #b. Defining numeric columns as binary can reduce the overall data volume in the HBase tables. You
should still define the column that corresponds to the HBase row key as a STRING, to allow fast lookups using those
columns.

Performance Considerations for the Impala-HBase Integration
To understand the performance characteristics of SQL queries against data stored in HBase, you should have some
background knowledge about how HBase interacts with SQL-oriented systems first. See the Hive wiki for a starting
point; because Impala shares the same metastore database as Hive, the information about mapping columns from Hive
tables to HBase tables is generally applicable to Impala too.

Impala uses the HBase client API via Java Native Interface (JNI) to query data stored in HBase. This querying does
not read HFiles directly. The extra communication overhead makes it important to choose what data to store in HBase
or in HDFS, and construct efficient queries that can retrieve the HBase data efficiently:

• Use HBase table for queries that return a single row or a range of rows, not queries that scan the entire table. (If a
query has no WHERE clause, that is a strong indicator that it is an inefficient query for an HBase table.)

https://hbase.apache.org/book.html#security
https://hbase.apache.org/book.html#security
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

 | Using Impala to Query HBase Tables | 740

• If you have join queries that do aggregation operations on large fact tables and join the results against small
dimension tables, consider using Impala for the fact tables and HBase for the dimension tables. (Because Impala
does a full scan on the HBase table in this case, rather than doing single-row HBase lookups based on the join
column, only use this technique where the HBase table is small enough that doing a full table scan does not cause
a performance bottleneck for the query.)

Query predicates are applied to row keys as start and stop keys, thereby limiting the scope of a particular lookup. If
row keys are not mapped to string columns, then ordering is typically incorrect and comparison operations do not
work. For example, if row keys are not mapped to string columns, evaluating for greater than (>) or less than (<)
cannot be completed.

Predicates on non-key columns can be sent to HBase to scan as SingleColumnValueFilters, providing some
performance gains. In such a case, HBase returns fewer rows than if those same predicates were applied using Impala.
While there is some improvement, it is not as great when start and stop rows are used. This is because the number
of rows that HBase must examine is not limited as it is when start and stop rows are used. As long as the row key
predicate only applies to a single row, HBase will locate and return that row. Conversely, if a non-key predicate is
used, even if it only applies to a single row, HBase must still scan the entire table to find the correct result.

Interpreting EXPLAIN Output for HBase Queries

For example, here are some queries against the following Impala table, which is mapped to
an HBase table. The examples show excerpts from the output of the EXPLAIN statement,
demonstrating what things to look for to indicate an efficient or inefficient query against an HBase
table.

The first column (cust_id) was specified as the key column in the CREATE EXTERNAL
TABLE statement; for performance, it is important to declare this column as STRING. Other
columns, such as BIRTH_YEAR and NEVER_LOGGED_ON, are also declared as STRING, rather
than their “natural” types of INT or BOOLEAN, because Impala can optimize those types more
effectively in HBase tables. For comparison, we leave one column, YEAR_REGISTERED, as INT
to show that filtering on this column is inefficient.

describe hbase_table;
Query: describe hbase_table
+-----------------------+--------+---------+
| name | type | comment |
+-----------------------+--------+---------+
cust_id	string	
birth_year	string	
never_logged_on	string	
private_email_address	string	
year_registered	int	
+-----------------------+--------+---------+

The best case for performance involves a single row lookup using an equality comparison on the
column defined as the row key:

explain select count(*) from hbase_table where cust_id =
 'some_user@example.com';
+--
+
| Explain String
 |
+--
+
| Estimated Per-Host Requirements: Memory=1.01GB VCores=1
 |
| WARNING: The following tables are missing relevant table and/
or column statistics. |
| hbase.hbase_table
 |

 | Using Impala to Query HBase Tables | 741

|
 |
| 03:AGGREGATE [MERGE FINALIZE]
 |
| | output: sum(count(*))
 |
| |
 |
| 02:EXCHANGE [PARTITION=UNPARTITIONED]
 |
| |
 |
| 01:AGGREGATE
 |
| | output: count(*)
 |
| |
 |
| 00:SCAN HBASE [hbase.hbase_table]
 |
| start key: some_user@example.com
 |
| stop key: some_user@example.com\0
 |
+--
+

Another type of efficient query involves a range lookup on the row key column, using SQL
operators such as greater than (or equal), less than (or equal), or BETWEEN. This example also
includes an equality test on a non-key column; because that column is a STRING, Impala can let
HBase perform that test, indicated by the hbase filters: line in the EXPLAIN output. Doing
the filtering within HBase is more efficient than transmitting all the data to Impala and doing the
filtering on the Impala side.

explain select count(*) from hbase_table where cust_id between
 'a' and 'b'
 and never_logged_on = 'true';
+--
+
| Explain String
 |
+--
+
...

| 01:AGGREGATE
 |
| | output: count(*)
 |
| |
 |
| 00:SCAN HBASE [hbase.hbase_table]
 |
| start key: a
 |
| stop key: b\0
 |
| hbase filters: cols:never_logged_on EQUAL 'true'
 |
+--
+

 | Using Impala to Query HBase Tables | 742

The query is less efficient if Impala has to evaluate any of the predicates, because Impala must
scan the entire HBase table. Impala can only push down predicates to HBase for columns declared
as STRING. This example tests a column declared as INT, and the predicates: line in the
EXPLAIN output indicates that the test is performed after the data is transmitted to Impala.

explain select count(*) from hbase_table where year_registered =
 2010;
+--
+
| Explain String
 |
+--
+
...

| 01:AGGREGATE
 |
| | output: count(*)
 |
| |
 |
| 00:SCAN HBASE [hbase.hbase_table]
 |
| predicates: year_registered = 2010
 |
+--
+

The same inefficiency applies if the key column is compared to any non-constant value. Here, even
though the key column is a STRING, and is tested using an equality operator, Impala must scan
the entire HBase table because the key column is compared to another column value rather than a
constant.

explain select count(*) from hbase_table where cust_id =
 private_email_address;
+--
+
| Explain String
 |
+--
+
...

| 01:AGGREGATE
 |
| | output: count(*)
 |
| |
 |
| 00:SCAN HBASE [hbase.hbase_table]
 |
| predicates: cust_id = private_email_address
 |
+--
+

Currently, tests on the row key using OR or IN clauses are not optimized into direct lookups either.
Such limitations might be lifted in the future, so always check the EXPLAIN output to be sure
whether a particular SQL construct results in an efficient query or not for HBase tables.

explain select count(*) from hbase_table where

 | Using Impala to Query HBase Tables | 743

 cust_id = 'some_user@example.com' or cust_id =
 'other_user@example.com';
+--
+
| Explain String
 |
+--
+
...

| 01:AGGREGATE
 |
| | output: count(*)
 |
| |
 |
| 00:SCAN HBASE [hbase.hbase_table]
 |
| predicates: cust_id = 'some_user@example.com' OR cust_id =
 'other_user@example.com' |
+--
+

explain select count(*) from hbase_table where
 cust_id in ('some_user@example.com',
 'other_user@example.com');
+--
+
| Explain String
 |
+--
+
...

| 01:AGGREGATE
 |
| | output: count(*)
 |
| |
 |
| 00:SCAN HBASE [hbase.hbase_table]
 |
| predicates: cust_id IN ('some_user@example.com',
 'other_user@example.com') |
+--
+

Either rewrite into separate queries for each value and combine the results in the application, or
combine the single-row queries using UNION ALL:

select count(*) from hbase_table where cust_id =
 'some_user@example.com';
select count(*) from hbase_table where cust_id =
 'other_user@example.com';

explain
 select count(*) from hbase_table where cust_id =
 'some_user@example.com'
 union all
 select count(*) from hbase_table where cust_id =
 'other_user@example.com';
+--
+

 | Using Impala to Query HBase Tables | 744

| Explain String
 |
+--
+
...

| | 04:AGGREGATE
 |
| | | output: count(*)
 |
| | |
 |
| | 03:SCAN HBASE [hbase.hbase_table]
 |
| | start key: other_user@example.com
 |
| | stop key: other_user@example.com\0
 |
| |
 |
| 10:MERGE
 |
...

| 02:AGGREGATE
 |
| | output: count(*)
 |
| |
 |
| 01:SCAN HBASE [hbase.hbase_table]
 |
| start key: some_user@example.com
 |
| stop key: some_user@example.com\0
 |
+--
+

Configuration Options for Java HBase Applications

If you have an HBase Java application that calls the setCacheBlocks or setCaching
methods of the class org.apache.hadoop.hbase.client.Scan, you can set these same caching
behaviors through Impala query options, to control the memory pressure on the HBase
RegionServer. For example, when doing queries in HBase that result in full-table scans (which
by default are inefficient for HBase), you can reduce memory usage and speed up the queries
by turning off the HBASE_CACHE_BLOCKS setting and specifying a large number for the
HBASE_CACHING setting.

To set these options, issue commands like the following in impala-shell:

-- Same as calling setCacheBlocks(true) or
 setCacheBlocks(false).
set hbase_cache_blocks=true;
set hbase_cache_blocks=false;

-- Same as calling setCaching(rows).
set hbase_caching=1000;

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

 | Using Impala to Query HBase Tables | 745

Or update the impalad defaults file /etc/default/impala and include settings for
HBASE_CACHE_BLOCKS and/or HBASE_CACHING in the -default_query_options
setting for IMPALA_SERVER_ARGS. See Modifying Impala Startup Options on page 32 for
details.

Note: In Impala 2.0 and later, these options are settable through the JDBC or ODBC interfaces
using the SET statement.

Use Cases for Querying HBase through Impala
The following are popular use cases for using Impala to query HBase tables:

• Keeping large fact tables in Impala, and smaller dimension tables in HBase. The fact tables use Parquet or other
binary file format optimized for scan operations. Join queries scan through the large Impala fact tables, and cross-
reference the dimension tables using efficient single-row lookups in HBase.

• Using HBase to store rapidly incrementing counters, such as how many times a web page has been viewed, or
on a social network, how many connections a user has or how many votes a post received. HBase is efficient for
capturing such changeable data: the append-only storage mechanism is efficient for writing each change to disk,
and a query always returns the latest value. An application could query specific totals like these from HBase, and
combine the results with a broader set of data queried from Impala.

• Storing very wide tables in HBase. Wide tables have many columns, possibly thousands, typically recording many
attributes for an important subject such as a user of an online service. These tables are also often sparse, that is,
most of the columns values are NULL, 0, false, empty string, or other blank or placeholder value. (For example,
any particular web site user might have never used some site feature, filled in a certain field in their profile, visited
a particular part of the site, and so on.) A typical query against this kind of table is to look up a single row to
retrieve all the information about a specific subject, rather than summing, averaging, or filtering millions of rows
as in typical Impala-managed tables.

Or the HBase table could be joined with a larger Impala-managed table. For example, analyze the large Impala
table representing web traffic for a site and pick out 50 users who view the most pages. Join that result with
the wide user table in HBase to look up attributes of those users. The HBase side of the join would result in 50
efficient single-row lookups in HBase, rather than scanning the entire user table.

Loading Data into an HBase Table
The Impala INSERT statement works for HBase tables. The INSERT ... VALUES syntax is ideally suited to
HBase tables, because inserting a single row is an efficient operation for an HBase table. (For regular Impala tables,
with data files in HDFS, the tiny data files produced by INSERT ... VALUES are extremely inefficient, so you
would not use that technique with tables containing any significant data volume.)

When you use the INSERT ... SELECT syntax, the result in the HBase table could be fewer rows than you
expect. HBase only stores the most recent version of each unique row key, so if an INSERT ... SELECT
statement copies over multiple rows containing the same value for the key column, subsequent queries will only
return one row with each key column value:

Although Impala does not have an UPDATE statement, you can achieve the same effect by doing successive INSERT
statements using the same value for the key column each time:

Limitations and Restrictions of the Impala and HBase Integration
The Impala integration with HBase has the following limitations and restrictions, some inherited from the integration
between HBase and Hive, and some unique to Impala:

 | Using Impala to Query HBase Tables | 746

• If you issue a DROP TABLE for an internal (Impala-managed) table that is mapped to an HBase table, the
underlying table is not removed in HBase. The Hive DROP TABLE statement also removes the HBase table in
this case.

• The INSERT OVERWRITE statement is not available for HBase tables. You can insert new data, or modify an
existing row by inserting a new row with the same key value, but not replace the entire contents of the table. You
can do an INSERT OVERWRITE in Hive if you need this capability.

• If you issue a CREATE TABLE LIKE statement for a table mapped to an HBase table, the new table is also an
HBase table, but inherits the same underlying HBase table name as the original. The new table is effectively an
alias for the old one, not a new table with identical column structure. Avoid using CREATE TABLE LIKE for
HBase tables, to avoid any confusion.

• Copying data into an HBase table using the Impala INSERT ... SELECT syntax might produce fewer new
rows than are in the query result set. If the result set contains multiple rows with the same value for the key
column, each row supercedes any previous rows with the same key value. Because the order of the inserted rows
is unpredictable, you cannot rely on this technique to preserve the “latest” version of a particular key value.

• Because the complex data types (ARRAY, STRUCT, and MAP) available in Impala 2.3 and higher are currently
only supported in Parquet tables, you cannot use these types in HBase tables that are queried through Impala.

• The LOAD DATA statement cannot be used with HBase tables.
• The TABLESAMPLE clause of the SELECT statement does not apply to a table reference derived from a view, a

subquery, or anything other than a real base table. This clause only works for tables backed by HDFS or HDFS-
like data files, therefore it does not apply to Kudu or HBase tables.

Examples of Querying HBase Tables from Impala
The following examples create an HBase table with four column families, create a corresponding table through Hive,
then insert and query the table through Impala.

In HBase shell, the table name is quoted in CREATE and DROP statements. Tables created in HBase begin in
“enabled” state; before dropping them through the HBase shell, you must issue a disable 'table_name'
statement.

$ hbase shell
15/02/10 16:07:45
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
...

hbase(main):001:0> create 'hbasealltypessmall', 'boolsCF', 'intsCF',
 'floatsCF', 'stringsCF'
0 row(s) in 4.6520 seconds

=> Hbase::Table - hbasealltypessmall
hbase(main):006:0> quit

Issue the following CREATE TABLE statement in the Hive shell. (The Impala CREATE TABLE statement currently
does not support the STORED BY clause, so you switch into Hive to create the table, then back to Impala and the
impala-shell interpreter to issue the queries.)

This example creates an external table mapped to the HBase table, usable by both Impala and Hive. It is defined as an
external table so that when dropped by Impala or Hive, the original HBase table is not touched at all.

The WITH SERDEPROPERTIES clause specifies that the first column (ID) represents the row key, and maps
the remaining columns of the SQL table to HBase column families. The mapping relies on the ordinal order of the
columns in the table, not the column names in the CREATE TABLE statement. The first column is defined to be the
lookup key; the STRING data type produces the fastest key-based lookups for HBase tables.

 | Using Impala to Query HBase Tables | 747

Note: For Impala with HBase tables, the most important aspect to ensure good performance is to use a STRING
column as the row key, as shown in this example.

$ hive
...
hive> use hbase;
OK
Time taken: 4.095 seconds
hive> CREATE EXTERNAL TABLE hbasestringids (
 > id string,
 > bool_col boolean,
 > tinyint_col tinyint,
 > smallint_col smallint,
 > int_col int,
 > bigint_col bigint,
 > float_col float,
 > double_col double,
 > date_string_col string,
 > string_col string,
 > timestamp_col timestamp)
 > STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 > WITH SERDEPROPERTIES (
 > "hbase.columns.mapping" =
 >
 ":key,boolsCF:bool_col,intsCF:tinyint_col,intsCF:smallint_col,intsCF:int_col,intsCF:
\
 >
 bigint_col,floatsCF:float_col,floatsCF:double_col,stringsCF:date_string_col,
\
 > stringsCF:string_col,stringsCF:timestamp_col"
 >)
 > TBLPROPERTIES("hbase.table.name" = "hbasealltypessmall");
OK
Time taken: 2.879 seconds
hive> quit;

Once you have established the mapping to an HBase table, you can issue DML statements and queries from Impala.
The following example shows a series of INSERT statements followed by a query. The ideal kind of query from
a performance standpoint retrieves a row from the table based on a row key mapped to a string column. An initial
INVALIDATE METADATA table_name statement makes the table created through Hive visible to Impala.

$ impala-shell -i localhost -d hbase
Starting Impala Shell without Kerberos authentication
Connected to localhost:21000
...
Query: use `hbase`
[localhost:21000] > invalidate metadata hbasestringids;
Fetched 0 row(s) in 0.09s
[localhost:21000] > desc hbasestringids;
+-----------------+-----------+---------+
| name | type | comment |
+-----------------+-----------+---------+
id	string	
bool_col	boolean	
double_col	double	
float_col	float	
bigint_col	bigint	
int_col	int	
smallint_col	smallint	
tinyint_col	tinyint	
date_string_col	string	
string_col	string	

 | Using Impala with the Amazon S3 Filesystem | 748

| timestamp_col | timestamp | |
+-----------------+-----------+---------+
Fetched 11 row(s) in 0.02s
[localhost:21000] > insert into hbasestringids values
 ('0001',true,3.141,9.94,1234567,32768,4000,76,'2014-12-31','Hello
 world',now());
Inserted 1 row(s) in 0.26s
[localhost:21000] > insert into hbasestringids values
 ('0002',false,2.004,6.196,1500,8000,129,127,'2014-01-01','Foo bar',now());
Inserted 1 row(s) in 0.12s
[localhost:21000] > select * from hbasestringids where id = '0001';
+------+----------+------------+-------------------+------------
+---------+--------------+-------------+-----------------+-------------
+-------------------------------+
| id | bool_col | double_col | float_col | bigint_col | int_col |
 smallint_col | tinyint_col | date_string_col | string_col | timestamp_col
 |
+------+----------+------------+-------------------+------------
+---------+--------------+-------------+-----------------+-------------
+-------------------------------+
| 0001 | true | 3.141 | 9.939999580383301 | 1234567 | 32768
 | 4000 | 76 | 2014-12-31 | Hello world | 2015-02-10
 16:36:59.764838000 |
+------+----------+------------+-------------------+------------
+---------+--------------+-------------+-----------------+-------------
+-------------------------------+
Fetched 1 row(s) in 0.54s

Note: After you create a table in Hive, such as the HBase mapping table in this example, issue an INVALIDATE
METADATA table_name statement the next time you connect to Impala, make Impala aware of the new table.
(Prior to Impala 1.2.4, you could not specify the table name if Impala was not aware of the table yet; in Impala 1.2.4
and higher, specifying the table name avoids reloading the metadata for other tables that are not changed.)

Using Impala with the Amazon S3 Filesystem

Important:

In Impala 2.6 and higher, Impala supports both queries (SELECT) and DML (INSERT, LOAD DATA, CREATE
TABLE AS SELECT) for data residing on Amazon S3. With the inclusion of write support, the Impala support for
S3 is now considered ready for production use.

You can use Impala to query data residing on the Amazon S3 filesystem. This capability allows convenient access
to a storage system that is remotely managed, accessible from anywhere, and integrated with various cloud-based
services. Impala can query files in any supported file format from S3. The S3 storage location can be for an entire
table, or individual partitions in a partitioned table.

The default Impala tables use data files stored on HDFS, which are ideal for bulk loads and queries using full-table
scans. In contrast, queries against S3 data are less performant, making S3 suitable for holding “cold” data that is
only queried occasionally, while more frequently accessed “hot” data resides in HDFS. In a partitioned table, you
can set the LOCATION attribute for individual partitions to put some partitions on HDFS and others on S3, typically
depending on the age of the data.

How Impala SQL Statements Work with S3
Impala SQL statements work with data on S3 as follows:

• The CREATE TABLE Statement on page 256 or ALTER TABLE Statement on page 225 statements can
specify that a table resides on the S3 filesystem by encoding an s3a:// prefix for the LOCATION property.

 | Using Impala with the Amazon S3 Filesystem | 749

ALTER TABLE can also set the LOCATION property for an individual partition, so that some data in a table
resides on S3 and other data in the same table resides on HDFS.

• Once a table or partition is designated as residing on S3, the SELECT Statement on page 322 statement
transparently accesses the data files from the appropriate storage layer.

• If the S3 table is an internal table, the DROP TABLE Statement on page 295 statement removes the
corresponding data files from S3 when the table is dropped.

• The TRUNCATE TABLE Statement (Impala 2.3 or higher only) on page 413 statement always removes the
corresponding data files from S3 when the table is truncated.

• The LOAD DATA Statement on page 313 can move data files residing in HDFS into an S3 table.
• The INSERT Statement on page 301 statement, or the CREATE TABLE AS SELECT form of the

CREATE TABLE statement, can copy data from an HDFS table or another S3 table into an S3 table. The
S3_SKIP_INSERT_STAGING Query Option (Impala 2.6 or higher only) on page 392 query option chooses
whether or not to use a fast code path for these write operations to S3, with the tradeoff of potential inconsistency
in the case of a failure during the statement.

For usage information about Impala SQL statements with S3 tables, see Creating Impala Databases, Tables, and
Partitions for Data Stored on S3 on page 750 and Using Impala DML Statements for S3 Data on page 749.

Specifying Impala Credentials to Access Data in S3
To allow Impala to access data in S3, specify values for the following configuration settings in your core-
site.xml file:

<property>
<name>fs.s3a.access.key</name>
<value>your_access_key</value>
</property>
<property>
<name>fs.s3a.secret.key</name>
<value>your_secret_key</value>
</property>

After specifying the credentials, restart both the Impala and Hive services. (Restarting Hive is required because
Impala queries, CREATE TABLE statements, and so on go through the Hive metastore.)

Important:

Although you can specify the access key ID and secret key as part of the s3a:// URL in the LOCATION attribute,
doing so makes this sensitive information visible in many places, such as DESCRIBE FORMATTED output and
Impala log files. Therefore, specify this information centrally in the core-site.xml file, and restrict read access
to that file to only trusted users.

Loading Data into S3 for Impala Queries
If your ETL pipeline involves moving data into S3 and then querying through Impala, you can either use Impala DML
statements to create, move, or copy the data, or use the same data loading techniques as you would for non-Impala
data.

Using Impala DML Statements for S3 Data

In Impala 2.6 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT)
can write data into a table or partition that resides in the Amazon Simple Storage Service (S3). The syntax of the
DML statements is the same as for any other tables, because the S3 location for tables and partitions is specified by an
s3a:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data into

 | Using Impala with the Amazon S3 Filesystem | 750

S3 using the normal S3 transfer mechanisms instead of Impala DML statements, issue a REFRESH statement for the
table before using Impala to query the S3 data.

Because of differences between S3 and traditional filesystems, DML operations for S3 tables can take longer
than for tables on HDFS. For example, both the LOAD DATA statement and the final stage of the INSERT and
CREATE TABLE AS SELECT statements involve moving files from one directory to another. (In the case of
INSERT and CREATE TABLE AS SELECT, the files are moved from a temporary staging directory to the final
destination directory.) Because S3 does not support a “rename” operation for existing objects, in these cases Impala
actually copies the data files from one location to another and then removes the original files. In Impala 2.6, the
S3_SKIP_INSERT_STAGING query option provides a way to speed up INSERT statements for S3 tables and
partitions, with the tradeoff that a problem during statement execution could leave data in an inconsistent state. It does
not apply to INSERT OVERWRITE or LOAD DATA statements. See S3_SKIP_INSERT_STAGING Query Option
(Impala 2.6 or higher only) on page 392 for details.

Manually Loading Data into Impala Tables on S3

As an alternative, or on earlier Impala releases without DML support for S3, you can use the Amazon-provided
methods to bring data files into S3 for querying through Impala. See the Amazon S3 web site for details.

Important:

For best compatibility with the S3 write support in Impala 2.6 and higher:

• Use native Hadoop techniques to create data files in S3 for querying through Impala.
• Use the PURGE clause of DROP TABLE when dropping internal (managed) tables.

By default, when you drop an internal (managed) table, the data files are moved to the HDFS trashcan. This operation
is expensive for tables that reside on the Amazon S3 filesystem. Therefore, for S3 tables, prefer to use DROP TABLE
table_name PURGE rather than the default DROP TABLE statement. The PURGE clause makes Impala delete the
data files immediately, skipping the HDFS trashcan. For the PURGE clause to work effectively, you must originally
create the data files on S3 using one of the tools from the Hadoop ecosystem, such as hadoop fs -cp, or INSERT
in Impala or Hive.

Alternative file creation techniques (less compatible with the PURGE clause) include:

• The Amazon AWS / S3 web interface to upload from a web browser.
• The Amazon AWS CLI to manipulate files from the command line.
• Other S3-enabled software, such as the S3Tools client software.

After you upload data files to a location already mapped to an Impala table or partition, or if you delete files in S3
from such a location, issue the REFRESH table_name statement to make Impala aware of the new set of data
files.

Creating Impala Databases, Tables, and Partitions for Data Stored on S3
Impala reads data for a table or partition from S3 based on the LOCATION attribute for the table or partition. Specify
the S3 details in the LOCATION clause of a CREATE TABLE or ALTER TABLE statement. The notation for the
LOCATION clause is s3a://bucket_name/path/to/file. The filesystem prefix is always s3a:// because
Impala does not support the s3:// or s3n:// prefixes.

For a partitioned table, either specify a separate LOCATION clause for each new partition, or specify a base
LOCATION for the table and set up a directory structure in S3 to mirror the way Impala partitioned tables are
structured in HDFS. Although, strictly speaking, S3 filenames do not have directory paths, Impala treats S3 filenames
with / characters the same as HDFS pathnames that include directories.

You point a nonpartitioned table or an individual partition at S3 by specifying a single directory path in S3, which
could be any arbitrary directory. To replicate the structure of an entire Impala partitioned table or database in S3
requires more care, with directories and subdirectories nested and named to match the equivalent directory tree
in HDFS. Consider setting up an empty staging area if necessary in HDFS, and recording the complete directory
structure so that you can replicate it in S3.

http://aws.amazon.com/s3/
https://console.aws.amazon.com/s3/home
http://aws.amazon.com/cli/
http://s3tools.org/s3cmd

 | Using Impala with the Amazon S3 Filesystem | 751

For convenience when working with multiple tables with data files stored in S3, you can create a database with a
LOCATION attribute pointing to an S3 path. Specify a URL of the form s3a://bucket/root/path/for/
database for the LOCATION attribute of the database. Any tables created inside that database automatically create
directories underneath the one specified by the database LOCATION attribute.

For example, the following session creates a partitioned table where only a single partition resides on S3. The
partitions for years 2013 and 2014 are located on HDFS. The partition for year 2015 includes a LOCATION attribute
with an s3a:// URL, and so refers to data residing on S3, under a specific path underneath the bucket impala-
demo.

[localhost:21000] > create database db_on_hdfs;
[localhost:21000] > use db_on_hdfs;
[localhost:21000] > create table mostly_on_hdfs (x int) partitioned by (year
 int);
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2013);
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2014);
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2015)
 > location 's3a://impala-demo/dir1/dir2/dir3/t1';

The following session creates a database and two partitioned tables residing entirely on S3, one partitioned by a single
column and the other partitioned by multiple columns. Because a LOCATION attribute with an s3a:// URL is
specified for the database, the tables inside that database are automatically created on S3 underneath the database
directory. To see the names of the associated subdirectories, including the partition key values, we use an S3 client
tool to examine how the directory structure is organized on S3. For example, Impala partition directories such as
month=1 do not include leading zeroes, which sometimes appear in partition directories created through Hive.

[localhost:21000] > create database db_on_s3 location 's3a://impala-demo/
dir1/dir2/dir3';
[localhost:21000] > use db_on_s3;

[localhost:21000] > create table partitioned_on_s3 (x int) partitioned by
 (year int);
[localhost:21000] > alter table partitioned_on_s3 add partition (year=2013);
[localhost:21000] > alter table partitioned_on_s3 add partition (year=2014);
[localhost:21000] > alter table partitioned_on_s3 add partition (year=2015);

[localhost:21000] > !aws s3 ls s3://impala-demo/dir1/dir2/dir3 --recursive;
2015-03-17 13:56:34 0 dir1/dir2/dir3/
2015-03-17 16:43:28 0 dir1/dir2/dir3/partitioned_on_s3/
2015-03-17 16:43:49 0 dir1/dir2/dir3/partitioned_on_s3/year=2013/
2015-03-17 16:43:53 0 dir1/dir2/dir3/partitioned_on_s3/year=2014/
2015-03-17 16:43:58 0 dir1/dir2/dir3/partitioned_on_s3/year=2015/

[localhost:21000] > create table partitioned_multiple_keys (x int)
 > partitioned by (year smallint, month tinyint, day
 tinyint);
[localhost:21000] > alter table partitioned_multiple_keys
 > add partition (year=2015,month=1,day=1);
[localhost:21000] > alter table partitioned_multiple_keys
 > add partition (year=2015,month=1,day=31);
[localhost:21000] > alter table partitioned_multiple_keys
 > add partition (year=2015,month=2,day=28);

[localhost:21000] > !aws s3 ls s3://impala-demo/dir1/dir2/dir3 --recursive;
2015-03-17 13:56:34 0 dir1/dir2/dir3/
2015-03-17 16:47:13 0 dir1/dir2/dir3/partitioned_multiple_keys/
2015-03-17 16:47:44 0 dir1/dir2/dir3/partitioned_multiple_keys/
year=2015/month=1/day=1/
2015-03-17 16:47:50 0 dir1/dir2/dir3/partitioned_multiple_keys/
year=2015/month=1/day=31/
2015-03-17 16:47:57 0 dir1/dir2/dir3/partitioned_multiple_keys/
year=2015/month=2/day=28/

 | Using Impala with the Amazon S3 Filesystem | 752

2015-03-17 16:43:28 0 dir1/dir2/dir3/partitioned_on_s3/
2015-03-17 16:43:49 0 dir1/dir2/dir3/partitioned_on_s3/year=2013/
2015-03-17 16:43:53 0 dir1/dir2/dir3/partitioned_on_s3/year=2014/
2015-03-17 16:43:58 0 dir1/dir2/dir3/partitioned_on_s3/year=2015/

The CREATE DATABASE and CREATE TABLE statements create the associated directory paths if they do not
already exist. You can specify multiple levels of directories, and the CREATE statement creates all appropriate levels,
similar to using mkdir -p.

Use the standard S3 file upload methods to actually put the data files into the right locations. You can also put
the directory paths and data files in place before creating the associated Impala databases or tables, and Impala
automatically uses the data from the appropriate location after the associated databases and tables are created.

You can switch whether an existing table or partition points to data in HDFS or S3. For example, if you have an
Impala table or partition pointing to data files in HDFS or S3, and you later transfer those data files to the other
filesystem, use an ALTER TABLE statement to adjust the LOCATION attribute of the corresponding table or partition
to reflect that change. Because Impala does not have an ALTER DATABASE statement, this location-switching
technique is not practical for entire databases that have a custom LOCATION attribute.

Internal and External Tables Located on S3
Just as with tables located on HDFS storage, you can designate S3-based tables as either internal (managed by
Impala) or external, by using the syntax CREATE TABLE or CREATE EXTERNAL TABLE respectively. When you
drop an internal table, the files associated with the table are removed, even if they are on S3 storage. When you drop
an external table, the files associated with the table are left alone, and are still available for access by other tools or
components. See Overview of Impala Tables on page 214 for details.

If the data on S3 is intended to be long-lived and accessed by other tools in addition to Impala, create any associated
S3 tables with the CREATE EXTERNAL TABLE syntax, so that the files are not deleted from S3 when the table is
dropped.

If the data on S3 is only needed for querying by Impala and can be safely discarded once the Impala workflow is
complete, create the associated S3 tables using the CREATE TABLE syntax, so that dropping the table also deletes
the corresponding data files on S3.

For example, this session creates a table in S3 with the same column layout as a table in HDFS, then examines the
S3 table and queries some data from it. The table in S3 works the same as a table in HDFS as far as the expected
file format of the data, table and column statistics, and other table properties. The only indication that it is not an
HDFS table is the s3a:// URL in the LOCATION property. Many data files can reside in the S3 directory, and
their combined contents form the table data. Because the data in this example is uploaded after the table is created, a
REFRESH statement prompts Impala to update its cached information about the data files.

[localhost:21000] > create table usa_cities_s3 like usa_cities location
 's3a://impala-demo/usa_cities';
[localhost:21000] > desc usa_cities_s3;
+-------+----------+---------+
| name | type | comment |
+-------+----------+---------+
id	smallint	
city	string	
state	string	
+-------+----------+---------+

-- Now from a web browser, upload the same data file(s) to S3 as in the HDFS
 table,
-- under the relevant bucket and path. If you already have the data in S3,
 you would
-- point the table LOCATION at an existing path.

[localhost:21000] > refresh usa_cities_s3;

 | Using Impala with the Amazon S3 Filesystem | 753

[localhost:21000] > select count(*) from usa_cities_s3;
+----------+
| count(*) |
+----------+
| 289 |
+----------+
[localhost:21000] > select distinct state from sample_data_s3 limit 5;
+----------------------+
| state |
+----------------------+
| Louisiana |
| Minnesota |
| Georgia |
| Alaska |
| Ohio |
+----------------------+
[localhost:21000] > desc formatted usa_cities_s3;
+------------------------------+------------------------------+---------+
| name | type | comment |
+------------------------------+------------------------------+---------+
# col_name	data_type	comment
	NULL	NULL
id	smallint	NULL
city	string	NULL
state	string	NULL
	NULL	NULL
# Detailed Table Information	NULL	NULL
Database:	s3_testing	NULL
Owner:	jrussell	NULL
CreateTime:	Mon Mar 16 11:36:25 PDT 2015	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	0	NULL
Location:	s3a://impala-demo/usa_cities	NULL
Table Type:	MANAGED_TABLE	NULL
...
+------------------------------+------------------------------+---------+

In this case, we have already uploaded a Parquet file with a million rows of data to the sample_data directory
underneath the impala-demo bucket on S3. This session creates a table with matching column settings pointing to
the corresponding location in S3, then queries the table. Because the data is already in place on S3 when the table is
created, no REFRESH statement is required.

[localhost:21000] > create table sample_data_s3
 > (id int, id bigint, val int, zerofill string,
 > name string, assertion boolean, city string, state
 string)
 > stored as parquet location 's3a://impala-demo/
sample_data';
[localhost:21000] > select count(*) from sample_data_s3;;
+----------+
| count(*) |
+----------+
| 1000000 |
+----------+
[localhost:21000] > select count(*) howmany, assertion from sample_data_s3
 group by assertion;
+---------+-----------+
| howmany | assertion |
+---------+-----------+
| 667149 | true |
| 332851 | false |

 | Using Impala with the Amazon S3 Filesystem | 754

+---------+-----------+

Running and Tuning Impala Queries for Data Stored on S3
Once the appropriate LOCATION attributes are set up at the table or partition level, you query data stored in S3
exactly the same as data stored on HDFS or in HBase:

• Queries against S3 data support all the same file formats as for HDFS data.
• Tables can be unpartitioned or partitioned. For partitioned tables, either manually construct paths in S3

corresponding to the HDFS directories representing partition key values, or use ALTER TABLE ... ADD
PARTITION to set up the appropriate paths in S3.

• HDFS and HBase tables can be joined to S3 tables, or S3 tables can be joined with each other.
• Authorization using the Sentry framework to control access to databases, tables, or columns works the same

whether the data is in HDFS or in S3.
• The catalogd daemon caches metadata for both HDFS and S3 tables. Use REFRESH and INVALIDATE

METADATA for S3 tables in the same situations where you would issue those statements for HDFS tables.
• Queries against S3 tables are subject to the same kinds of admission control and resource management as HDFS

tables.
• Metadata about S3 tables is stored in the same metastore database as for HDFS tables.
• You can set up views referring to S3 tables, the same as for HDFS tables.
• The COMPUTE STATS, SHOW TABLE STATS, and SHOW COLUMN STATS statements work for S3 tables

also.

Understanding and Tuning Impala Query Performance for S3 Data

Although Impala queries for data stored in S3 might be less performant than queries against the equivalent data stored
in HDFS, you can still do some tuning. Here are techniques you can use to interpret explain plans and profiles for
queries against S3 data, and tips to achieve the best performance possible for such queries.

All else being equal, performance is expected to be lower for queries running against data on S3 rather than HDFS.
The actual mechanics of the SELECT statement are somewhat different when the data is in S3. Although the work
is still distributed across the datanodes of the cluster, Impala might parallelize the work for a distributed query
differently for data on HDFS and S3. S3 does not have the same block notion as HDFS, so Impala uses heuristics to
determine how to split up large S3 files for processing in parallel. Because all hosts can access any S3 data file with
equal efficiency, the distribution of work might be different than for HDFS data, where the data blocks are physically
read using short-circuit local reads by hosts that contain the appropriate block replicas. Although the I/O to read the
S3 data might be spread evenly across the hosts of the cluster, the fact that all data is initially retrieved across the
network means that the overall query performance is likely to be lower for S3 data than for HDFS data.

In Impala 2.6 and higher, Impala queries are optimized for files stored in Amazon S3. For Impala tables that use
the file formats Parquet, RCFile, SequenceFile, Avro, and uncompressed text, the setting fs.s3a.block.size
in the core-site.xml configuration file determines how Impala divides the I/O work of reading the data files.
This configuration setting is specified in bytes. By default, this value is 33554432 (32 MB), meaning that Impala
parallelizes S3 read operations on the files as if they were made up of 32 MB blocks. For example, if your S3 queries
primarily access Parquet files written by MapReduce or Hive, increase fs.s3a.block.size to 134217728 (128
MB) to match the row group size of those files. If most S3 queries involve Parquet files written by Impala, increase
fs.s3a.block.size to 268435456 (256 MB) to match the row group size produced by Impala.

Because of differences between S3 and traditional filesystems, DML operations for S3 tables can take longer
than for tables on HDFS. For example, both the LOAD DATA statement and the final stage of the INSERT and
CREATE TABLE AS SELECT statements involve moving files from one directory to another. (In the case of
INSERT and CREATE TABLE AS SELECT, the files are moved from a temporary staging directory to the final
destination directory.) Because S3 does not support a “rename” operation for existing objects, in these cases Impala
actually copies the data files from one location to another and then removes the original files. In Impala 2.6, the
S3_SKIP_INSERT_STAGING query option provides a way to speed up INSERT statements for S3 tables and
partitions, with the tradeoff that a problem during statement execution could leave data in an inconsistent state. It does

 | Using Impala with the Amazon S3 Filesystem | 755

not apply to INSERT OVERWRITE or LOAD DATA statements. See S3_SKIP_INSERT_STAGING Query Option
(Impala 2.6 or higher only) on page 392 for details.

When optimizing aspects of for complex queries such as the join order, Impala treats tables on HDFS and S3 the
same way. Therefore, follow all the same tuning recommendations for S3 tables as for HDFS ones, such as using the
COMPUTE STATS statement to help Impala construct accurate estimates of row counts and cardinality. See Tuning
Impala for Performance on page 626 for details.

In query profile reports, the numbers for BytesReadLocal, BytesReadShortCircuit,
BytesReadDataNodeCached, and BytesReadRemoteUnexpected are blank because those metrics come
from HDFS. If you do see any indications that a query against an S3 table performed “remote read” operations, do not
be alarmed. That is expected because, by definition, all the I/O for S3 tables involves remote reads.

Restrictions on Impala Support for S3
Impala requires that the default filesystem for the cluster be HDFS. You cannot use S3 as the only filesystem in the
cluster.

Prior to Impala 2.6 Impala could not perform DML operations (INSERT, LOAD DATA, or CREATE TABLE AS
SELECT) where the destination is a table or partition located on an S3 filesystem. This restriction is lifted in Impala
2.6 and higher.

Impala does not support the old s3:// block-based and s3n:// filesystem schemes, only s3a://.

Although S3 is often used to store JSON-formatted data, the current Impala support for S3 does not include directly
querying JSON data. For Impala queries, use data files in one of the file formats listed in How Impala Works with
Hadoop File Formats on page 690. If you have data in JSON format, you can prepare a flattened version of that
data for querying by Impala as part of your ETL cycle.

You cannot use the ALTER TABLE ... SET CACHED statement for tables or partitions that are located in S3.

Best Practices for Using Impala with S3
The following guidelines represent best practices derived from testing and field experience with Impala on S3:

• Any reference to an S3 location must be fully qualified. (This rule applies when S3 is not designated as the default
filesystem.)

• Set the safety valve fs.s3a.connection.maximum to 1500 for impalad.
• Set safety valve fs.s3a.block.size to 134217728 (128 MB in bytes) if most Parquet files queried by

Impala were written by Hive or ParquetMR jobs. Set the block size to 268435456 (256 MB in bytes) if most
Parquet files queried by Impala were written by Impala.

• DROP TABLE .. PURGE is much faster than the default DROP TABLE. The same applies to ALTER
TABLE ... DROP PARTITION PURGE versus the default DROP PARTITION operation. However, due
to the eventually consistent nature of S3, the files for that table or partition could remain for some unbounded
time when using PURGE. The default DROP TABLE/PARTITION is slow because Impala copies the files to the
HDFS trash folder, and Impala waits until all the data is moved. DROP TABLE/PARTITION .. PURGE is a
fast delete operation, and the Impala statement finishes quickly even though the change might not have propagated
fully throughout S3.

• INSERT statements are faster than INSERT OVERWRITE for S3. The query option
S3_SKIP_INSERT_STAGING, which is set to true by default, skips the staging step for regular INSERT
(but not INSERT OVERWRITE). This makes the operation much faster, but consistency is not guaranteed: if a
node fails during execution, the table could end up with inconsistent data. Set this option to false if stronger
consistency is required, however this setting will make the INSERT operations slower.

• Too many files in a table can make metadata loading and updating slow on S3. If too many requests are made to
S3, S3 has a back-off mechanism and responds slower than usual. You might have many small files because of:

 | Using Impala with the Azure Data Lake Store (ADLS) | 756

• Too many partitions due to over-granular partitioning. Prefer partitions with many megabytes of data, so that
even a query against a single partition can be parallelized effectively.

• Many small INSERT queries. Prefer bulk INSERTs so that more data is written to fewer files.

Using Impala with the Azure Data Lake Store (ADLS)

You can use Impala to query data residing on the Azure Data Lake Store (ADLS) filesystem. This capability allows
convenient access to a storage system that is remotely managed, accessible from anywhere, and integrated with
various cloud-based services. Impala can query files in any supported file format from ADLS. The ADLS storage
location can be for an entire table, or individual partitions in a partitioned table.

The default Impala tables use data files stored on HDFS, which are ideal for bulk loads and queries using full-table
scans. In contrast, queries against ADLS data are less performant, making ADLS suitable for holding “cold” data
that is only queried occasionally, while more frequently accessed “hot” data resides in HDFS. In a partitioned table,
you can set the LOCATION attribute for individual partitions to put some partitions on HDFS and others on ADLS,
typically depending on the age of the data.

Prerequisites
These procedures presume that you have already set up an Azure account, configured an ADLS store, and configured
your Hadoop cluster with appropriate credentials to be able to access ADLS. See the following resources for
information:

• Get started with Azure Data Lake Store using the Azure Portal
• Hadoop Azure Data Lake Support

How Impala SQL Statements Work with ADLS
Impala SQL statements work with data on ADLS as follows:

• The CREATE TABLE Statement on page 256 or ALTER TABLE Statement on page 225 statements can
specify that a table resides on the ADLS filesystem by encoding an adl:// prefix for the LOCATION property.
ALTER TABLE can also set the LOCATION property for an individual partition, so that some data in a table
resides on ADLS and other data in the same table resides on HDFS.

The full format of the location URI is typically:

adl://your_account.azuredatalakestore.net/rest_of_directory_path

• Once a table or partition is designated as residing on ADLS, the SELECT Statement on page 322 statement
transparently accesses the data files from the appropriate storage layer.

• If the ADLS table is an internal table, the DROP TABLE Statement on page 295 statement removes the
corresponding data files from ADLS when the table is dropped.

• The TRUNCATE TABLE Statement (Impala 2.3 or higher only) on page 413 statement always removes the
corresponding data files from ADLS when the table is truncated.

• The LOAD DATA Statement on page 313 can move data files residing in HDFS into an ADLS table.
• The INSERT Statement on page 301, or the CREATE TABLE AS SELECT form of the CREATE TABLE

statement, can copy data from an HDFS table or another ADLS table into an ADLS table.

For usage information about Impala SQL statements with ADLS tables, see Creating Impala Databases, Tables,
and Partitions for Data Stored on ADLS on page 758 and Using Impala DML Statements for ADLS Data on page
757.

https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-get-started-portal
https://hadoop.apache.org/docs/current/hadoop-azure-datalake/index.html

 | Using Impala with the Azure Data Lake Store (ADLS) | 757

Specifying Impala Credentials to Access Data in ADLS
To allow Impala to access data in ADLS, specify values for the following configuration settings in your core-
site.xml file:

<property>
 <name>dfs.adls.oauth2.access.token.provider.type</name>
 <value>ClientCredential</value>
</property>
<property>
 <name>dfs.adls.oauth2.client.id</name>
 <value><varname>your_client_id</varname></value>
</property>
<property>
 <name>dfs.adls.oauth2.credential</name>
 <value><varname>your_client_secret</varname></value>
</property>
<property>
 <name>dfs.adls.oauth2.refresh.url</name>
 <value><varname>refresh_URL</varname></value>
</property>

Note:

Check if your Hadoop distribution or cluster management tool includes support for filling in and distributing
credentials across the cluster in an automated way.

After specifying the credentials, restart both the Impala and Hive services. (Restarting Hive is required because
Impala queries, CREATE TABLE statements, and so on go through the Hive metastore.)

Loading Data into ADLS for Impala Queries
If your ETL pipeline involves moving data into ADLS and then querying through Impala, you can either use Impala
DML statements to create, move, or copy the data, or use the same data loading techniques as you would for non-
Impala data.

Using Impala DML Statements for ADLS Data

In Impala 2.9 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLE AS SELECT)
can write data into a table or partition that resides in the Azure Data Lake Store (ADLS). The syntax of the DML
statements is the same as for any other tables, because the ADLS location for tables and partitions is specified by an
adl:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data into
ADLS using the normal ADLS transfer mechanisms instead of Impala DML statements, issue a REFRESH statement
for the table before using Impala to query the ADLS data.

Manually Loading Data into Impala Tables on ADLS

As an alternative, you can use the Microsoft-provided methods to bring data files into ADLS for querying through
Impala. See the Microsoft ADLS documentation for details.

After you upload data files to a location already mapped to an Impala table or partition, or if you delete files in ADLS
from such a location, issue the REFRESH table_name statement to make Impala aware of the new set of data
files.

https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-copy-data-azure-storage-blob

 | Using Impala with the Azure Data Lake Store (ADLS) | 758

Creating Impala Databases, Tables, and Partitions for Data Stored on
ADLS

Impala reads data for a table or partition from ADLS based on the LOCATION attribute for the table or partition.
Specify the ADLS details in the LOCATION clause of a CREATE TABLE or ALTER TABLE statement. The notation
for the LOCATION clause is adl://store/path/to/file.

For a partitioned table, either specify a separate LOCATION clause for each new partition, or specify a base
LOCATION for the table and set up a directory structure in ADLS to mirror the way Impala partitioned tables are
structured in HDFS. Although, strictly speaking, ADLS filenames do not have directory paths, Impala treats ADLS
filenames with / characters the same as HDFS pathnames that include directories.

To point a nonpartitioned table or an individual partition at ADLS, specify a single directory path in ADLS, which
could be any arbitrary directory. To replicate the structure of an entire Impala partitioned table or database in ADLS
requires more care, with directories and subdirectories nested and named to match the equivalent directory tree
in HDFS. Consider setting up an empty staging area if necessary in HDFS, and recording the complete directory
structure so that you can replicate it in ADLS.

For example, the following session creates a partitioned table where only a single partition resides on ADLS.
The partitions for years 2013 and 2014 are located on HDFS. The partition for year 2015 includes a LOCATION
attribute with an adl:// URL, and so refers to data residing on ADLS, under a specific path underneath the store
impalademo.

[localhost:21000] > create database db_on_hdfs;
[localhost:21000] > use db_on_hdfs;
[localhost:21000] > create table mostly_on_hdfs (x int) partitioned by (year
 int);
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2013);
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2014);
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2015)
 > location 'adl://impalademo.azuredatalakestore.net/
dir1/dir2/dir3/t1';

For convenience when working with multiple tables with data files stored in ADLS, you can create a database with a
LOCATION attribute pointing to an ADLS path. Specify a URL of the form adl://store/root/path/for/
database for the LOCATION attribute of the database. Any tables created inside that database automatically create
directories underneath the one specified by the database LOCATION attribute.

The following session creates a database and two partitioned tables residing entirely on ADLS, one partitioned by
a single column and the other partitioned by multiple columns. Because a LOCATION attribute with an adl://
URL is specified for the database, the tables inside that database are automatically created on ADLS underneath
the database directory. To see the names of the associated subdirectories, including the partition key values, we use
an ADLS client tool to examine how the directory structure is organized on ADLS. For example, Impala partition
directories such as month=1 do not include leading zeroes, which sometimes appear in partition directories created
through Hive.

[localhost:21000] > create database db_on_adls location 'adl://
impalademo.azuredatalakestore.net/dir1/dir2/dir3';
[localhost:21000] > use db_on_adls;

[localhost:21000] > create table partitioned_on_adls (x int) partitioned by
 (year int);
[localhost:21000] > alter table partitioned_on_adls add partition
 (year=2013);
[localhost:21000] > alter table partitioned_on_adls add partition
 (year=2014);
[localhost:21000] > alter table partitioned_on_adls add partition
 (year=2015);

 | Using Impala with the Azure Data Lake Store (ADLS) | 759

[localhost:21000] > ! hadoop fs -ls adl://impalademo.azuredatalakestore.net/
dir1/dir2/dir3 --recursive;
2015-03-17 13:56:34 0 dir1/dir2/dir3/
2015-03-17 16:43:28 0 dir1/dir2/dir3/partitioned_on_adls/
2015-03-17 16:43:49 0 dir1/dir2/dir3/partitioned_on_adls/year=2013/
2015-03-17 16:43:53 0 dir1/dir2/dir3/partitioned_on_adls/year=2014/
2015-03-17 16:43:58 0 dir1/dir2/dir3/partitioned_on_adls/year=2015/

[localhost:21000] > create table partitioned_multiple_keys (x int)
 > partitioned by (year smallint, month tinyint, day
 tinyint);
[localhost:21000] > alter table partitioned_multiple_keys
 > add partition (year=2015,month=1,day=1);
[localhost:21000] > alter table partitioned_multiple_keys
 > add partition (year=2015,month=1,day=31);
[localhost:21000] > alter table partitioned_multiple_keys
 > add partition (year=2015,month=2,day=28);

[localhost:21000] > ! hadoop fs -ls adl://impalademo.azuredatalakestore.net/
dir1/dir2/dir3 --recursive;
2015-03-17 13:56:34 0 dir1/dir2/dir3/
2015-03-17 16:47:13 0 dir1/dir2/dir3/partitioned_multiple_keys/
2015-03-17 16:47:44 0 dir1/dir2/dir3/partitioned_multiple_keys/
year=2015/month=1/day=1/
2015-03-17 16:47:50 0 dir1/dir2/dir3/partitioned_multiple_keys/
year=2015/month=1/day=31/
2015-03-17 16:47:57 0 dir1/dir2/dir3/partitioned_multiple_keys/
year=2015/month=2/day=28/
2015-03-17 16:43:28 0 dir1/dir2/dir3/partitioned_on_adls/
2015-03-17 16:43:49 0 dir1/dir2/dir3/partitioned_on_adls/year=2013/
2015-03-17 16:43:53 0 dir1/dir2/dir3/partitioned_on_adls/year=2014/
2015-03-17 16:43:58 0 dir1/dir2/dir3/partitioned_on_adls/year=2015/

The CREATE DATABASE and CREATE TABLE statements create the associated directory paths if they do not
already exist. You can specify multiple levels of directories, and the CREATE statement creates all appropriate levels,
similar to using mkdir -p.

Use the standard ADLS file upload methods to actually put the data files into the right locations. You can also put
the directory paths and data files in place before creating the associated Impala databases or tables, and Impala
automatically uses the data from the appropriate location after the associated databases and tables are created.

You can switch whether an existing table or partition points to data in HDFS or ADLS. For example, if you have an
Impala table or partition pointing to data files in HDFS or ADLS, and you later transfer those data files to the other
filesystem, use an ALTER TABLE statement to adjust the LOCATION attribute of the corresponding table or partition
to reflect that change. Because Impala does not have an ALTER DATABASE statement, this location-switching
technique is not practical for entire databases that have a custom LOCATION attribute.

Internal and External Tables Located on ADLS
Just as with tables located on HDFS storage, you can designate ADLS-based tables as either internal (managed by
Impala) or external, by using the syntax CREATE TABLE or CREATE EXTERNAL TABLE respectively. When you
drop an internal table, the files associated with the table are removed, even if they are on ADLS storage. When you
drop an external table, the files associated with the table are left alone, and are still available for access by other tools
or components. See Overview of Impala Tables on page 214 for details.

If the data on ADLS is intended to be long-lived and accessed by other tools in addition to Impala, create any
associated ADLS tables with the CREATE EXTERNAL TABLE syntax, so that the files are not deleted from ADLS
when the table is dropped.

 | Using Impala with the Azure Data Lake Store (ADLS) | 760

If the data on ADLS is only needed for querying by Impala and can be safely discarded once the Impala workflow
is complete, create the associated ADLS tables using the CREATE TABLE syntax, so that dropping the table also
deletes the corresponding data files on ADLS.

For example, this session creates a table in ADLS with the same column layout as a table in HDFS, then examines
the ADLS table and queries some data from it. The table in ADLS works the same as a table in HDFS as far as the
expected file format of the data, table and column statistics, and other table properties. The only indication that it
is not an HDFS table is the adl:// URL in the LOCATION property. Many data files can reside in the ADLS
directory, and their combined contents form the table data. Because the data in this example is uploaded after the table
is created, a REFRESH statement prompts Impala to update its cached information about the data files.

[localhost:21000] > create table usa_cities_adls like usa_cities location
 'adl://impalademo.azuredatalakestore.net/usa_cities';
[localhost:21000] > desc usa_cities_adls;
+-------+----------+---------+
| name | type | comment |
+-------+----------+---------+
id	smallint	
city	string	
state	string	
+-------+----------+---------+

-- Now from a web browser, upload the same data file(s) to ADLS as in the
 HDFS table,
-- under the relevant store and path. If you already have the data in ADLS,
 you would
-- point the table LOCATION at an existing path.

[localhost:21000] > refresh usa_cities_adls;
[localhost:21000] > select count(*) from usa_cities_adls;
+----------+
| count(*) |
+----------+
| 289 |
+----------+
[localhost:21000] > select distinct state from sample_data_adls limit 5;
+----------------------+
| state |
+----------------------+
| Louisiana |
| Minnesota |
| Georgia |
| Alaska |
| Ohio |
+----------------------+
[localhost:21000] > desc formatted usa_cities_adls;
+------------------------------
+--+---------+
| name | type
 | comment |
+------------------------------
+--+---------+
| # col_name | data_type
 | comment |
| | NULL
 | NULL |
| id | smallint
 | NULL |
| city | string
 | NULL |
| state | string
 | NULL |

 | Using Impala with the Azure Data Lake Store (ADLS) | 761

| | NULL
 | NULL |
| # Detailed Table Information | NULL
 | NULL |
| Database: | adls_testing
 | NULL |
| Owner: | jrussell
 | NULL |
| CreateTime: | Mon Mar 16 11:36:25 PDT 2017
 | NULL |
| LastAccessTime: | UNKNOWN
 | NULL |
| Protect Mode: | None
 | NULL |
| Retention: | 0
 | NULL |
| Location: | adl://impalademo.azuredatalakestore.net/
usa_cities | NULL |
| Table Type: | MANAGED_TABLE
 | NULL |
...
+------------------------------
+--+---------+

In this case, we have already uploaded a Parquet file with a million rows of data to the sample_data directory
underneath the impalademo store on ADLS. This session creates a table with matching column settings pointing to
the corresponding location in ADLS, then queries the table. Because the data is already in place on ADLS when the
table is created, no REFRESH statement is required.

[localhost:21000] > create table sample_data_adls
 > (id int, id bigint, val int, zerofill string,
 > name string, assertion boolean, city string, state
 string)
 > stored as parquet location 'adl://
impalademo.azuredatalakestore.net/sample_data';
[localhost:21000] > select count(*) from sample_data_adls;
+----------+
| count(*) |
+----------+
| 1000000 |
+----------+
[localhost:21000] > select count(*) howmany, assertion from sample_data_adls
 group by assertion;
+---------+-----------+
| howmany | assertion |
+---------+-----------+
| 667149 | true |
| 332851 | false |
+---------+-----------+

Running and Tuning Impala Queries for Data Stored on ADLS
Once the appropriate LOCATION attributes are set up at the table or partition level, you query data stored in ADLS
exactly the same as data stored on HDFS or in HBase:

• Queries against ADLS data support all the same file formats as for HDFS data.
• Tables can be unpartitioned or partitioned. For partitioned tables, either manually construct paths in ADLS

corresponding to the HDFS directories representing partition key values, or use ALTER TABLE ... ADD
PARTITION to set up the appropriate paths in ADLS.

• HDFS, Kudu, and HBase tables can be joined to ADLS tables, or ADLS tables can be joined with each other.

 | Using Impala with the Azure Data Lake Store (ADLS) | 762

• Authorization using the Sentry framework to control access to databases, tables, or columns works the same
whether the data is in HDFS or in ADLS.

• The catalogd daemon caches metadata for both HDFS and ADLS tables. Use REFRESH and INVALIDATE
METADATA for ADLS tables in the same situations where you would issue those statements for HDFS tables.

• Queries against ADLS tables are subject to the same kinds of admission control and resource management as
HDFS tables.

• Metadata about ADLS tables is stored in the same metastore database as for HDFS tables.
• You can set up views referring to ADLS tables, the same as for HDFS tables.
• The COMPUTE STATS, SHOW TABLE STATS, and SHOW COLUMN STATS statements work for ADLS tables

also.

Understanding and Tuning Impala Query Performance for ADLS Data

Although Impala queries for data stored in ADLS might be less performant than queries against the equivalent data
stored in HDFS, you can still do some tuning. Here are techniques you can use to interpret explain plans and profiles
for queries against ADLS data, and tips to achieve the best performance possible for such queries.

All else being equal, performance is expected to be lower for queries running against data on ADLS rather than
HDFS. The actual mechanics of the SELECT statement are somewhat different when the data is in ADLS. Although
the work is still distributed across the datanodes of the cluster, Impala might parallelize the work for a distributed
query differently for data on HDFS and ADLS. ADLS does not have the same block notion as HDFS, so Impala uses
heuristics to determine how to split up large ADLS files for processing in parallel. Because all hosts can access any
ADLS data file with equal efficiency, the distribution of work might be different than for HDFS data, where the data
blocks are physically read using short-circuit local reads by hosts that contain the appropriate block replicas. Although
the I/O to read the ADLS data might be spread evenly across the hosts of the cluster, the fact that all data is initially
retrieved across the network means that the overall query performance is likely to be lower for ADLS data than for
HDFS data.

Because ADLS does not expose the block sizes of data files the way HDFS does, any Impala INSERT or CREATE
TABLE AS SELECT statements use the PARQUET_FILE_SIZE query option setting to define the size of Parquet
data files. (Using a large block size is more important for Parquet tables than for tables that use other file formats.)

When optimizing aspects of for complex queries such as the join order, Impala treats tables on HDFS and ADLS
the same way. Therefore, follow all the same tuning recommendations for ADLS tables as for HDFS ones, such as
using the COMPUTE STATS statement to help Impala construct accurate estimates of row counts and cardinality. See
Tuning Impala for Performance on page 626 for details.

In query profile reports, the numbers for BytesReadLocal, BytesReadShortCircuit,
BytesReadDataNodeCached, and BytesReadRemoteUnexpected are blank because those metrics come
from HDFS. If you do see any indications that a query against an ADLS table performed “remote read” operations, do
not be alarmed. That is expected because, by definition, all the I/O for ADLS tables involves remote reads.

Restrictions on Impala Support for ADLS
Impala requires that the default filesystem for the cluster be HDFS. You cannot use ADLS as the only filesystem in
the cluster.

Although ADLS is often used to store JSON-formatted data, the current Impala support for ADLS does not include
directly querying JSON data. For Impala queries, use data files in one of the file formats listed in How Impala Works
with Hadoop File Formats on page 690. If you have data in JSON format, you can prepare a flattened version of
that data for querying by Impala as part of your ETL cycle.

You cannot use the ALTER TABLE ... SET CACHED statement for tables or partitions that are located in ADLS.

 | Using Impala with Isilon Storage | 763

Best Practices for Using Impala with ADLS
The following guidelines represent best practices derived from testing and real-world experience with Impala on
ADLS:

• Any reference to an ADLS location must be fully qualified. (This rule applies when ADLS is not designated as the
default filesystem.)

• Set any appropriate configuration settings for impalad.

Using Impala with Isilon Storage

You can use Impala to query data files that reside on EMC Isilon storage devices, rather than in HDFS. This
capability allows convenient query access to a storage system where you might already be managing large volumes of
data. The combination of the Impala query engine and Isilon storage is certified on Impala 2.2.4 or higher.

Because the EMC Isilon storage devices use a global value for the block size rather than a configurable value for each
file, the PARQUET_FILE_SIZE query option has no effect when Impala inserts data into a table or partition residing
on Isilon storage. Use the isi command to set the default block size globally on the Isilon device. For example, to set
the Isilon default block size to 256 MB, the recommended size for Parquet data files for Impala, issue the following
command:

isi hdfs settings modify --default-block-size=256MB

The typical use case for Impala and Isilon together is to use Isilon for the default filesystem, replacing HDFS entirely.
In this configuration, when you create a database, table, or partition, the data always resides on Isilon storage and you
do not need to specify any special LOCATION attribute. If you do specify a LOCATION attribute, its value refers to a
path within the Isilon filesystem. For example:

-- If the default filesystem is Isilon, all Impala data resides there
-- and all Impala databases and tables are located there.
CREATE TABLE t1 (x INT, s STRING);

-- You can specify LOCATION for database, table, or partition,
-- using values from the Isilon filesystem.
CREATE DATABASE d1 LOCATION '/some/path/on/isilon/server/d1.db';
CREATE TABLE d1.t2 (a TINYINT, b BOOLEAN);

Impala can write to, delete, and rename data files and database, table, and partition directories on Isilon storage.
Therefore, Impala statements such as CREATE TABLE, DROP TABLE, CREATE DATABASE, DROP DATABASE,
ALTER TABLE, and INSERT work the same with Isilon storage as with HDFS.

When the Impala spill-to-disk feature is activated by a query that approaches the memory limit, Impala writes all
the temporary data to a local (not Isilon) storage device. Because the I/O bandwidth for the temporary data depends
on the number of local disks, and clusters using Isilon storage might not have as many local disks attached, pay
special attention on Isilon-enabled clusters to any queries that use the spill-to-disk feature. Where practical, tune the
queries or allocate extra memory for Impala to avoid spilling. Although you can specify an Isilon storage device as
the destination for the temporary data for the spill-to-disk feature, that configuration is not recommended due to the
need to transfer the data both ways using remote I/O.

When tuning Impala queries on HDFS, you typically try to avoid any remote reads. When the data resides
on Isilon storage, all the I/O consists of remote reads. Do not be alarmed when you see non-zero numbers
for remote read measurements in query profile output. The benefit of the Impala and Isilon integration is
primarily convenience of not having to move or copy large volumes of data to HDFS, rather than raw query
performance. You can increase the performance of Impala I/O for Isilon systems by increasing the value for the --
num_remote_hdfs_io_threads startup option for the impalad daemon.

 | Using Impala Logging | 764

Using Impala Logging

The Impala logs record information about:

• Any errors Impala encountered. If Impala experienced a serious error during startup, you must diagnose and
troubleshoot that problem before you can do anything further with Impala.

• How Impala is configured.
• Jobs Impala has completed.

Note:

Formerly, the logs contained the query profile for each query, showing low-level details of how the work is
distributed among nodes and how intermediate and final results are transmitted across the network. To save space,
those query profiles are now stored in zlib-compressed files in /var/log/impala/profiles. You can access
them through the Impala web user interface. For example, at http://impalad-node-hostname:25000/
queries, each query is followed by a Profile link leading to a page showing extensive analytical data for the
query execution.

The auditing feature introduced in Impala 1.1.1 produces a separate set of audit log files when enabled. See Auditing
Impala Operations on page 104 for details.

In Impala 2.9 and higher, you can control how many audit event log files are kept on each host through the --
max_audit_event_log_files startup option for the impalad daemon, similar to the --max_log_files
option for regular log files.

The lineage feature introduced in Impala 2.2.0 produces a separate lineage log file when enabled. See Viewing
Lineage Information for Impala Data on page 106 for details.

Locations and Names of Impala Log Files
• By default, the log files are under the directory /var/log/impala. To change log file locations, modify the

defaults file described in Starting Impala on page 31.
• The significant files for the impalad process are impalad.INFO, impalad.WARNING, and

impalad.ERROR. You might also see a file impalad.FATAL, although this is only present in rare conditions.
• The significant files for the statestored process are statestored.INFO, statestored.WARNING,

and statestored.ERROR. You might also see a file statestored.FATAL, although this is only present in
rare conditions.

• The significant files for the catalogd process are catalogd.INFO, catalogd.WARNING, and
catalogd.ERROR. You might also see a file catalogd.FATAL, although this is only present in rare
conditions.

• Examine the .INFO files to see configuration settings for the processes.
• Examine the .WARNING files to see all kinds of problem information, including such things as suboptimal

settings and also serious runtime errors.
• Examine the .ERROR and/or .FATAL files to see only the most serious errors, if the processes crash, or queries

fail to complete. These messages are also in the .WARNING file.
• A new set of log files is produced each time the associated daemon is restarted. These log files have long names

including a timestamp. The .INFO, .WARNING, and .ERROR files are physically represented as symbolic links
to the latest applicable log files.

• The init script for the impala-server service also produces a consolidated log file /var/logs/impalad/
impala-server.log, with all the same information as the corresponding.INFO, .WARNING, and .ERROR
files.

• The init script for the impala-state-store service also produces a consolidated log file /var/logs/
impalad/impala-state-store.log, with all the same information as the corresponding.INFO,
.WARNING, and .ERROR files.

 | Using Impala Logging | 765

Impala stores information using the glog_v logging system. You will see some messages referring to C++ file
names. Logging is affected by:

• The GLOG_v environment variable specifies which types of messages are logged. See Setting Logging Levels on
page 766 for details.

• The --logbuflevel startup flag for the impalad daemon specifies how often the log information is written
to disk. The default is 0, meaning that the log is immediately flushed to disk when Impala outputs an important
messages such as a warning or an error, but less important messages such as informational ones are buffered in
memory rather than being flushed to disk immediately.

Managing Impala Logs
Review Impala log files on each host, when you have traced an issue back to a specific system.

Rotating Impala Logs
Impala periodically switches the physical files representing the current log files, after which it is safe to remove the
old files if they are no longer needed.

Impala can automatically remove older unneeded log files, a feature known as log rotation.

In Impala 2.2 and higher, the --max_log_files configuration option specifies how many log files to keep at each
severity level. You can specify an appropriate setting for each Impala-related daemon (impalad, statestored,
and catalogd). The default value is 10, meaning that Impala preserves the latest 10 log files for each severity
level (INFO, WARNING, ERROR, and FATAL). Impala checks to see if any old logs need to be removed based on the
interval specified in the logbufsecs setting, every 5 seconds by default.

A value of 0 preserves all log files, in which case you would set up set up manual log rotation using your Linux tool
or technique of choice. A value of 1 preserves only the very latest log file.

Reviewing Impala Logs
By default, the Impala log is stored at /var/logs/impalad/. The most comprehensive log, showing
informational, warning, and error messages, is in the file name impalad.INFO. View log file contents by using the
web interface or by examining the contents of the log file. (When you examine the logs through the file system, you
can troubleshoot problems by reading the impalad.WARNING and/or impalad.ERROR files, which contain the
subsets of messages indicating potential problems.)

On a machine named impala.example.com with default settings, you could view the Impala logs on that
machine by using a browser to access http://impala.example.com:25000/logs.

Note:

The web interface limits the amount of logging information displayed. To view every log entry, access the log files
directly through the file system.

You can view the contents of the impalad.INFO log file in the file system. With the default configuration settings,
the start of the log file appears as follows:

[user@example impalad]$ pwd
/var/log/impalad
[user@example impalad]$ more impalad.INFO
Log file created at: 2013/01/07 08:42:12
Running on machine: impala.example.com
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
I0107 08:42:12.292155 14876 daemon.cc:34] impalad version 0.4 RELEASE (build
 9d7fadca0461ab40b9e9df8cdb47107ec6b27cff)
Built on Fri, 21 Dec 2012 12:55:19 PST

 | Using Impala Logging | 766

I0107 08:42:12.292484 14876 daemon.cc:35] Using hostname: impala.example.com
I0107 08:42:12.292706 14876 logging.cc:76] Flags (see also /varz are on
 debug webserver):
--dump_ir=false
--module_output=
--be_port=22000
--classpath=
--hostname=impala.example.com

Note: The preceding example shows only a small part of the log file. Impala log files are often several megabytes in
size.

Understanding Impala Log Contents
The logs store information about Impala startup options. This information appears once for each time Impala is started
and may include:

• Machine name.
• Impala version number.
• Flags used to start Impala.
• CPU information.
• The number of available disks.

There is information about each job Impala has run. Because each Impala job creates an additional set of data about
queries, the amount of job specific data may be very large. Logs may contained detailed information on jobs. These
detailed log entries may include:

• The composition of the query.
• The degree of data locality.
• Statistics on data throughput and response times.

Setting Logging Levels
Impala uses the GLOG system, which supports three logging levels. You can adjust logging levels by exporting
variable settings. To change logging settings manually, use a command similar to the following on each node before
starting impalad:

export GLOG_v=1

Note: For performance reasons, do not enable the most verbose logging level of 3 unless there is no other alternative
for troubleshooting.

For more information on how to configure GLOG, including how to set variable logging levels for different system
components, see documentation for the glog project on github.

Understanding What is Logged at Different Logging Levels

As logging levels increase, the categories of information logged are cumulative. For example, GLOG_v=2 records
everything GLOG_v=1 records, as well as additional information.

Increasing logging levels imposes performance overhead and increases log size. Where practical, use GLOG_v=1 for
most cases: this level has minimal performance impact but still captures useful troubleshooting information.

Additional information logged at each level is as follows:

• GLOG_v=1 - The default level. Logs information about each connection and query that is initiated to an
impalad instance, including runtime profiles.

https://github.com/google/glog

 | Troubleshooting Impala | 767

• GLOG_v=2 - Everything from the previous level plus information for each RPC initiated. This level also records
query execution progress information, including details on each file that is read.

• GLOG_v=3 - Everything from the previous level plus logging of every row that is read. This level is only
applicable for the most serious troubleshooting and tuning scenarios, because it can produce exceptionally large
and detailed log files, potentially leading to its own set of performance and capacity problems.

Redacting Sensitive Information from Impala Log Files
Log redaction is a security feature that prevents sensitive information from being displayed in locations used by
administrators for monitoring and troubleshooting, such as log files and the Impala debug web user interface. You
configure regular expressions that match sensitive types of information processed by your system, such as credit card
numbers or tax IDs, and literals matching these patterns are obfuscated wherever they would normally be recorded in
log files or displayed in administration or debugging user interfaces.

In a security context, the log redaction feature is complementary to the Sentry authorization framework. Sentry
prevents unauthorized users from being able to directly access table data. Redaction prevents administrators or
support personnel from seeing the smaller amounts of sensitive or personally identifying information (PII) that might
appear in queries issued by those authorized users.

See the documentation for your Apache Hadoop distribution for details about how to enable this feature and set up the
regular expressions to detect and redact sensitive information within SQL statement text.

Troubleshooting Impala

Troubleshooting for Impala requires being able to diagnose and debug problems with performance, network
connectivity, out-of-memory conditions, disk space usage, and crash or hang conditions in any of the Impala-related
daemons.

Troubleshooting Impala SQL Syntax Issues
In general, if queries issued against Impala fail, you can try running these same queries against Hive.

• If a query fails against both Impala and Hive, it is likely that there is a problem with your query or other elements
of your environment:

• Review the Language Reference to ensure your query is valid.
• Check Impala Reserved Words on page 776 to see if any database, table, column, or other object names in

your query conflict with Impala reserved words. Quote those names with backticks (``) if so.
• Check Impala Built-In Functions on page 418 to confirm whether Impala supports all the built-in functions

being used by your query, and whether argument and return types are the same as you expect.
• Review the contents of the Impala logs for any information that may be useful in identifying the source of the

problem.
• If a query fails against Impala but not Hive, it is likely that there is a problem with your Impala installation.

Troubleshooting I/O Capacity Problems
Impala queries are typically I/O-intensive. If there is an I/O problem with storage devices, or with HDFS itself,
Impala queries could show slow response times with no obvious cause on the Impala side. Slow I/O on even a single
DataNode could result in an overall slowdown, because queries involving clauses such as ORDER BY, GROUP BY,
or JOIN do not start returning results until all DataNodes have finished their work.

 | Troubleshooting Impala | 768

To test whether the Linux I/O system itself is performing as expected, run Linux commands like the following on
each DataNode:

$ sudo sysctl -w vm.drop_caches=3 vm.drop_caches=0
vm.drop_caches = 3
vm.drop_caches = 0
$ sudo dd if=/dev/sda bs=1M of=/dev/null count=1k
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 5.60373 s, 192 MB/s
$ sudo dd if=/dev/sdb bs=1M of=/dev/null count=1k
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 5.51145 s, 195 MB/s
$ sudo dd if=/dev/sdc bs=1M of=/dev/null count=1k
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 5.58096 s, 192 MB/s
$ sudo dd if=/dev/sdd bs=1M of=/dev/null count=1k
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 5.43924 s, 197 MB/s

On modern hardware, a throughput rate of less than 100 MB/s typically indicates a performance issue with the storage
device. Correct the hardware problem before continuing with Impala tuning or benchmarking.

Impala Troubleshooting Quick Reference
The following table lists common problems and potential solutions.

Symptom Explanation Recommendation

Impala takes
a long time to
start.

Impala instances with large numbers of tables,
partitions, or data files take longer to start
because the metadata for these objects is
broadcast to all impalad nodes and cached.

Adjust timeout and synchronicity settings.

Joins fail to
complete.

There may be insufficient memory. During
a join, data from the second, third, and so on
sets to be joined is loaded into memory. If
Impala chooses an inefficient join order or
join mechanism, the query could exceed the
total memory available.

Start by gathering statistics with the
COMPUTE STATS statement for each table
involved in the join. Consider specifying the
[SHUFFLE] hint so that data from the joined
tables is split up between nodes rather than
broadcast to each node. If tuning at the SQL
level is not sufficient, add more memory to
your system or join smaller data sets.

 | Troubleshooting Impala | 769

Symptom Explanation Recommendation

Queries return
incorrect
results.

Impala metadata may be outdated after
changes are performed in Hive.

Where possible, use the appropriate Impala
statement (INSERT, LOAD DATA, CREATE
TABLE, ALTER TABLE, COMPUTE
STATS, and so on) rather than switching back
and forth between Impala and Hive. Impala
automatically broadcasts the results of DDL
and DML operations to all Impala nodes
in the cluster, but does not automatically
recognize when such changes are made
through Hive. After inserting data, adding a
partition, or other operation in Hive, refresh
the metadata for the table as described in
REFRESH Statement on page 317.

Queries are
slow to return
results.

Some impalad instances may not have
started. Using a browser, connect to
the host running the Impala state store.
Connect using an address of the form
http://hostname:port/metrics.

Note: Replace hostname and port with the
hostname and port of your Impala state store
host machine and web server port. The default
port is 25010.

The number of impalad instances listed
should match the expected number of
impalad instances installed in the cluster.
There should also be one impalad instance
installed on each DataNode

Ensure Impala is installed on all DataNodes.
Start any impalad instances that are not
running.

Queries are
slow to return
results.

Impala may not be configured to use native
checksumming. Native checksumming uses
machine-specific instructions to compute
checksums over HDFS data very quickly.
Review Impala logs. If you find instances
of "INFO util.NativeCodeLoader:
Loaded the native-hadoop"
messages, native checksumming is not
enabled.

Ensure Impala is configured to use native
checksumming as described in Post-
Installation Configuration for Impala on page
25.

Queries are
slow to return
results.

Impala may not be configured to use data
locality tracking.

Test Impala for data locality tracking and
make configuration changes as necessary.
Information on this process can be found in
Post-Installation Configuration for Impala on
page 25.

 | Troubleshooting Impala | 770

Symptom Explanation Recommendation

Attempts
to complete
Impala tasks
such as
executing
INSERT-
SELECT
actions
fail. The
Impala logs
include notes
that files
could not be
opened due
to permission
denied.

This can be the result of permissions issues.
For example, you could use the Hive shell as
the hive user to create a table. After creating
this table, you could attempt to complete
some action, such as an INSERT-SELECT
on the table. Because the table was created
using one user and the INSERT-SELECT is
attempted by another, this action may fail due
to permissions issues.

In general, ensure the Impala user has
sufficient permissions. In the preceding
example, ensure the Impala user has sufficient
permissions to the table that the Hive user
created.

Impala fails
to start up,
with the
impalad
logs referring
to errors
connecting to
the statestore
service and
attempts to
re-register.

A large number of databases, tables,
partitions, and so on can require metadata
synchronization, particularly on startup, that
takes longer than the default timeout for the
statestore service.

Configure the statestore timeout value
and possibly other settings related to the
frequency of statestore updates and metadata
loading. See Increasing the Statestore
Timeout on page 76 and Scalability
Considerations for the Impala Statestore on
page 673.

Impala Web User Interface for Debugging
Each of the Impala daemons (impalad, statestored, and catalogd) includes a built-in web server that
displays diagnostic and status information:

• The impalad web UI (default port: 25000) includes information about configuration settings, running and
completed queries, and associated performance and resource usage for queries. In particular, the Details link
for each query displays alternative views of the query including a graphical representation of the plan, and the
output of the EXPLAIN, SUMMARY, and PROFILE statements from impala-shell. Each host that runs
the impalad daemon has its own instance of the web UI, with details about those queries for which that host
served as the coordinator. The impalad web UI is mainly for diagnosing query problems that can be traced to a
particular node.

• The statestored web UI (default port: 25010) includes information about memory usage, configuration
settings, and ongoing health checks performed by this daemon. Because there is only a single instance of this
daemon within any cluster, you view the web UI only on the particular host that serves as the Impala Statestore.

• The catalogd web UI (default port: 25020) includes information about the databases, tables, and other objects
managed by Impala, in addition to the resource usage and configuration settings of the daemon itself. The catalog
information is represented as the underlying Thrift data structures. Because there is only a single instance of this
daemon within any cluster, you view the web UI only on the particular host that serves as the Impala Catalog
Server.

Note:

The web user interface is primarily for problem diagnosis and troubleshooting. The items listed and their formats are
subject to change.

 | Troubleshooting Impala | 771

Debug Web UI for impalad

To debug and troubleshoot the impalad daemon using a web-based interface, open the URL http://impala-
server-hostname:25000/ in a browser. (For secure clusters, use the prefix https:// instead of http://.)
Because each Impala node produces its own set of debug information, choose a specific node that you are curious
about or suspect is having problems.

Main Page

By default, the main page of the debug web UI is at http://impala-server-hostname:25000/ (non-
secure cluster) or https://impala-server-hostname:25000/ (secure cluster).

This page lists the version of the impalad daemon, plus basic hardware and software information about the
corresponding host, such as information about the CPU, memory, disks, and operating system version.

Backends Page

By default, the backends page of the debug web UI is at http://impala-server-hostname:25000/
backends (non-secure cluster) or https://impala-server-hostname:25000/backends (secure
cluster).

This page lists the host and port info for each of the impalad nodes in the cluster. Because each impalad daemon
knows about every other impalad daemon through the statestore, this information should be the same regardless of
which node you select. Links take you to the corresponding debug web pages for any of the other nodes in the cluster.

Catalog Page

By default, the catalog page of the debug web UI is at http://impala-server-hostname:25000/
catalog (non-secure cluster) or https://impala-server-hostname:25000/catalog (secure cluster).

This page displays a list of databases and associated tables recognized by this instance of impalad. You can use
this page to locate which database a table is in, check the exact spelling of a database or table name, look for identical
table names in multiple databases, and so on.

Logs Page

By default, the logs page of the debug web UI is at http://impala-server-hostname:25000/logs (non-
secure cluster) or https://impala-server-hostname:25000/logs (secure cluster).

This page shows the last portion of the impalad.INFO log file, the most detailed of the info, warning, and error
logs for the impalad daemon. You can refer here to see the details of the most recent operations, whether the
operations succeeded or encountered errors. This central page can be more convenient than looking around the
filesystem for the log files, which could be in different locations on clusters that use cluster management software.

Memz Page

By default, the memz page of the debug web UI is at http://impala-server-hostname:25000/memz
(non-secure cluster) or https://impala-server-hostname:25000/memz (secure cluster).

This page displays summary and detailed information about memory usage by the impalad daemon. You can see
the memory limit in effect for the node, and how much of that memory Impala is currently using.

Metrics Page

By default, the metrics page of the debug web UI is at http://impala-server-hostname:25000/
metrics (non-secure cluster) or https://impala-server-hostname:25000/metrics (secure cluster).

This page displays the current set of metrics: counters and flags representing various aspects of impalad internal
operation.

 | Troubleshooting Impala | 772

Queries Page

By default, the queries page of the debug web UI is at http://impala-server-hostname:25000/
queries (non-secure cluster) or https://impala-server-hostname:25000/queries (secure cluster).

This page lists all currently running queries, plus any completed queries whose details still reside in memory. The
queries are listed in reverse chronological order, with the most recent at the top. (You can control the amount of
memory devoted to completed queries by specifying the --query_log_size startup option for impalad.)

On this page, you can see at a glance how many SQL statements are failing (State value of EXCEPTION), how
large the result sets are (# rows fetched), and how long each statement took (Start Time and End Time).

Each query has an associated link that displays the detailed query profile, which you can examine to understand the
performance characteristics of that query. See Using the Query Profile for Performance Tuning on page 664 for
details.

Sessions Page

By default, the sessions page of the debug web UI is at http://impala-server-hostname:25000/
sessions (non-secure cluster) or https://impala-server-hostname:25000/sessions (secure
cluster).

This page displays information about the sessions currently connected to this impalad instance. For example,
sessions could include connections from the impala-shell command, JDBC or ODBC applications, or the Impala
Query UI in the Hue web interface.

Threadz Page

By default, the threadz page of the debug web UI is at http://impala-server-hostname:25000/
threadz (non-secure cluster) or https://impala-server-hostname:25000/threadz (secure cluster).

This page displays information about the threads used by this instance of impalad, and shows which categories they
are grouped into. Making use of this information requires substantial knowledge about Impala internals.

Varz Page

By default, the varz page of the debug web UI is at http://impala-server-hostname:25000/varz (non-
secure cluster) or https://impala-server-hostname:25000/varz (secure cluster).

This page shows the configuration settings in effect when this instance of impalad communicates with other
Hadoop components such as HDFS and YARN. These settings are collected from a set of configuration files; Impala
might not actually make use of all settings.

The bottom of this page also lists all the command-line settings in effect for this instance of impalad. See Modifying
Impala Startup Options on page 32 for information about modifying these values.

Breakpad Minidumps for Impala (Impala 2.6 or higher only)
The breakpad project is an open-source framework for crash reporting. In Impala 2.6 and higher, Impala can use
breakpad to record stack information and register values when any of the Impala-related daemons crash due to an
error such as SIGSEGV or unhandled exceptions. The dump files are much smaller than traditional core dump files.
The dump mechanism itself uses very little memory, which improves reliability if the crash occurs while the system is
low on memory.

Important: Because of the internal mechanisms involving Impala memory allocation and Linux signalling for out-
of-memory (OOM) errors, if an Impala-related daemon experiences a crash due to an OOM condition, it does not
generate a minidump for that error.

https://chromium.googlesource.com/breakpad/breakpad/

 | Troubleshooting Impala | 773

Enabling or Disabling Minidump Generation

By default, a minidump file is generated when an Impala-related daemon crashes. To turn off generation of the
minidump files, change the minidump_path configuration setting of one or more Impala-related daemons to the
empty string, and restart the corresponding services or daemons.

In Impala 2.7 and higher, you can send a SIGUSR1 signal to any Impala-related daemon to write a Breakpad
minidump. For advanced troubleshooting, you can now produce a minidump without triggering a crash.

Specifying the Location for Minidump Files

By default, all minidump files are written to the following location on the host where a crash occurs:

• Clusters not managed by cluster management software: impala_log_dir/daemon_name/
minidumps/daemon_name

The minidump files for impalad, catalogd, and statestored are each written to a separate directory.

To specify a different location, set the minidump_path configuration setting of one or more Impala-related daemons,
and restart the corresponding services or daemons.

If you specify a relative path for this setting, the value is interpreted relative to the default minidump_path directory.

Controlling the Number of Minidump Files

Like any files used for logging or troubleshooting, consider limiting the number of minidump files, or removing
unneeded ones, depending on the amount of free storage space on the hosts in the cluster.

Because the minidump files are only used for problem resolution, you can remove any such files that are not needed
to debug current issues.

To control how many minidump files Impala keeps around at any one time, set the max_minidumps configuration
setting for of one or more Impala-related daemon, and restart the corresponding services or daemons. The default for
this setting is 9. A zero or negative value is interpreted as “unlimited”.

Detecting Crash Events

You can see in the Impala log files when crash events occur that generate minidump files. Because each restart begins
a new log file, the “crashed” message is always at or near the bottom of the log file. There might be another later
message if core dumps are also enabled.

Demonstration of Breakpad Feature

The following example uses the command kill -11 to simulate a SIGSEGV crash for an impalad process on a
single DataNode, then examines the relevant log files and minidump file.

First, as root on a worker node, kill the impalad process with a SIGSEGV error. The original process ID was
23114.

ps ax | grep impalad
23114 ? Sl 0:18 /opt/local/parcels/<parcel_version>/lib/impala/
sbin/impalad --flagfile=/var/run/impala/process/114-impala-IMPALAD/impala-
conf/impalad_flags
31259 pts/0 S+ 0:00 grep impalad
#
kill -11 23114
#
ps ax | grep impalad
31374 ? Rl 0:04 /opt/local/parcels/<parcel_version>/lib/impala/
sbin/impalad --flagfile=/var/run/impala/process/114-impala-IMPALAD/impala-
conf/impalad_flags
31475 pts/0 S+ 0:00 grep impalad

 | Troubleshooting Impala | 774

We locate the log directory underneath /var/log. There is a .INFO, .WARNING, and .ERROR log file for the
23114 process ID. The minidump message is written to the .INFO file and the .ERROR file, but not the .WARNING
file. In this case, a large core file was also produced.

cd /var/log/impalad
ls -la | grep 23114
-rw------- 1 impala impala 3539079168 Jun 23 15:20 core.23114
-rw-r--r-- 1 impala impala 99057 Jun 23 15:20 hs_err_pid23114.log
-rw-r--r-- 1 impala impala 351 Jun 23 15:20
 impalad.worker_node_123.impala.log.ERROR.20160623-140343.23114
-rw-r--r-- 1 impala impala 29101 Jun 23 15:20
 impalad.worker_node_123.impala.log.INFO.20160623-140343.23114
-rw-r--r-- 1 impala impala 228 Jun 23 14:03
 impalad.worker_node_123.impala.log.WARNING.20160623-140343.23114

The .INFO log includes the location of the minidump file, followed by a report of a core dump. With the breakpad
minidump feature enabled, now we might disable core dumps or keep fewer of them around.

cat impalad.worker_node_123.impala.log.INFO.20160623-140343.23114
...
Wrote minidump to /var/log/impala-minidumps/impalad/0980da2d-
a905-01e1-25ff883a-04ee027a.dmp
#
A fatal error has been detected by the Java Runtime Environment:
#
SIGSEGV (0xb) at pc=0x00000030c0e0b68a, pid=23114, tid=139869541455968
#
JRE version: Java(TM) SE Runtime Environment (7.0_67-b01) (build 1.7.0_67-
b01)
Java VM: Java HotSpot(TM) 64-Bit Server VM (24.65-b04 mixed mode linux-
amd64 compressed oops)
Problematic frame:
C [libpthread.so.0+0xb68a] pthread_cond_wait+0xca
#
Core dump written. Default location: /var/log/impalad/core or core.23114
#
An error report file with more information is saved as:
/var/log/impalad/hs_err_pid23114.log
#
If you would like to submit a bug report, please visit:
http://bugreport.sun.com/bugreport/crash.jsp
The crash happened outside the Java Virtual Machine in native code.
See problematic frame for where to report the bug.
...

cat impalad.worker_node_123.impala.log.ERROR.20160623-140343.23114

Log file created at: 2016/06/23 14:03:43
Running on machine:.worker_node_123
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
E0623 14:03:43.911002 23114 logging.cc:118] stderr will be logged to this
 file.
Wrote minidump to /var/log/impala-minidumps/impalad/0980da2d-
a905-01e1-25ff883a-04ee027a.dmp

 | Ports Used by Impala | 775

The resulting minidump file is much smaller than the corresponding core file, making it much easier to supply
diagnostic information to the appropriate support channel.

pwd
/var/log/impalad
cd ../impala-minidumps/impalad
ls
0980da2d-a905-01e1-25ff883a-04ee027a.dmp
du -kh *
2.4M 0980da2d-a905-01e1-25ff883a-04ee027a.dmp

Ports Used by Impala

Impala uses the TCP ports listed in the following table. Before deploying Impala, ensure these ports are open on each
system.

Component Service Port Access
Requirement

Comment

Impala Daemon Impala Daemon Frontend
Port

21000 External Used to transmit commands
and receive results by
impala-shell and some
ODBC drivers.

Impala Daemon Impala Daemon Frontend
Port

21050 External Used to transmit commands
and receive results by
applications, such as
Business Intelligence tools,
using JDBC, the Beeswax
query editor in Hue, and
some ODBC drivers.

Impala Daemon Impala Daemon Backend
Port

22000 Internal Internal use only. Impala
daemons use this port to
communicate with each
other.

Impala Daemon StateStoreSubscriber Service
Port

23000 Internal Internal use only. Impala
daemons listen on this
port for updates from the
statestore daemon.

Catalog Daemon StateStoreSubscriber Service
Port

23020 Internal Internal use only. The
catalog daemon listens on
this port for updates from
the statestore daemon.

Impala Daemon Impala Daemon HTTP
Server Port

25000 External Impala web interface for
administrators to monitor
and troubleshoot.

 | Impala Reserved Words | 776

Component Service Port Access
Requirement

Comment

Impala StateStore
Daemon

StateStore HTTP Server Port 25010 External StateStore web interface for
administrators to monitor
and troubleshoot.

Impala Catalog
Daemon

Catalog HTTP Server Port 25020 External Catalog service web
interface for administrators
to monitor and troubleshoot.
New in Impala 1.2 and
higher.

Impala StateStore
Daemon

StateStore Service Port 24000 Internal Internal use only. The
statestore daemon listens
on this port for registration/
unregistration requests.

Impala Catalog
Daemon

StateStore Service Port 26000 Internal Internal use only. The
catalog service uses this port
to communicate with the
Impala daemons. New in
Impala 1.2 and higher.

Impala Daemon Llama Callback Port 28000 Internal Internal use only.
Impala daemons use to
communicate with Llama.
New in Impala 1.3 and
higher.

Impala Llama
ApplicationMaster

Llama Thrift Admin Port 15002 Internal Internal use only. New in
Impala 1.3 and higher.

Impala Llama
ApplicationMaster

Llama Thrift Port 15000 Internal Internal use only. New in
Impala 1.3 and higher.

Impala Llama
ApplicationMaster

Llama HTTP Port 15001 External Llama service web interface
for administrators to monitor
and troubleshoot. New in
Impala 1.3 and higher.

Impala Reserved Words

The following are the reserved words for the current release of Impala. A reserved word is one that cannot be used
directly as an identifier; you must quote it with backticks. For example, a statement CREATE TABLE select
(x INT) fails, while CREATE TABLE `select` (x INT) succeeds. Impala does not reserve the names of
aggregate or scalar built-in functions. (Formerly, Impala did reserve the names of some aggregate functions.)

Because different database systems have different sets of reserved words, and the reserved words change from release
to release, carefully consider database, table, and column names to ensure maximum compatibility between products
and versions.

 | Impala Reserved Words | 777

Because you might switch between Impala and Hive when doing analytics and ETL, also consider whether your
object names are the same as any Hive keywords, and rename or quote any that conflict. Consult the list of Hive
keywords.

List of Current Reserved Words

add
aggregate
all
alter
analytic
and
anti
api_version
as
asc
avro
between
bigint
binary
blocksize
boolean

by
cached
cascade
case
cast
change
char
class
close_fn
column
columns
comment
compression
compute
create
cross
current
data
database
databases
date
datetime
decimal
default
delete
delimited
desc
describe
distinct

div
double
drop
else
encoding
end
escaped

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Keywords,Non-reservedKeywordsandReservedKeywords
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Keywords,Non-reservedKeywordsandReservedKeywords

 | Impala Reserved Words | 778

exists
explain
extended
external
false
fields
fileformat
finalize_fn
first
float
following
for
format
formatted
from
full
function
functions
grant
group
hash
having
if

ilike
in
incremental
init_fn
inner
inpath
insert
int
integer
intermediate
interval
into
invalidate
iregexp
is
join
last
left
like
limit
lines
load
location
merge_fn
metadata
not
null
nulls
offset
on
or
order
outer
over
overwrite
parquet
parquetfile
partition
partitioned
partitions

 | Impala Reserved Words | 779

preceding
prepare_fn
produced
purge
range
rcfile
real
refresh
regexp
rename
replace
restrict
returns
revoke
right
rlike
role
roles
row
rows
schema
schemas
select
semi
sequencefile
serdeproperties
serialize_fn
set
show
smallint

stats
stored
straight_join
string
symbol
table
tables
tablesample
tblproperties
terminated
textfile
then
timestamp
tinyint
to
true
truncate
unbounded
uncached
union
update
update_fn
upsert
use
using
values
varchar
view
when
where
with

 | Impala Reserved Words | 780

Planning for Future Reserved Words
The previous list of reserved words includes all the keywords used in the current level of Impala SQL syntax. To
future-proof your code, you should avoid additional words in case they become reserved words if Impala adds
features in later releases. This kind of planning can also help to avoid name conflicts in case you port SQL from other
systems that have different sets of reserved words.

The following list contains additional words that you should avoid for table, column, or other object names, even
though they are not currently reserved by Impala.

any
authorization
backup
begin
break
browse
bulk
cascade
check
checkpoint
close
clustered
coalesce
collate
commit
constraint
contains
continue
convert
current
current_date
current_time
current_timestamp
current_user
cursor
dbcc
deallocate
declare
default
deny
disk
distributed
dump
errlvl
escape
except
exec
execute
exit
fetch
file
fillfactor
for
foreign
freetext
goto
holdlock
identity
index
intersect
key
kill

 | Impala Reserved Words | 781

lineno
merge
national
nocheck
nonclustered
nullif
of
off
offsets
open
option
percent
pivot
plan
precision
primary
print
proc
procedure
public
raiserror
read
readtext
reconfigure
references
replication
restore
restrict
return
revert
rollback
rowcount
rule
save
securityaudit
session_user
setuser
shutdown
some
statistics
system_user
textsize
then
top
tran
transaction
trigger
try_convert
unique
unpivot
updatetext
user
varying
waitfor
while
within
writetext

 | Impala Frequently Asked Questions | 782

Impala Frequently Asked Questions

This section lists frequently asked questions for Apache Impala, the interactive SQL engine for Hadoop.

This section is under construction.

Impala Release Notes

These release notes provide information on the new features and known issues and limitations for Impala versions
up to Impala 2.8.x. For users upgrading from earlier Impala releases, or using Impala in combination with specific
versions of other software, Incompatible Changes and Limitations in Apache Impala on page 805 lists any changes
to file formats, SQL syntax, or software dependencies to take into account.

Once you are finished reviewing these release notes, for more information about using Impala, see Impala Concepts
and Architecture on page 14.

Impala Release Notes
These release notes provide information on the new features and known issues and limitations for Impala versions
up to Impala 2.8.x. For users upgrading from earlier Impala releases, or using Impala in combination with specific
versions of other software, Incompatible Changes and Limitations in Apache Impala on page 805 lists any changes
to file formats, SQL syntax, or software dependencies to take into account.

Once you are finished reviewing these release notes, for more information about using Impala, see Impala Concepts
and Architecture on page 14.

New Features in Apache Impala
This release of Impala contains the following changes and enhancements from previous releases.

New Features in Impala 2.11

For the full list of issues closed in this release, including the issues marked as “new features” or “improvements”, see
the changelog for Impala 2.11.

New Features in Impala 2.10

For the full list of issues closed in this release, including the issues marked as “new features” or “improvements”, see
the changelog for Impala 2.10.

New Features in Impala 2.9

For the full list of issues closed in this release, including the issues marked as “new features” or “improvements”, see
the changelog for Impala 2.9.

The following are some of the most significant new features in this release:

• A new function, replace(), which is faster than regexp_replace() for simple string substitutions. See
Impala String Functions on page 510 for details.

• Startup flags for the impalad daemon, is_executor and is_coordinator, let you divide the work on
a large, busy cluster between a small number of hosts acting as query coordinators, and a larger number of hosts

https://impala.apache.org/docs/changelog-2.11.html
https://impala.apache.org/docs/changelog-2.10.html
https://impala.apache.org/docs/changelog-2.9.html

 | Impala Release Notes | 783

acting as query executors. By default, each host can act in both roles, potentially introducing bottlenecks during
heavily concurrent workloads. See Scalability Considerations for Impala on page 672 for details.

New Features in Impala 2.8

• Performance and scalability improvements:

• The COMPUTE STATS statement can take advantage of multithreading.
• Improved scalability for highly concurrent loads by reducing the possibility of TCP/IP timeouts. A

configuration setting, accepted_cnxn_queue_depth, can be adjusted upwards to avoid this type of
timeout on large clusters.

• Several performance improvements were made to the mechanism for generating native code:

• Some queries involving analytic functions can take better advantage of native code generation.
• Modules produced during intermediate code generation are organized to be easier to cache and reuse during

the lifetime of a long-running or complicated query.
• The COMPUTE STATS statement is more efficient (less time for the codegen phase) for tables with a large

number of columns, especially for tables containing TIMESTAMP columns.
• The logic for determining whether or not to use a runtime filter is more reliable, and the evaluation process

itself is faster because of native code generation.
• The MT_DOP query option enables multithreading for a number of Impala operations. COMPUTE STATS

statements for Parquet tables use a default of MT_DOP=4 to improve the intra-node parallelism and CPU
efficiency of this data-intensive operation.

• The COMPUTE STATS statement is more efficient (less time for the codegen phase) for tables with a large
number of columns.

• A new hint, CLUSTERED, allows Impala INSERT operations on a Parquet table that use dynamic partitioning
to process a high number of partitions in a single statement. The data is ordered based on the partition key
columns, and each partition is only written by a single host, reducing the amount of memory needed to buffer
Parquet data while the data blocks are being constructed.

• The new configuration setting inc_stats_size_limit_bytes lets you reduce the load on the catalog
server when running the COMPUTE INCREMENTAL STATS statement for very large tables.

• Impala folds many constant expressions within query statements, rather than evaluating them for each row.
This optimization is especially useful when using functions to manipulate and format TIMESTAMP values,
such as the result of an expression such as to_date(now() - interval 1 day).

• Parsing of complicated expressions is faster. This speedup is especially useful for queries containing large
CASE expressions.

• Evaluation is faster for IN operators with many constant arguments. The same performance improvement
applies to other functions with many constant arguments.

• Impala optimizes identical comparison operators within multiple OR blocks.
• The reporting for wall-clock times and total CPU time in profile output is more accurate.
• A new query option, SCRATCH_LIMIT, lets you restrict the amount of space used when a query exceeds

the memory limit and activates the “spill to disk” mechanism. This option helps to avoid runaway queries or
make queries “fail fast” if they require more memory than anticipated. You can prevent runaway queries from
using excessive amounts of spill space, without restarting the cluster to turn the spilling feature off entirely.
See SCRATCH_LIMIT Query Option on page 393 for details.

• Integration with Apache Kudu:

• The experimental Impala support for the Kudu storage layer has been folded into the main Impala development
branch. Impala can now directly access Kudu tables, opening up new capabilities such as enhanced DML
operations and continuous ingestion.

• The DELETE statement is a flexible way to remove data from a Kudu table. Previously, removing data from an
Impala table involved removing or rewriting the underlying data files, dropping entire partitions, or rewriting
the entire table. This Impala statement only works for Kudu tables.

• The UPDATE statement is a flexible way to modify data within a Kudu table. Previously, updating data in an
Impala table involved replacing the underlying data files, dropping entire partitions, or rewriting the entire
table. This Impala statement only works for Kudu tables.

 | Impala Release Notes | 784

• The UPSERT statement is a flexible way to ingest, modify, or both data within a Kudu table. Previously,
ingesting data that might contain duplicates involved an inefficient multi-stage operation, and there was
no built-in protection against duplicate data. The UPSERT statement, in combination with the primary key
designation for Kudu tables, lets you add or replace rows in a single operation, and automatically avoids
creating any duplicate data.

• The CREATE TABLE statement gains some new clauses that are specific to Kudu tables: PARTITION
BY, PARTITIONS, STORED AS KUDU, and column attributes PRIMARY KEY, NULL and NOT
NULL, ENCODING, COMPRESSION, DEFAULT, and BLOCK_SIZE. These clauses replace the explicit
TBLPROPERTIES settings that were required in the early experimental phases of integration between Impala
and Kudu.

• The ALTER TABLE statement can change certain attributes of Kudu tables. You can add, drop, or rename
columns. You can add or drop range partitions. You can change the TBLPROPERTIES value to rename
or point to a different underlying Kudu table, independently from the Impala table name in the metastore
database. You cannot change the data type of an existing column in a Kudu table.

• The SHOW PARTITIONS statement displays information about the distribution of data between partitions in
Kudu tables. A new variation, SHOW RANGE PARTITIONS, displays information about the Kudu-specific
partitions that apply across ranges of key values.

• Not all Impala data types are supported in Kudu tables. In particular, currently the Impala TIMESTAMP type
is not allowed in a Kudu table. Impala does not recognize the UNIXTIME_MICROS Kudu type when it is
present in a Kudu table. (These two representations of date/time data use different units and are not directly
compatible.) You cannot create columns of type TIMESTAMP, DECIMAL, VARCHAR, or CHAR within a Kudu
table. Within a query, you can cast values in a result set to these types. Certain types, such as BOOLEAN,
cannot be used as primary key columns.

• Currently, Kudu tables are not interchangeable between Impala and Hive the way other kinds of Impala tables
are. Although the metadata for Kudu tables is stored in the metastore database, currently Hive cannot access
Kudu tables.

• The INSERT statement works for Kudu tables. The organization of the Kudu data makes it more efficient than
with HDFS-backed tables to insert data in small batches, such as with the INSERT ... VALUES syntax.

• Some audit data is recorded for data governance purposes. All UPDATE, DELETE, and UPSERT statements
are characterized as INSERT operations in the audit log. Currently, lineage metadata is not generated for
UPDATE and DELETE operations on Kudu tables.

• Currently, Kudu tables have limited support for Sentry:

• Access to Kudu tables must be granted to roles as usual.
• Currently, access to a Kudu table through Sentry is “all or nothing”. You cannot enforce finer-grained

permissions such as at the column level, or permissions on certain operations such as INSERT.
• Only users with ALL privileges on SERVER can create external Kudu tables.

Because non-SQL APIs can access Kudu data without going through Sentry authorization, currently the Sentry
support is considered preliminary.

• Equality and IN predicates in Impala queries are pushed to Kudu and evaluated efficiently by the Kudu storage
layer.

• Security:

• Impala can take advantage of the S3 encrypted credential store, to avoid exposing the secret key when
accessing data stored on S3.

• The REFRESH statement now updates information about HDFS block locations. Therefore, you can perform a fast
and efficient REFRESH after doing an HDFS rebalancing operation instead of the more expensive INVALIDATE
METADATA statement.

• [IMPALA-1654] Several kinds of DDL operations can now work on a range of partitions. The partitions can be
specified using operators such as <, >=, and != rather than just an equality predicate applying to a single partition.
This new feature extends the syntax of several clauses of the ALTER TABLE statement (DROP PARTITION,
SET [UN]CACHED, SET FILEFORMAT | SERDEPROPERTIES | TBLPROPERTIES), the SHOW
FILES statement, and the COMPUTE INCREMENTAL STATS statement. It does not apply to statements that are
defined to only apply to a single partition, such as LOAD DATA, ALTER TABLE ... ADD PARTITION, SET
LOCATION, and INSERT with a static partitioning clause.

https://issues.apache.org/jira/browse/IMPALA-1654

 | Impala Release Notes | 785

• The instr() function has optional second and third arguments, representing the character to position to begin
searching for the substring, and the Nth occurrence of the substring to find.

• Improved error handling for malformed Avro data. In particular, incorrect precision or scale for DECIMAL types is
now handled.

• Impala debug web UI:

• In addition to “inflight” and “finished” queries, the web UI now also includes a section for “queued” queries.
• The /sessions tab now clarifies how many of the displayed sections are active, and lets you sort by Expired

status to distinguish active sessions from expired ones.
• Improved stability when DDL operations such as CREATE DATABASE or DROP DATABASE are run in Hive at

the same time as an Impala INVALIDATE METADATA statement.
• The “out of memory” error report was made more user-friendly, with additional diagnostic information to help

identify the spot where the memory limit was exceeded.
• Improved disk space usage for Java-based UDFs. Temporary copies of the associated JAR files are removed

when no longer needed, so that they do not accumulate across restarts of the catalogd daemon and potentially
cause an out-of-space condition. These temporary files are also created in the directory specified by the
local_library_dir configuration setting, so that the storage for these temporary files can be independent
from any capacity limits on the /tmp filesystem.

New Features in Impala 2.7

• Performance improvements:

• [IMPALA-3206] Speedup for queries against DECIMAL columns in Avro tables. The code that parses
DECIMAL values from Avro now uses native code generation.

• [IMPALA-3674] Improved efficiency in LLVM code generation can reduce codegen time, especially for short
queries.

• [IMPALA-2979] Improvements to scheduling on worker nodes, enabled by the REPLICA_PREFERENCE
query option. See REPLICA_PREFERENCE Query Option (Impala 2.7 or higher only) on page 389 for
details.

• [IMPALA-1683] The REFRESH statement can be applied to a single partition, rather than the entire table. See
REFRESH Statement on page 317 and Refreshing a Single Partition on page 683 for details.

• Improvements to the Impala web user interface:

• [IMPALA-2767] You can now force a session to expire by clicking a link in the web UI, on the /sessions tab.
• [IMPALA-3715] The /memz tab includes more information about Impala memory usage.
• [IMPALA-3716] The Details page for a query now includes a Memory tab.

• [IMPALA-3499] Scalability improvements to the catalog server. Impala handles internal communication more
efficiently for tables with large numbers of columns and partitions, where the size of the metadata exceeds 2 GiB.

• [IMPALA-3677] You can send a SIGUSR1 signal to any Impala-related daemon to write a Breakpad minidump.
For advanced troubleshooting, you can now produce a minidump without triggering a crash. See Breakpad
Minidumps for Impala (Impala 2.6 or higher only) on page 772 for details about the Breakpad minidump
feature.

• [IMPALA-3687] The schema reconciliation rules for Avro tables have changed slightly for CHAR and VARCHAR
columns. Now, if the definition of such a column is changed in the Avro schema file, the column retains its CHAR
or VARCHAR type as specified in the SQL definition, but the column name and comment from the Avro schema
file take precedence. See Creating Avro Tables on page 714 for details about column definitions in Avro tables.

• [IMPALA-3575] Some network operations now have additional timeout and retry settings. The extra configuration
helps avoid failed queries for transient network problems, to avoid hangs when a sender or receiver fails in the
middle of a network transmission, and to make cancellation requests more reliable despite network issues.

New Features in Impala 2.6

• Improvements to Impala support for the Amazon S3 filesystem:

• Impala can now write to S3 tables through the INSERT or LOAD DATA statements. See Using Impala with
the Amazon S3 Filesystem on page 748 for general information about using Impala with S3.

https://issues.apache.org/jira/browse/IMPALA-3206
https://issues.apache.org/jira/browse/IMPALA-3674
https://issues.apache.org/jira/browse/IMPALA-2979
https://issues.apache.org/jira/browse/IMPALA-1683
https://issues.apache.org/jira/browse/IMPALA-2767
https://issues.apache.org/jira/browse/IMPALA-3715
https://issues.apache.org/jira/browse/IMPALA-3716
https://issues.apache.org/jira/browse/IMPALA-3499
https://issues.apache.org/jira/browse/IMPALA-3677
https://issues.apache.org/jira/browse/IMPALA-3687
https://issues.apache.org/jira/browse/IMPALA-3575

 | Impala Release Notes | 786

• A new query option, S3_SKIP_INSERT_STAGING, lets you trade off between fast INSERT performance
and slower INSERTs that are more consistent if a problem occurs during the statement. The new behavior
is enabled by default. See S3_SKIP_INSERT_STAGING Query Option (Impala 2.6 or higher only) on page
392 for details about this option.

• Performance improvements for the runtime filtering feature:

• The default for the RUNTIME_FILTER_MODE query option is changed to GLOBAL (the highest setting). See
RUNTIME_FILTER_MODE Query Option (Impala 2.5 or higher only) on page 391 for details about this
option.

• The RUNTIME_BLOOM_FILTER_SIZE setting is now only used as a fallback if statistics are not
available; otherwise, Impala uses the statistics to estimate the appropriate size to use for each filter. See
RUNTIME_BLOOM_FILTER_SIZE Query Option (Impala 2.5 or higher only) on page 389 for details
about this option.

• New query options RUNTIME_FILTER_MIN_SIZE and RUNTIME_FILTER_MAX_SIZE let you fine-
tune the sizes of the Bloom filter structures used for runtime filtering. If the filter size derived from Impala
internal estimates or from the RUNTIME_FILTER_BLOOM_SIZE falls outside the size range specified by
these options, any too-small filter size is adjusted to the minimum, and any too-large filter size is adjusted to
the maximum. See RUNTIME_FILTER_MIN_SIZE Query Option (Impala 2.6 or higher only) on page 390
and RUNTIME_FILTER_MAX_SIZE Query Option (Impala 2.6 or higher only) on page 390 for details
about these options.

• Runtime filter propagation now applies to all the operands of UNION and UNION ALL operators.
• Runtime filters can now be produced during join queries even when the join processing activates the spill-to-

disk mechanism.

See Runtime Filtering for Impala Queries (Impala 2.5 or higher only) on page 651 for general information
about the runtime filtering feature.

• Admission control and dynamic resource pools are enabled by default. See Admission Control and Query Queuing
on page 67 for details about admission control.

• Impala can now manually set column statistics, using the ALTER TABLE statement with a SET COLUMN
STATS clause. See Setting Column Stats Manually through ALTER TABLE on page 646 for details.

• Impala can now write lightweight “minidump” files, rather than large core files, to save diagnostic information
when any of the Impala-related daemons crash. This feature uses the open source breakpad framework. See
Breakpad Minidumps for Impala (Impala 2.6 or higher only) on page 772 for details.

• New query options improve interoperability with Parquet files:

• The PARQUET_FALLBACK_SCHEMA_RESOLUTION query option lets Impala locate columns within
Parquet files based on column name rather than ordinal position. This enhancement improves interoperability
with applications that write Parquet files with a different order or subset of columns than are used in the
Impala table. See PARQUET_FALLBACK_SCHEMA_RESOLUTION Query Option (Impala 2.6 or higher
only) on page 387 for details.

• The PARQUET_ANNOTATE_STRINGS_UTF8 query option makes Impala include the UTF-8 annotation
metadata for STRING, CHAR, and VARCHAR columns in Parquet files created by INSERT or CREATE
TABLE AS SELECT statements. See PARQUET_ANNOTATE_STRINGS_UTF8 Query Option (Impala 2.6
or higher only) on page 386 for details.

See Using the Parquet File Format with Impala Tables on page 699 for general information about working
with Parquet files.

• Improvements to security and reduction in overhead for secure clusters:

• Overall performance improvements for secure clusters. (TPC-H queries on a secure cluster were benchmarked
at roughly 3x as fast as the previous release.)

• Impala now recognizes the auth_to_local setting, specified through the HDFS configuration setting
hadoop.security.auth_to_local. This feature is disabled by default; to enable it, specify --
load_auth_to_local_rules=true in the impalad configuration settings. See Mapping Kerberos
Principals to Short Names for Impala on page 101 for details.

• Timing improvements in the mechanism for the impalad daemon to acquire Kerberos tickets. This feature
spreads out the overhead on the KDC during Impala startup, especially for large clusters.

 | Impala Release Notes | 787

• For Kerberized clusters, the Catalog service now uses the Kerberos principal instead of the operating
sytem user that runs the catalogd daemon. This eliminates the requirement to configure a
hadoop.user.group.static.mapping.overrides setting to put the OS user into the Sentry
administrative group, on clusters where the principal and the OS user name for this user are different.

• Overall performance improvements for join queries, by using a prefetching mechanism while building the in-
memory hash table to evaluate join predicates. See PREFETCH_MODE Query Option (Impala 2.6 or higher only)
on page 388 for the query option to control this optimization.

• The impala-shell interpreter has a new command, SOURCE, that lets you run a set of SQL statements or
other impala-shell commands stored in a file. You can run additional SOURCE commands from inside a file,
to set up flexible sequences of statements for use cases such as schema setup, ETL, or reporting. See impala-shell
Command Reference on page 623 for details and Running Commands and SQL Statements in impala-shell on
page 618 for examples.

• The millisecond() built-in function lets you extract the fractional seconds part of a TIMESTAMP value. See
Impala Date and Time Functions on page 453 for details.

• If an Avro table is created without column definitions in the CREATE TABLE statement, and columns are later
added through ALTER TABLE, the resulting table is now queryable. Missing values from the newly added
columns now default to NULL. See Using the Avro File Format with Impala Tables on page 714 for general
details about working with Avro files.

• The mechanism for interpreting DECIMAL literals is improved, no longer going through an intermediate
conversion step to DOUBLE:

• Casting a DECIMAL value to TIMESTAMP DOUBLE produces a more precise value for the TIMESTAMP than
formerly.

• Certain function calls involving DECIMAL literals now succeed, when formerly they failed due to lack of a
function signature with a DOUBLE argument.

• Faster runtime performance for DECIMAL constant values, through improved native code generation for all
combinations of precision and scale.

See DECIMAL Data Type (Impala 1.4 or higher only) on page 117 for details about the DECIMAL type.
• Improved type accuracy for CASE return values. If all WHEN clauses of the CASE expression are of CHAR type,

the final result is also CHAR instead of being converted to STRING. See Impala Conditional Functions on page
504 for details about the CASE function.

• Uncorrelated queries using the NOT EXISTS operator are now supported. Formerly, the NOT EXISTS operator
was only available for correlated subqueries.

• Improved performance for reading Parquet files.
• Improved performance for top-N queries, that is, those including both ORDER BY and LIMIT clauses.
• Impala optionally skips an arbitrary number of header lines from text input files on HDFS based on the

skip.header.line.count value in the TBLPROPERTIES field of the table metadata. See Data Files for
Text Tables on page 694 for details.

• Trailing comments are now allowed in queries processed by the impala-shell options -q and -f.
• Impala can run COUNT queries for RCFile tables that include complex type columns. See Complex Types (Impala

2.3 or higher only) on page 152 for general information about working with complex types, and ARRAY
Complex Type (Impala 2.3 or higher only) on page 108, MAP Complex Type (Impala 2.3 or higher only) on
page 128, and STRUCT Complex Type (Impala 2.3 or higher only) on page 135 for syntax details of each
type.

New Features in Impala 2.5

• Dynamic partition pruning. When a query refers to a partition key column in a WHERE clause, and the exact set
of column values are not known until the query is executed, Impala evaluates the predicate and skips the I/O for
entire partitions that are not needed. For example, if a table was partitioned by year, Impala would apply this
technique to a query such as SELECT c1 FROM partitioned_table WHERE year = (SELECT
MAX(year) FROM other_table). See Dynamic Partition Pruning on page 685 for details.

The dynamic partition pruning optimization technique lets Impala avoid reading data files from partitions that are
not part of the result set, even when that determination cannot be made in advance. This technique is especially

 | Impala Release Notes | 788

valuable when performing join queries involving partitioned tables. For example, if a join query includes an ON
clause and a WHERE clause that refer to the same columns, the query can find the set of column values that match
the WHERE clause, and only scan the associated partitions when evaluating the ON clause.

Dynamic partition pruning is controlled by the same settings as the runtime filtering feature. By default, this
feature is enabled at a medium level, because the maximum setting can use slightly more memory for queries than
in previous releases. To fully enable this feature, set the query option RUNTIME_FILTER_MODE=GLOBAL.

• Runtime filtering. This is a wide-ranging set of optimizations that are especially valuable for join queries. Using
the same technique as with dynamic partition pruning, Impala uses the predicates from WHERE and ON clauses to
determine the subset of column values from one of the joined tables could possibly be part of the result set. Impala
sends a compact representation of the filter condition to the hosts in the cluster, instead of the full set of values or
the entire table.

By default, this feature is enabled at a medium level, because the maximum setting can use slightly
more memory for queries than in previous releases. To fully enable this feature, set the query option
RUNTIME_FILTER_MODE=GLOBAL.

This feature involves some new query options: RUNTIME_FILTER_MODE, MAX_NUM_RUNTIME_FILTERS,
RUNTIME_BLOOM_FILTER_SIZE, RUNTIME_FILTER_WAIT_TIME_MS, and
DISABLE_ROW_RUNTIME_FILTERING.

• More efficient use of the HDFS caching feature, to avoid hotspots and bottlenecks that could occur if heavily
used cached data blocks were always processed by the same host. By default, Impala now randomizes which host
processes each cached HDFS data block, when cached replicas are available on multiple hosts. (Remember to
use the WITH REPLICATION clause with the CREATE TABLE or ALTER TABLE statement when enabling
HDFS caching for a table or partition, to cache the same data blocks across multiple hosts.) The new query option
SCHEDULE_RANDOM_REPLICA lets you fine-tune the interaction with HDFS caching even more.

• The TRUNCATE TABLE statement now accepts an IF EXISTS clause, making TRUNCATE TABLE easier to
use in setup or ETL scripts where the table might or might not exist.

• Improved performance and reliability for the DECIMAL data type:

• Using DECIMAL values in a GROUP BY clause now triggers the native code generation optimization,
speeding up queries that group by values such as prices.

• Checking for overflow in DECIMAL multiplication is now substantially faster, making DECIMAL a more
practical data type in some use cases where formerly DECIMAL was much slower than FLOAT or DOUBLE.

• Multiplying a mixture of DECIMAL and FLOAT or DOUBLE values now returns the DOUBLE rather than
DECIMAL. This change avoids some cases where an intermediate value would underflow or overflow and
become NULL unexpectedly.

• For UDFs written in Java, or Hive UDFs reused for Impala, Impala now allows parameters and return values to be
primitive types. Formerly, these things were required to be one of the “Writable” object types.

• Performance improvements for HDFS I/O. Impala now caches HDFS file handles to avoid the overhead of
repeatedly opening the same file.

• Performance improvements for queries involving nested complex types. Certain basic query types, such as
counting the elements of a complex column, now use an optimized code path.

• Improvements to the memory reservation mechanism for the Impala admission control feature. You can specify
more settings, such as the timeout period and maximum aggregate memory used, for each resource pool instead
of globally for the Impala instance. The default limit for concurrent queries (the max requests setting) is now
unlimited instead of 200.

• Performance improvements related to code generation. Even in queries where code generation is not performed for
some phases of execution (such as reading data from Parquet tables), Impala can still use code generation in other
parts of the query, such as evaluating functions in the WHERE clause.

• Performance improvements for queries using aggregation functions on high-cardinality columns. Formerly,
Impala could do unnecessary extra work to produce intermediate results for operations such as DISTINCT
or GROUP BY on columns that were unique or had few duplicate values. Now, Impala decides at run time
whether it is more efficient to do an initial aggregation phase and pass along a smaller set of intermediate data,
or to pass raw intermediate data back to next phase of query processing to be aggregated there. This feature is
known as streaming pre-aggregation. In case of performance regression, this feature can be turned off using the
DISABLE_STREAMING_PREAGGREGATIONS query option.

 | Impala Release Notes | 789

• Spill-to-disk feature now always recommended. In earlier releases, the spill-to-disk feature could be
turned off using a pair of configuration settings, enable_partitioned_aggregation=false and
enable_partitioned_hash_join=false. The latest improvements in the spill-to-disk mechanism, and
related features that interact with it, make this feature robust enough that disabling it is now no longer needed or
supported. In particular, some new features in Impala 2.5 and higher do not work when the spill-to-disk feature is
disabled.

• Improvements to scripting capability for the impala-shell command, through user-specified substitution
variables that can appear in statements processed by impala-shell:

• The --var command-line option lets you pass key-value pairs to impala-shell. The shell can substitute
the values into queries before executing them, where the query text contains the notation ${var:varname}.
For example, you might prepare a SQL file containing a set of DDL statements and queries containing
variables for database and table names, and then pass the applicable names as part of the impala-shell -
f filename command.

• The SET and UNSET commands within the impala-shell interpreter now work with user-specified
substitution variables, as well as the built-in query options. The two kinds of variables are divided in the
SET output. As with variables defined by the --var command-line option, you refer to the user-specified
substitution variables in queries by using the notation ${var:varname} in the query text. Because the
substitution variables are processed by impala-shell instead of the impalad backend, you cannot define
your own substitution variables through the SET statement in a JDBC or ODBC application.

• Performance improvements for query startup. Impala better parallelizes certain work when coordinating plan
distribution between impalad instances, which improves startup time for queries involving tables with many
partitions on large clusters, or complicated queries with many plan fragments.

• Performance and scalability improvements for tables with many partitions. The memory requirements on the
coordinator node are reduced, making it substantially faster and less resource-intensive to do joins involving
several tables with thousands of partitions each.

• Whitelisting for access to internal APIs. For applications that need direct access to Impala APIs, without going
through the HiveServer2 or Beeswax interfaces, you can specify a list of Kerberos users who are allowed to call
those APIs. By default, the impala and hdfs users are the only ones authorized for this kind of access. Any
users not explicitly authorized through the internal_principals_whitelist configuration setting are
blocked from accessing the APIs. This setting applies to all the Impala-related daemons, although currently it is
primarily used for HDFS to control the behavior of the catalog server.

• Improvements to Impala integration and usability for Hue. (The code changes are actually on the Hue side.)

• The list of tables now refreshes dynamically.
• Usability improvements for case-insensitive queries. You can now use the operators ILIKE and IREGEXP to

perform case-insensitive wildcard matches or regular expression matches, rather than explicitly converting column
values with UPPER or LOWER.

• Performance and reliability improvements for DDL and insert operations on partitioned tables with a large
number of partitions. Impala only re-evaluates metadata for partitions that are affected by a DDL operation, not
all partitions in the table. While a DDL or insert statement is in progress, other Impala statements that attempt to
modify metadata for the same table wait until the first one finishes.

• Reliability improvements for the LOAD DATA statement. Previously, this statement would fail if the source HDFS
directory contained any subdirectories at all. Now, the statement ignores any hidden subdirectories, for example
_impala_insert_staging.

• A new operator, IS [NOT] DISTINCT FROM, lets you compare values and always get a true or false
result, even if one or both of the values are NULL. The IS NOT DISTINCT FROM operator, or its equivalent
<=> notation, improves the efficiency of join queries that treat key values that are NULL in both tables as equal.

• Security enhancements for the impala-shell command. A new option, --ldap_password_cmd, lets
you specify a command to retrieve the LDAP password. The resulting password is then used to authenticate the
impala-shell command with the LDAP server.

• The CREATE TABLE AS SELECT statement now accepts a PARTITIONED BY clause, which lets you create
a partitioned table and insert data into it with a single statement.

• User-defined functions (UDFs and UDAFs) written in C++ now persist automatically when the catalogd
daemon is restarted. You no longer have to run the CREATE FUNCTION statements again after a restart.

 | Impala Release Notes | 790

• User-defined functions (UDFs) written in Java can now persist when the catalogd daemon is restarted, and
can be shared transparently between Impala and Hive. You must do a one-time operation to recreate these UDFs
using new CREATE FUNCTION syntax, without a signature for arguments or the return value. Afterwards, you
no longer have to run the CREATE FUNCTION statements again after a restart. Although Impala does not have
visibility into the UDFs that implement the Hive built-in functions, user-created Hive UDFs are now automatically
available for calling through Impala.

• Reliability enhancements for memory management. Some aggregation and join queries that formerly might
have failed with an out-of-memory error due to memory contention, now can succeed using the spill-to-disk
mechanism.

• The SHOW DATABASES statement now returns two columns rather than one. The second column includes
the associated comment string, if any, for each database. Adjust any application code that examines the list of
databases and assumes the result set contains only a single column.

• A new optimization speeds up aggregation operations that involve only the partition key columns of partitioned
tables. For example, a query such as SELECT COUNT(DISTINCT k), MIN(k), MAX(k) FROM t1 can
avoid reading any data files if T1 is a partitioned table and K is one of the partition key columns. Because this
technique can produce different results in cases where HDFS files in a partition are manually deleted or are empty,
you must enable the optimization by setting the query option OPTIMIZE_PARTITION_KEY_SCANS.

• The DESCRIBE statement can now display metadata about a database, using the syntax DESCRIBE DATABASE
db_name.

• The uuid() built-in function generates an alphanumeric value that you can use as a guaranteed unique identifier.
The uniqueness applies even across tables, for cases where an ascending numeric sequence is not suitable.

New Features in Impala 2.4

• Impala can be used on the DSSD D5 Storage Appliance. From a user perspective, the Impala features are the same
as in Impala 2.3.

New Features in Impala 2.3

The following are the major new features in Impala 2.3.x. This major release contains improvements to SQL syntax
(particularly new support for complex types), performance, manageability, security.

• Complex data types: STRUCT, ARRAY, and MAP. These types can encode multiple named fields, positional items,
or key-value pairs within a single column. You can combine these types to produce nested types with arbitrarily
deep nesting, such as an ARRAY of STRUCT values, a MAP where each key-value pair is an ARRAY of other MAP
values, and so on. Currently, complex data types are only supported for the Parquet file format.

• Column-level authorization lets you define access to particular columns within a table, rather than the entire
table. This feature lets you reduce the reliance on creating views to set up authorization schemes for subsets of
information. See the documentation for Apache Sentry for background details, and GRANT Statement (Impala 2.0
or higher only) on page 300 and REVOKE Statement (Impala 2.0 or higher only) on page 321 for Impala-
specific syntax.

• The TRUNCATE TABLE statement removes all the data from a table without removing the table itself.
• Nested loop join queries. Some join queries that formerly required equality comparisons can now use operators

such as < or >=. This same join mechanism is used internally to optimize queries that retrieve values from
complex type columns.

• Reduced memory usage and improved performance and robustness for spill-to-disk feature.
• Performance improvements for querying Parquet data files containing multiple row groups and multiple data

blocks:

• For files written by Hive, SparkSQL, and other Parquet MR writers and spanning multiple HDFS blocks,
Impala now scans the extra data blocks locally when possible, rather than using remote reads.

• Impala queries benefit from the improved alignment of row groups with HDFS blocks for Parquet files written
by Hive, MapReduce, and other components. (Impala itself never writes multiblock Parquet files, so the
alignment change does not apply to Parquet files produced by Impala.) These Parquet writers now add padding
to Parquet files that they write to align row groups with HDFS blocks. The parquet.writer.max-
padding setting specifies the maximum number of bytes, by default 8 megabytes, that can be added to the

 | Impala Release Notes | 791

file between row groups to fill the gap at the end of one block so that the next row group starts at the beginning
of the next block. If the gap is larger than this size, the writer attempts to fit another entire row group in
the remaining space. Include this setting in the hive-site configuration file to influence Parquet files
written by Hive, or the hdfs-site configuration file to influence Parquet files written by all non-Impala
components.

• Many new built-in scalar functions, for convenience and enhanced portability of SQL that uses common industry
extensions.

Math functions:

• ATAN2
• COSH
• COT
• DCEIL
• DEXP
• DFLOOR
• DLOG10
• DPOW
• DROUND
• DSQRT
• DTRUNC
• FACTORIAL, and corresponding ! operator
• FPOW
• RADIANS
• RANDOM
• SINH
• TANH

String functions:

• BTRIM
• CHR
• REGEXP_LIKE
• SPLIT_PART

Date and time functions:

• INT_MONTHS_BETWEEN
• MONTHS_BETWEEN
• TIMEOFDAY
• TIMESTAMP_CMP

Bit manipulation functions:

• BITAND
• BITNOT
• BITOR
• BITXOR
• COUNTSET
• GETBIT
• ROTATELEFT
• ROTATERIGHT
• SETBIT
• SHIFTLEFT
• SHIFTRIGHT

 | Impala Release Notes | 792

Type conversion functions:

• TYPEOF

The effective_user() function.
• New built-in analytic functions: PERCENT_RANK, NTILE, CUME_DIST.
• The DROP DATABASE statement now works for a non-empty database. When you specify the optional CASCADE

clause, any tables in the database are dropped before the database itself is removed.
• The DROP TABLE and ALTER TABLE DROP PARTITION statements have a new optional keyword, PURGE.

This keyword causes Impala to immediately remove the relevant HDFS data files rather than sending them to the
HDFS trashcan. This feature can help to avoid out-of-space errors on storage devices, and to avoid files being
left behind in case of a problem with the HDFS trashcan, such as the trashcan not being configured or being in a
different HDFS encryption zone than the data files.

• The impala-shell command has a new feature for live progress reporting. This feature is enabled through
the --live_progress and --live_summary command-line options, or during a session through the
LIVE_SUMMARY and LIVE_PROGRESS query options.

• The impala-shell command also now displays a random “tip of the day” when it starts.
• The impala-shell option -f now recognizes a special filename - to accept input from stdin.
• Format strings for the unix_timestamp() function can now include numeric timezone offsets.
• Impala can now run a specified command to obtain the password to decrypt a private-key PEM file, rather than

having the private-key file be unencrypted on disk.
• Impala components now can use SSL for more of their internal communication. SSL is used for communication

between all three Impala-related daemons when the configuration option ssl_server_certificate
is enabled. SSL is used for communication with client applications when the configuration option
ssl_client_ca_certificate is enabled.

Currently, you can only use one of server-to-server TLS/SSL encryption or Kerberos authentication. This
limitation is tracked by the issue IMPALA-2598.

• Improved flexibility for intermediate data types in user-defined aggregate functions (UDAFs).

In Impala 2.3.2, the bug fix for IMPALA-2598 removes the restriction on using both Kerberos and SSL for internal
communication between Impala components.

New Features in Impala 2.8

The following are the major new features in Impala 2.2. This release contains improvements to performance,
manageability, security, and SQL syntax.

• Several improvements to date and time features enable higher interoperability with Hive and other database
systems, provide more flexibility for handling time zones, and future-proof the handling of TIMESTAMP values:

• The WITH REPLICATION clause for the CREATE TABLE and ALTER TABLE statements lets you control
the replication factor for HDFS caching for a specific table or partition. By default, each cached block is only
present on a single host, which can lead to CPU contention if the same host processes each cached block.
Increasing the replication factor lets Impala choose different hosts to process different cached blocks, to better
distribute the CPU load.

• Startup flags for the impalad daemon enable a higher level of compatibility with TIMESTAMP
values written by Hive, and more flexibility for working with date and time data using
the local time zone instead of UTC. To enable these features, set the impalad startup
flags -use_local_tz_for_unix_timestamp_conversions=true and -
convert_legacy_hive_parquet_utc_timestamps=true.

The -use_local_tz_for_unix_timestamp_conversions setting controls how the
unix_timestamp(), from_unixtime(), and now() functions handle time zones. By default
(when this setting is turned off), Impala considers all TIMESTAMP values to be in the UTC time zone when
converting to or from Unix time values. When this setting is enabled, Impala treats TIMESTAMP values passed
to or returned from these functions to be in the local time zone. When this setting is enabled, take particular

https://issues.apache.org/jira/browse/IMPALA-2598
https://issues.apache.org/jira/browse/IMPALA-2598

 | Impala Release Notes | 793

care that all hosts in the cluster have the same timezone settings, to avoid inconsistent results depending on
which host reads or writes TIMESTAMP data.

The -convert_legacy_hive_parquet_utc_timestamps setting causes Impala to convert
TIMESTAMP values to the local time zone when it reads them from Parquet files written by Hive. This setting
only applies to data using the Parquet file format, where Impala can use metadata in the files to reliably
determine that the files were written by Hive. If in the future Hive changes the way it writes TIMESTAMP data
in Parquet, Impala will automatically handle that new TIMESTAMP encoding.

See TIMESTAMP Data Type on page 141 for details about time zone handling and the configuration options
for Impala / Hive compatibility with Parquet format.

• In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TIMESTAMP values
use the BIGINT type for parameters and return values, rather than INT. This change lets the date and time
functions avoid an overflow error that would otherwise occur on January 19th, 2038 (known as the “Year 2038
problem” or “Y2K38 problem”). This change affects the from_unixtime() and unix_timestamp()
functions. You might need to change application code that interacts with these functions, change the types of
columns that store the return values, or add CAST() calls to SQL statements that call these functions.

See Impala Date and Time Functions on page 453 for the current function signatures.
• The SHOW FILES statement lets you view the names and sizes of the files that make up an entire table or a

specific partition. See SHOW FILES Statement on page 395 for details.
• Impala can now run queries against Parquet data containing columns with complex or nested types, as long as the

query only refers to columns with scalar types.
• Performance improvements for queries that include IN() operators and involve partitioned tables.
• The new -max_log_files configuration option specifies how many log files to keep at each severity level.

The default value is 10, meaning that Impala preserves the latest 10 log files for each severity level (INFO,
WARNING, and ERROR) for each Impala-related daemon (impalad, statestored, and catalogd). Impala
checks to see if any old logs need to be removed based on the interval specified in the logbufsecs setting,
every 5 seconds by default. See Rotating Impala Logs on page 765 for details.

• Redaction of sensitive data from Impala log files. This feature protects details such as credit card numbers or
tax IDs from administrators who see the text of SQL statements in the course of monitoring and troubleshooting
a Hadoop cluster. See Redacting Sensitive Information from Impala Log Files on page 767 for background
information for Impala users, and the documentation for your Apache Hadoop distribution for usage details.

• Lineage information is available for data created or queried by Impala. This feature lets you track who has
accessed data through Impala SQL statements, down to the level of specific columns, and how data has been
propagated between tables. See Viewing Lineage Information for Impala Data on page 106 for background
information for Impala users, the documentation for your Apache Hadoop distribution for usage details and how to
interpret the lineage information.

• Impala tables and partitions can now be located on the Amazon Simple Storage Service (S3) filesystem, for
convenience in cases where data is already located in S3 and you prefer to query it in-place. Queries might
have lower performance than when the data files reside on HDFS, because Impala uses some HDFS-specific
optimizations. Impala can query data in S3, but cannot write to S3. Therefore, statements such as INSERT and
LOAD DATA are not available when the destination table or partition is in S3. See Using Impala with the Amazon
S3 Filesystem on page 748 for details.

Important:

Impala query support for Amazon S3 is included in Impala 2.2, but is not supported or recommended for
production use in this version.

• Improved support for HDFS encryption. The LOAD DATA statement now works when the source directory and
destination table are in different encryption zones. See the documentation for your Apache Hadoop distribution for
details about using HDFS encryption with Impala.

• Additional arithmetic function mod(). See Impala Mathematical Functions on page 420 for details.
• Flexibility to interpret TIMESTAMP values using the UTC time zone (the traditional Impala behavior) or using the

local time zone (for compatibility with TIMESTAMP values produced by Hive).
• Enhanced support for ETL using tools such as Flume. Impala ignores temporary files typically produced by these

tools (filenames with suffixes .copying and .tmp).

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

 | Impala Release Notes | 794

• The CPU requirement for Impala, which had become more restrictive in Impala 2.0.x and 2.1.x, has now been
relaxed.

The prerequisite for CPU architecture has been relaxed in Impala 2.2.0 and higher. From this release onward,
Impala works on CPUs that have the SSSE3 instruction set. The SSE4 instruction set is no longer required. This
relaxed requirement simplifies the upgrade planning from Impala 1.x releases, which also worked on SSSE3-
enabled processors.

• Enhanced support for CHAR and VARCHAR types in the COMPUTE STATS statement.
• The amount of memory required during setup for “spill to disk” operations is greatly reduced. This enhancement

reduces the chance of a memory-intensive join or aggregation query failing with an out-of-memory error.
• Several new conditional functions provide enhanced compatibility when porting code that uses industry

extensions. The new functions are: isfalse(), isnotfalse(), isnottrue(), istrue(),
nonnullvalue(), and nullvalue(). See Impala Conditional Functions on page 504 for details.

• The Impala debug web UI now can display a visual representation of the query plan. On the /queries tab, select
Details for a particular query. The Details page includes a Plan tab with a plan diagram that you can zoom in or
out (using scroll gestures through mouse wheel or trackpad).

New Features in Impala 2.1

This release contains the following enhancements to query performance and system scalability:

• Impala can now collect statistics for individual partitions in a partitioned table, rather than processing the entire
table for each COMPUTE STATS statement. This feature is known as incremental statistics, and is controlled by
the COMPUTE INCREMENTAL STATS syntax. (You can still use the original COMPUTE STATS statement for
nonpartitioned tables or partitioned tables that are unchanging or whose contents are entirely replaced all at once.)
See COMPUTE STATS Statement on page 240 and Table and Column Statistics on page 636 for details.

• Optimization for small queries lets Impala process queries that process very few rows without the unnecessary
overhead of parallelizing and generating native code. Reducing this overhead lets Impala clear small queries
quickly, keeping YARN resources and admission control slots available for data-intensive queries. The number of
rows considered to be a “small” query is controlled by the EXEC_SINGLE_NODE_ROWS_THRESHOLD query
option. See EXEC_SINGLE_NODE_ROWS_THRESHOLD Query Option (Impala 2.1 or higher only) on page
365 for details.

• An enhancement to the statestore component lets it transmit heartbeat information independently of broadcasting
metadata updates. This optimization improves reliability of health checking on large clusters with many tables and
partitions.

• The memory requirement for querying gzip-compressed text is reduced. Now Impala decompresses the data as it
is read, rather than reading the entire gzipped file and decompressing it in memory.

New Features in Impala 2.0

The following are the major new features in Impala 2.0. This major release contains improvements to performance,
scalability, security, and SQL syntax.

• Queries with joins or aggregation functions involving high volumes of data can now use temporary work areas on
disk, reducing the chance of failure due to out-of-memory errors. When the required memory for the intermediate
result set exceeds the amount available on a particular node, the query automatically uses a temporary work area
on disk. This “spill to disk” mechanism is similar to the ORDER BY improvement from Impala 1.4. For details,
see SQL Operations that Spill to Disk on page 675.

• Subquery enhancements:

• Subqueries are now allowed in the WHERE clause, for example with the IN operator.
• The EXISTS and NOT EXISTS operators are available. They are always used in conjunction with

subqueries.
• The IN and NOT IN queries can now operate on the result set from a subquery, not just a hardcoded list of

values.
• Uncorrelated subqueries let you compare against one or more values for equality, IN, and

EXISTS comparisons. For example, you might use WHERE clauses such as WHERE column =

 | Impala Release Notes | 795

(SELECT MAX(some_other_column FROM table) or WHERE column IN (SELECT
some_other_column FROM table WHERE conditions).

• Correlated subqueries let you cross-reference values from the outer query block and the subquery.
• Scalar subqueries let you substitute the result of single-value aggregate functions such as MAX(), MIN(),

COUNT(), or AVG(), where you would normally use a numeric value in a WHERE clause.

For details about subqueries, see Subqueries in Impala SELECT Statements on page 341 For information about
new and improved operators, see EXISTS Operator on page 193 and IN Operator on page 197.

• Analytic functions such as RANK(), LAG(), LEAD(), and FIRST_VALUE() let you analyze sequences of
rows with flexible ordering and grouping. Existing aggregate functions such as MAX(), SUM(), and COUNT()
can also be used in an analytic context. See Impala Analytic Functions on page 568 for details. See Impala
Aggregate Functions on page 537 for enhancements to existing aggregate functions.

• New data types provide greater compatibility with source code from traditional database systems:

• VARCHAR is like the STRING data type, but with a maximum length. See VARCHAR Data Type (Impala 2.0
or higher only) on page 150 for details.

• CHAR is like the STRING data type, but with a precise length. Short values are padded with spaces on the
right. See CHAR Data Type (Impala 2.0 or higher only) on page 113 for details.

• Security enhancements:

• Formerly, Impala was restricted to using either Kerberos or LDAP / Active Directory authentication within a
cluster. Now, Impala can freely accept either kind of authentication request, allowing you to set up some hosts
with Kerberos authentication and others with LDAP or Active Directory. See Using Multiple Authentication
Methods with Impala on page 103 for details.

• GRANT statement. See GRANT Statement (Impala 2.0 or higher only) on page 300 for details.
• REVOKE statement. See REVOKE Statement (Impala 2.0 or higher only) on page 321 for details.
• CREATE ROLE statement. See CREATE ROLE Statement (Impala 2.0 or higher only) on page 256 for

details.
• DROP ROLE statement. See DROP ROLE Statement (Impala 2.0 or higher only) on page 290 for details.
• SHOW ROLES and SHOW ROLE GRANT statements. See SHOW Statement on page 394 for details.
• To complement the HDFS encryption feature, a new Impala configuration option, --

disk_spill_encryption secures sensitive data from being observed or tampered with when temporarily
stored on disk.

The new security-related SQL statements work along with the Sentry authorization framework. See Enabling
Sentry Authorization for Impala for details.

• Impala can now read compressed text files compressed by gzip, bzip, or Snappy. These files do not require any
special table settings to work in an Impala text table. Impala recognizes the compression type automatically based
on file extensions of .gz, .bz2, and .snappy respectively. These types of compressed text files are intended
for convenience with existing ETL pipelines. Their non-splittable nature means they are not optimal for high-
performance parallel queries. See Using gzip, bzip2, or Snappy-Compressed Text Files on page 698 for details.

• Query hints can now use comment notation, /* +hint_name */ or -- +hint_name, at the same places
in the query where the hints enclosed by [] are recognized. This enhancement makes it easier to reuse Impala
queries on other database systems. See Query Hints in Impala SELECT Statements on page 352 for details.

• A new query option, QUERY_TIMEOUT_S, lets you specify a timeout period in seconds for individual queries.

The working of the --idle_query_timeout configuration option is extended. If no QUERY_OPTION_S
query option is in effect, --idle_query_timeout works the same as before, setting the timeout interval.
When the QUERY_OPTION_S query option is specified, its maximum value is capped by the value of the --
idle_query_timeout option.

That is, the system administrator sets the default and maximum timeout through the --idle_query_timeout
startup option, and then individual users or applications can set a lower timeout value if desired through the
QUERY_TIMEOUT_S query option. See Setting Timeout Periods for Daemons, Queries, and Sessions on page
76 and QUERY_TIMEOUT_S Query Option (Impala 2.0 or higher only) on page 388 for details.

• New functions VAR_SAMP() and VAR_POP() are aliases for the existing VARIANCE_SAMP() and
VARIANCE_POP() functions.

 | Impala Release Notes | 796

• A new date and time function, DATE_PART(), provides similar functionality to EXTRACT(). You can also
call the EXTRACT() function using the SQL-99 syntax, EXTRACT(unit FROM timestamp). These
enhancements simplify the porting process for date-related code from other systems. See Impala Date and Time
Functions on page 453 for details.

• New approximation features provide a fast way to get results when absolute precision is not required:

• The APPX_COUNT_DISTINCT query option lets Impala rewrite COUNT(DISTINCT) calls to use NDV()
instead, which speeds up the operation and allows multiple COUNT(DISTINCT) operations in a single query.
See APPX_COUNT_DISTINCT Query Option (Impala 2.0 or higher only) on page 359 for details.

The APPX_MEDIAN() aggregate function produces an estimate for the median value of a column by using
sampling. See APPX_MEDIAN Function on page 537 for details.

• Impala now supports a DECODE() function. This function works as a shorthand for a CASE() expression, and
improves compatibility with SQL code containing vendor extensions. See Impala Conditional Functions on page
504 for details.

• The STDDEV(), STDDEV_POP(), STDDEV_SAMP(), VARIANCE(), VARIANCE_POP(),
VARIANCE_SAMP(), and NDV() aggregate functions now all return DOUBLE results rather than STRING.
Formerly, you were required to CAST() the result to a numeric type before using it in arithmetic operations.

• The default settings for Parquet block size, and the associated PARQUET_FILE_SIZE query option, are
changed. Now, Impala writes Parquet files with a size of 256 MB and an HDFS block size of 256 MB. Previously,
Impala attempted to write Parquet files with a size of 1 GB and an HDFS block size of 1 GB. In practice,
Impala used a conservative estimate of the disk space needed for each Parquet block, leading to files that were
typically 512 MB anyway. Thus, this change will make the file size more accurate if you specify a value for the
PARQUET_FILE_SIZE query option. It also reduces the amount of memory reserved during INSERT into
Parquet tables, potentially avoiding out-of-memory errors and improving scalability when inserting data into
Parquet tables.

• Anti-joins are now supported, expressed using the LEFT ANTI JOIN and RIGHT ANTI JOIN clauses. These
clauses returns results from one table that have no match in the other table. You might use this type of join in the
same sorts of use cases as the NOT EXISTS and NOT IN operators. See Joins in Impala SELECT Statements on
page 324 for details.

• The SET command in impala-shell has been promoted to a real SQL statement. You can now set query
options such as PARQUET_FILE_SIZE, MEM_LIMIT, and SYNC_DDL within JDBC, ODBC, or any other kind
of application that submits SQL without going through the impala-shell interpreter. See SET Statement on
page 355 for details.

• The impala-shell interpreter now reads settings from an optional configuration file, named
$HOME/.impalarc by default. See impala-shell Configuration File on page 615 for details.

• The library used for regular expression parsing has changed from Boost to Google RE2. This implementation
change adds support for non-greedy matches using the .*? notation. This and other changes in the way
regular expressions are interpreted means you might need to re-test queries that use functions such as
regexp_extract() or regexp_replace(), or operators such as REGEXP or RLIKE. See Incompatible
Changes and Limitations in Apache Impala on page 805 for those details.

New Features in Impala 1.4

The following are the major new features in Impala 1.4:

• The DECIMAL data type lets you store fixed-precision values, for working with currency or other fractional values
where it is important to represent values exactly and avoid rounding errors. This feature includes enhancements to
built-in functions, numeric literals, and arithmetic expressions.

• Where the underlying HDFS support exists, Impala can take advantage of the HDFS caching feature to “pin”
entire tables or individual partitions in memory, to speed up queries on frequently accessed data and reduce the
CPU overhead of memory-to-memory copying. When HDFS files are cached in memory, Impala can read the
cached data without any disk reads, and without making an additional copy of the data in memory. Other Hadoop
components that read the same data files also experience a performance benefit.

• Impala can now use Sentry-based authorization based either on the original policy file, or on rules defined by
GRANT and REVOKE statements issued through Hive. See Enabling Sentry Authorization for Impala for details.

 | Impala Release Notes | 797

• For interoperability with Parquet files created through other Hadoop components, such as Pig or MapReduce jobs,
you can create an Impala table that automatically sets up the column definitions based on the layout of an existing
Parquet data file.

• ORDER BY queries no longer require a LIMIT clause. If the size of the result set to be sorted exceeds the
memory available to Impala, Impala uses a temporary work space on disk to perform the sort operation.

• LDAP connections can be secured through either SSL or TLS.
• The following new built-in scalar and aggregate functions are available:

• A new built-in function, EXTRACT(), returns one date or time field from a TIMESTAMP value.
• A new built-in function, TRUNC(), truncates date/time values to a particular granularity, such as year, month,

day, hour, and so on.
• ADD_MONTHS() built-in function, an alias for the existing MONTHS_ADD() function.
• A new built-in function, ROUND(), rounds DECIMAL values to a specified number of fractional digits.
• Several built-in aggregate functions for computing properties for statistical distributions: STDDEV(),

STDDEV_SAMP(), STDDEV_POP(), VARIANCE(), VARIANCE_SAMP(), and VARIANCE_POP().
• Several new built-in functions, such as MAX_INT(), MIN_SMALLINT(), and so on, let you conveniently

check whether data values are in an expected range. You might be able to switch a column to a smaller type,
saving memory during processing.

• New built-in functions, IS_INF() and IS_NAN(), check for the special values infinity and “not a number”.
These values could be specified as inf or nan in text data files, or be produced by certain arithmetic
expressions.

• The SHOW PARTITIONS statement displays information about the structure of a partitioned table.
• New configuration options for the impalad daemon let you specify initial memory usage for all queries. The

initial resource requests handled by Llama and YARN can be expanded later if needed, avoiding unnecessary
over-allocation and reducing the chance of out-of-memory conditions.

• The Impala CREATE TABLE statement now has a STORED AS AVRO clause, allowing you to create Avro
tables through Impala.

• New impalad configuration options let you fine-tune the calculations Impala makes to estimate resource
requirements for each query. These options can help avoid problems due to overconsumption due to too-low
estimates, or underutilization due to too-high estimates.

• A new SUMMARY command in the impala-shell interpreter provides a high-level summary of the work
performed at each stage of the explain plan. The summary is also included in output from the PROFILE
command.

• Performance improvements for the COMPUTE STATS statement:

• The NDV function is speeded up through native code generation.
• Because the NULL count is not currently used by the Impala query planner, in Impala 1.4.0 and higher,

COMPUTE STATS does not count the NULL values for each column. (The #Nulls field of the stats table is
left as -1, signifying that the value is unknown.)

• Performance improvements for partition pruning. This feature reduces the time spent in query planning,
for partitioned tables with thousands of partitions. Previously, Impala typically queried tables with up to
approximately 3000 partitions. With the performance improvement in partition pruning, now Impala can
comfortably handle tables with tens of thousands of partitions.

• The documentation provides additional guidance for planning tasks.
• The impala-shell interpreter now supports UTF-8 characters for input and output. You can control whether

impala-shell ignores invalid Unicode code points through the --strict_unicode option. (Although this
option is removed in Impala 2.0.)

New Features in Impala 1.3.2

No new features. This point release is exclusively a bug fix release for the IMPALA-1019 issue related to HDFS
caching.

 | Impala Release Notes | 798

New Features in Impala 1.3.1

This point release is primarily a vehicle to deliver bug fixes. Any new features are minor changes resulting from fixes
for performance, reliability, or usability issues.

• A new impalad startup option, --insert_inherit_permissions, causes Impala INSERT statements to
create each new partition with the same HDFS permissions as its parent directory. By default, INSERT statements
create directories for new partitions using default HDFS permissions. See INSERT Statement on page 301 for
examples of INSERT statements for partitioned tables.

• The SHOW FUNCTIONS statement now displays the return type of each function, in addition to the types of its
arguments. See SHOW Statement on page 394 for examples.

• You can now specify the clause FIELDS TERMINATED BY '\0' with a CREATE TABLE statement to use
text data files that use ASCII 0 (nul) characters as a delimiter. See Using Text Data Files with Impala Tables on
page 692 for details.

• In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by .*. See
REGEXP Operator on page 208 for examples. Previously, these operators only succeeded when the regular
expression matched the entire target string. This change improves compatibility with the regular expression
support for popular database systems. There is no change to the behavior of the regexp_extract() and
regexp_replace() built-in functions.

New Features in Impala 1.3

• The admission control feature lets you control and prioritize the volume and resource consumption of concurrent
queries. This mechanism reduces spikes in resource usage, helping Impala to run alongside other kinds of
workloads on a busy cluster. It also provides more user-friendly conflict resolution when multiple memory-
intensive queries are submitted concurrently, avoiding resource contention that formerly resulted in out-of-
memory errors. See Admission Control and Query Queuing on page 67 for details.

• Enhanced EXPLAIN plans provide more detail in an easier-to-read format. Now there are four levels of verbosity:
the EXPLAIN_LEVEL option can be set from 0 (most concise) to 3 (most verbose). See EXPLAIN Statement on
page 297 for syntax and Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles on
page 662 for usage information.

• The TIMESTAMP data type accepts more kinds of input string formats through the UNIX_TIMESTAMP function,
and produces more varieties of string formats through the FROM_UNIXTIME function. The documentation
now also lists more functions for date arithmetic, used for adding and subtracting INTERVAL expressions from
TIMESTAMP values. See Impala Date and Time Functions on page 453 for details.

• New conditional functions, NULLIF(), NULLIFZERO(), and ZEROIFNULL(), simplify porting SQL
containing vendor extensions to Impala. See Impala Conditional Functions on page 504 for details.

• New utility function, CURRENT_DATABASE(). See Impala Miscellaneous Functions on page 535 for details.
• Integration with the YARN resource management framework. This feature makes use of the underlying YARN

service, plus an additional service (Llama) that coordinates requests to YARN for Impala resources, so that the
Impala query only proceeds when all requested resources are available. See Resource Management for Impala on
page 76 for full details.

On the Impala side, this feature involves some new startup options for the impalad daemon:

• -enable_rm
• -llama_host
• -llama_port
• -llama_callback_port
• -cgroup_hierarchy_path

For details of these startup options, see Modifying Impala Startup Options on page 32.

This feature also involves several new or changed query options that you can set through the impala-shell
interpreter and apply within a specific session:

• MEM_LIMIT: the function of this existing option changes when Impala resource management is enabled.

 | Impala Release Notes | 799

• REQUEST_POOL: a new option. (Renamed to RESOURCE_POOL in Impala 1.3.0.)
• V_CPU_CORES: a new option.
• RESERVATION_REQUEST_TIMEOUT: a new option.

For details of these query options, see impala-shell Query Options for Resource Management on page 76.

New Features in Impala 1.2.4

Note: Impala 1.2.4 is primarily a bug fix release for Impala 1.2.3, plus some performance enhancements for the
catalog server to minimize startup and DDL wait times for Impala deployments with large numbers of databases,
tables, and partitions.

• On Impala startup, the metadata loading and synchronization mechanism has been improved and optimized, to
give more responsiveness when starting Impala on a system with a large number of databases, tables, or partitions.
The initial metadata loading happens in the background, allowing queries to be run before the entire process is
finished. When a query refers to a table whose metadata is not yet loaded, the query waits until the metadata for
that table is loaded, and the load operation for that table is prioritized to happen first.

• Formerly, if you created a new table in Hive, you had to issue the INVALIDATE METADATA statement (with
no table name) which was an expensive operation that reloaded metadata for all tables. Impala did not recognize
the name of the Hive-created table, so you could not do INVALIDATE METADATA new_table to get the
metadata for just that one table. Now, when you issue INVALIDATE METADATA table_name, Impala checks
to see if that name represents a table created in Hive, and if so recognizes the new table and loads the metadata for
it. Additionally, if the new table is in a database that was newly created in Hive, Impala also recognizes the new
database.

• If you issue INVALIDATE METADATA table_name and the table has been dropped through Hive, Impala
will recognize that the table no longer exists.

• New startup options let you control the parallelism of the metadata loading during startup for the catalogd
daemon:

• --load_catalog_in_background makes Impala load and cache metadata using background threads
after startup. It is true by default. Previously, a system with a large number of databases, tables, or partitions
could be unresponsive or even time out during startup.

• --num_metadata_loading_threads determines how much parallelism Impala devotes to loading
metadata in the background. The default is 16. You might increase this value for systems with huge numbers
of databases, tables, or partitions. You might lower this value for busy systems that are CPU-constrained due
to jobs from components other than Impala.

New Features in Impala 1.2.3

Impala 1.2.3 contains exactly the same feature set as Impala 1.2.2. Its only difference is one additional fix for
compatibility with Parquet files generated outside of Impala by components such as Hive, Pig, or MapReduce. If
you are upgrading from Impala 1.2.1 or earlier, see New Features in Impala 1.2.2 on page 799 for the latest added
features.

New Features in Impala 1.2.2

Impala 1.2.2 includes new features for performance, security, and flexibility. The major enhancements over 1.2.1 are
performance related, primarily for join queries.

New user-visible features include:

• Join order optimizations. This highly valuable feature automatically distributes and parallelizes the work for a join
query to minimize disk I/O and network traffic. The automatic optimization reduces the need to use query hints or
to rewrite join queries with the tables in a specific order based on size or cardinality. The new COMPUTE STATS
statement gathers statistical information about each table that is crucial for enabling the join optimizations. See
Performance Considerations for Join Queries on page 629 for details.

• COMPUTE STATS statement to collect both table statistics and column statistics with a single statement. Intended
to be more comprehensive, efficient, and reliable than the corresponding Hive ANALYZE TABLE statement,

 | Impala Release Notes | 800

which collects statistics in multiple phases through MapReduce jobs. These statistics are important for query
planning for join queries, queries on partitioned tables, and other types of data-intensive operations. For optimal
planning of join queries, you need to collect statistics for each table involved in the join. See COMPUTE STATS
Statement on page 240 for details.

• Reordering of tables in a join query can be overridden by the STRAIGHT_JOIN operator, allowing you to fine-
tune the planning of the join query if necessary, by using the original technique of ordering the joined tables in
descending order of size. See Overriding Join Reordering with STRAIGHT_JOIN on page 630 for details.

• The CROSS JOIN clause in the SELECT statement to allow Cartesian products in queries, that is, joins without
an equality comparison between columns in both tables. Because such queries must be carefully checked to avoid
accidental overconsumption of memory, you must use the CROSS JOIN operator to explicitly select this kind of
join. See Cross Joins and Cartesian Products with the CROSS JOIN Operator on page 50 for examples.

• The ALTER TABLE statement has new clauses that let you fine-tune table statistics. You can use this technique
as a less-expensive way to update specific statistics, in case the statistics become stale, or to experiment with the
effects of different data distributions on query planning.

• LDAP username/password authentication in JDBC/ODBC. See Enabling LDAP Authentication for Impala on
page 101 for details.

• GROUP_CONCAT() aggregate function to concatenate column values across all rows of a result set.
• The INSERT statement now accepts hints, [SHUFFLE] and [NOSHUFFLE], to influence the way work

is redistributed during INSERT...SELECT operations. The hints are primarily useful for inserting into
partitioned Parquet tables, where using the [SHUFFLE] hint can avoid problems due to memory consumption
and simultaneous open files in HDFS, by collecting all the new data for each partition on a specific node.

• Several built-in functions and operators are now overloaded for more numeric data types, to reduce the
requirement to use CAST() for type coercion in INSERT statements. For example, the expression 2+2 in an
INSERT statement formerly produced a BIGINT result, requiring a CAST() to be stored in an INT variable.
Now, addition, subtraction, and multiplication only produce a result that is one step “bigger” than their arguments,
and numeric and conditional functions can return SMALLINT, FLOAT, and other smaller types rather than always
BIGINT or DOUBLE.

• New fnv_hash() built-in function for constructing hashed values. See Impala Mathematical Functions on page
420 for details.

• The clause STORED AS PARQUET is accepted as an equivalent for STORED AS PARQUETFILE. This more
concise form is recommended for new code.

Because Impala 1.2.2 builds on a number of features introduced in 1.2.1, if you are upgrading from an older 1.1.x
release straight to 1.2.2, also review New Features in Impala 1.2.1 on page 800 to see features such as the SHOW
TABLE STATS and SHOW COLUMN STATS statements, and user-defined functions (UDFs).

New Features in Impala 1.2.1

Note: The Impala 1.2.1 feature set is a superset of features in the Impala 1.2.0 beta, with the exception of resource
management, which relies on resource management infrastructure in the underlying Hadoop distribution.

Impala 1.2.1 includes new features for security, performance, and flexibility.

New user-visible features include:

• SHOW TABLE STATS table_name and SHOW COLUMN STATS table_name statements, to verify that
statistics are available and to see the values used during query planning.

• CREATE TABLE AS SELECT syntax, to create a new table and transfer data into it in a single operation.
• OFFSET clause, for use with the ORDER BY and LIMIT clauses to produce “paged” result sets such as items

1-10, then 11-20, and so on.
• NULLS FIRST and NULLS LAST clauses to ensure consistent placement of NULL values in ORDER BY

queries.
• New built-in functions: least(), greatest(), initcap().
• New aggregate function: ndv(), a fast alternative to COUNT(DISTINCT col) returning an approximate

result.
• The LIMIT clause can now accept a numeric expression as an argument, rather than only a literal constant.

 | Impala Release Notes | 801

• The SHOW CREATE TABLE statement displays the end result of all the CREATE TABLE and ALTER TABLE
statements for a particular table. You can use the output to produce a simplified setup script for a schema.

• The --idle_query_timeout and --idle_session_timeout options for impalad control the
time intervals after which idle queries are cancelled, and idle sessions expire. See Setting Timeout Periods for
Daemons, Queries, and Sessions on page 76 for details.

• User-defined functions (UDFs). This feature lets you transform data in very flexible ways, which is important
when using Impala as part of an ETL or ELT pipeline. Prior to Impala 1.2, using UDFs required switching
into Hive. Impala 1.2 can run scalar UDFs and user-defined aggregate functions (UDAs). Impala can run high-
performance functions written in C++, or you can reuse existing Hive functions written in Java.

You create UDFs through the CREATE FUNCTION statement and drop them through the DROP FUNCTION
statement. See Impala User-Defined Functions (UDFs) on page 587 for instructions about coding, building,
and deploying UDFs, and CREATE FUNCTION Statement on page 250 and DROP FUNCTION Statement on
page 288 for related SQL syntax.

• A new service automatically propagates changes to table data and metadata made by one Impala node, sending
the new or updated metadata to all the other Impala nodes. The automatic synchronization mechanism eliminates
the need to use the INVALIDATE METADATA and REFRESH statements after issuing Impala statements such as
CREATE TABLE, ALTER TABLE, DROP TABLE, INSERT, and LOAD DATA.

For even more precise synchronization, you can enable the SYNC_DDL query option before issuing a DDL,
INSERT, or LOAD DATA statement. This option causes the statement to wait, returning only after the catalog
service has broadcast the applicable changes to all Impala nodes in the cluster.

Note:

Because the catalog service only monitors operations performed through Impala, INVALIDATE METADATA and
REFRESH are still needed on the Impala side after creating new tables or loading data through the Hive shell or by
manipulating data files directly in HDFS. Because the catalog service broadcasts the result of the REFRESH and
INVALIDATE METADATA statements to all Impala nodes, when you do need to use those statements, you can do
so a single time rather than on every Impala node.

This service is implemented by the catalogd daemon. See The Impala Catalog Service on page 15 for
details.

• The CREATE TABLE and ALTER TABLE statements have new clauses TBLPROPERTIES and WITH
SERDEPROPERTIES. The TBLPROPERTIES clause lets you associate arbitrary items of metadata with a
particular table as key-value pairs. The WITH SERDEPROPERTIES clause lets you specify the serializer/
deserializer (SerDes) classes that read and write data for a table; although Impala does not make use of these
properties, sometimes particular values are needed for Hive compatibility. See CREATE TABLE Statement on
page 256 and ALTER TABLE Statement on page 225 for details.

• Delegation support lets you authorize certain OS users associated with applications (for example, hue), to submit
requests using the credentials of other users. See Configuring Impala Delegation for Hue and BI Tools on page
104 for details.

• Enhancements to EXPLAIN output. In particular, when you enable the new EXPLAIN_LEVEL query option, the
EXPLAIN and PROFILE statements produce more verbose output showing estimated resource requirements and
whether table and column statistics are available for the applicable tables and columns. See EXPLAIN Statement
on page 297 for details.

• SHOW CREATE TABLE summarizes the effects of the original CREATE TABLE statement and any subsequent
ALTER TABLE statements, giving you a CREATE TABLE statement that will re-create the current structure and
layout for a table.

• The LIMIT clause for queries now accepts an arithmetic expression, in addition to numeric literals.

New Features in Impala 1.2.0 (Beta)

The Impala 1.2.0 beta includes new features for security, performance, and flexibility.

New user-visible features include:

• User-defined functions (UDFs). This feature lets you transform data in very flexible ways, which is important
when using Impala as part of an ETL or ELT pipeline. Prior to Impala 1.2, using UDFs required switching

 | Impala Release Notes | 802

into Hive. Impala 1.2 can run scalar UDFs and user-defined aggregate functions (UDAs). Impala can run high-
performance functions written in C++, or you can reuse existing Hive functions written in Java.

You create UDFs through the CREATE FUNCTION statement and drop them through the DROP FUNCTION
statement. See Impala User-Defined Functions (UDFs) on page 587 for instructions about coding, building,
and deploying UDFs, and CREATE FUNCTION Statement on page 250 and DROP FUNCTION Statement on
page 288 for related SQL syntax.

• A new service automatically propagates changes to table data and metadata made by one Impala node, sending
the new or updated metadata to all the other Impala nodes. The automatic synchronization mechanism eliminates
the need to use the INVALIDATE METADATA and REFRESH statements after issuing Impala statements such as
CREATE TABLE, ALTER TABLE, DROP TABLE, INSERT, and LOAD DATA.

Note:

Because this service only monitors operations performed through Impala, INVALIDATE METADATA and
REFRESH are still needed on the Impala side after creating new tables or loading data through the Hive shell or by
manipulating data files directly in HDFS. Because the catalog service broadcasts the result of the REFRESH and
INVALIDATE METADATA statements to all Impala nodes, when you do need to use those statements, you can do
so a single time rather than on every Impala node.

This service is implemented by the catalogd daemon. See The Impala Catalog Service on page 15 for
details.

• Integration with the YARN resource management framework. This feature makes use of the underlying YARN
service, plus an additional service (Llama) that coordinates requests to YARN for Impala resources, so that the
Impala query only proceeds when all requested resources are available. See Resource Management for Impala on
page 76 for full details.

On the Impala side, this feature involves some new startup options for the impalad daemon:

• -enable_rm
• -llama_host
• -llama_port
• -llama_callback_port
• -cgroup_hierarchy_path

For details of these startup options, see Modifying Impala Startup Options on page 32.

This feature also involves several new or changed query options that you can set through the impala-shell
interpreter and apply within a specific session:

• MEM_LIMIT: the function of this existing option changes when Impala resource management is enabled.
• YARN_POOL: a new option. (Renamed to RESOURCE_POOL in Impala 1.3.0.)
• V_CPU_CORES: a new option.
• RESERVATION_REQUEST_TIMEOUT: a new option.

For details of these query options, see impala-shell Query Options for Resource Management on page 76.
• CREATE TABLE ... AS SELECT syntax, to create a table and copy data into it in a single operation. See

CREATE TABLE Statement on page 256 for details.
• The CREATE TABLE and ALTER TABLE statements have a new TBLPROPERTIES clause that lets you

associate arbitrary items of metadata with a particular table as key-value pairs. See CREATE TABLE Statement on
page 256 and ALTER TABLE Statement on page 225 for details.

• Delegation support lets you authorize certain OS users associated with applications (for example, hue), to submit
requests using the credentials of other users. See Configuring Impala Delegation for Hue and BI Tools on page
104 for details.

• Enhancements to EXPLAIN output. In particular, when you enable the new EXPLAIN_LEVEL query option, the
EXPLAIN and PROFILE statements produce more verbose output showing estimated resource requirements and
whether table and column statistics are available for the applicable tables and columns. See EXPLAIN Statement
on page 297 for details.

 | Impala Release Notes | 803

New Features in Impala 1.1.1

Impala 1.1.1 includes new features for security and stability.

New user-visible features include:

• Additional security feature: auditing. New startup options for impalad let you capture information about Impala
queries that succeed or are blocked due to insufficient privileges. For details, see Impala Security on page 82.

• Parquet data files generated by Impala 1.1.1 are now compatible with the Parquet support in Hive. See
Incompatible Changes and Limitations in Apache Impala on page 805 for the procedure to update older
Impala-created Parquet files to be compatible with the Hive Parquet support.

• Additional improvements to stability and resource utilization for Impala queries.
• Additional enhancements for compatibility with existing file formats.

New Features in Impala 1.1

Impala 1.1 includes new features for security, performance, and usability.

New user-visible features include:

• Extensive new security features, built on top of the Sentry open source project. Impala now supports fine-
grained authorization based on roles. A policy file determines which privileges on which schema objects (servers,
databases, tables, and HDFS paths) are available to users based on their membership in groups. By assigning
privileges for views, you can control access to table data at the column level. For details, see Impala Security on
page 82.

• Impala can now create, alter, drop, and query views. Views provide a flexible way to set up simple aliases for
complex queries; hide query details from applications and users; and simplify maintenance as you rename or
reorganize databases, tables, and columns. See the overview section Overview of Impala Views on page 219
and the statements CREATE VIEW Statement on page 271, ALTER VIEW Statement on page 239, and DROP
VIEW Statement on page 296.

• Performance is improved through a number of automatic optimizations. Resource consumption is also reduced
for Impala queries. These improvements apply broadly across all kinds of workloads and file formats. The major
areas of performance enhancement include:

• Improved disk and thread scheduling, which applies to all queries.
• Improved hash join and aggregation performance, which applies to queries with large build tables or a large

number of groups.
• Dictionary encoding with Parquet, which applies to Parquet tables with short string columns.
• Improved performance on systems with SSDs, which applies to all queries and file formats.

• Some new built-in functions are implemented: translate() to substitute characters within strings, user() to check
the login ID of the connected user.

• The new WITH clause for SELECT statements lets you simplify complicated queries in a way similar to creating
a view. The effects of the WITH clause only last for the duration of one query, unlike views, which are persistent
schema objects that can be used by multiple sessions or applications. See WITH Clause on page 350.

• An enhancement to DESCRIBE statement, DESCRIBE FORMATTED table_name, displays more detailed
information about the table. This information includes the file format, location, delimiter, ownership, external or
internal, creation and access times, and partitions. The information is returned as a result set that can be interpreted
and used by a management or monitoring application. See DESCRIBE Statement on page 274.

• You can now insert a subset of columns for a table, with other columns being left as all NULL values. Or you
can specify the columns in any order in the destination table, rather than having to match the order of the
corresponding columns in the source. VALUES clause. This feature is known as “column permutation”. See
INSERT Statement on page 301.

• The new LOAD DATA statement lets you load data into a table directly from an HDFS data file. This technique
lets you minimize the number of steps in your ETL process, and provides more flexibility. For example, you can
bring data into an Impala table in one step. Formerly, you might have created an external table where the data
files are not entirely under your control, or copied the data files to Impala data directories manually, or loaded
the original data into one table and then used the INSERT statement to copy it to a new table with a different file
format, partitioning scheme, and so on. See LOAD DATA Statement on page 313.

 | Impala Release Notes | 804

• Improvements to Impala-HBase integration:

• New query options for HBase performance: HBASE_CACHE_BLOCKS and HBASE_CACHING.
• Support for binary data types in HBase tables. See Supported Data Types for HBase Columns on page 739

for details.
• You can issue REFRESH as a SQL statement through any of the programming interfaces that Impala supports.

REFRESH formerly had to be issued as a command through the impala-shell interpreter, and was not
available through a JDBC or ODBC API call. As part of this change, the functionality of the REFRESH statement
is divided between two statements. In Impala 1.1, REFRESH requires a table name argument and immediately
reloads the metadata; the new INVALIDATE METADATA statement works the same as the Impala 1.0 REFRESH
did: the table name argument is optional, and the metadata for one or all tables is marked as stale, but not actually
reloaded until the table is queried. When you create a new table in the Hive shell or through a different Impala
node, you must enter INVALIDATE METADATA with no table parameter before you can see the new table in
impala-shell. See REFRESH Statement on page 317 and INVALIDATE METADATA Statement on page
310.

New Features in Impala 1.0.1

New user-visible features include:

• The VALUES clause lets you INSERT one or more rows using literals, function return values, or other
expressions. For performance and scalability, you should still use INSERT ... SELECT for bringing large
quantities of data into an Impala table. The VALUES clause is a convenient way to set up small tables, particularly
for initial testing of SQL features that do not require large amounts of data. See VALUES Clause on page 307
for details.

• The -B and -o options of the impala-shell command can turn query results into delimited text files and store
them in an output file. The plain text results are useful for using with other Hadoop components or Unix tools. In
benchmark tests, it is also faster to produce plain rather than pretty-printed results, and write to a file rather than to
the screen, giving a more accurate picture of the actual query time.

• Several bug fixes. See Issues Fixed in the 1.0.1 Release on page 865 for details.

New Features in Impala 1.0

This version has multiple performance improvements and adds the following functionality:

• Several bug fixes. See Issues Fixed in the 1.0 GA Release on page 866.
• ALTER TABLE statement.
• Hints to allow specifying a particular join strategy.
• REFRESH for a single table.
• Dynamic resource management, allowing high concurrency for Impala queries.

New Features in Version 0.7 of the Impala Beta Release

This version has multiple performance improvements and adds the following functionality:

• Several bug fixes. See Issues Fixed in Version 0.7 of the Beta Release on page 868.
• Support for the Parquet file format. For more information on file formats, see How Impala Works with Hadoop

File Formats on page 690.
• Added support for Avro.
• Support for the memory limits. For more information, see the example on modifying memory limits in Modifying

Impala Startup Options on page 32.
• Bigger and faster joins through the addition of partitioned joins to the already supported broadcast joins.
• Fully distributed aggregations.
• Fully distributed top-n computation.
• Support for creating and altering tables.
• Support for GROUP BY with floats and doubles.

 | Impala Release Notes | 805

New Features in Version 0.6 of the Impala Beta Release

• Several bug fixes. See Issues Fixed in Version 0.6 of the Beta Release on page 869.
• Added support for Impala on SUSE and Debian/Ubuntu. Impala is now supported on:

• RHEL5.7/6.2 and Centos5.7/6.2
• SUSE 11 with Service Pack 1 or higher
• Ubuntu 10.04/12.04 and Debian 6.03

• Support for the RCFile file format. For more information on file formats, see Understanding File Formats.

New Features in Version 0.5 of the Impala Beta Release

• Several bug fixes. See Issues Fixed in Version 0.5 of the Beta Release on page 870.
• Added support for a JDBC driver that allows you to access Impala from a Java client. To use this feature, follow

the instructions in Configuring Impala to Work with JDBC on page 27 to install the JDBC driver JARs on the
client machine and modify the CLASSPATH on the client to include the JARs.

New Features in Version 0.4 of the Impala Beta Release

• Several bug fixes. See Issues Fixed in Version 0.4 of the Beta Release on page 871.
• Added support for Impala on RHEL5.7/Centos5.7. Impala is now supported on RHEL5.7/6.2 and Centos5.7/6.2.
• The Impala debug webserver now has the ability to serve static files from ${IMPALA_HOME}/www. This can

be disabled by setting --enable_webserver_doc_root=false on the command line. As a result, Impala
now uses the Twitter Bootstrap library to style its debug webpages, and the /queries page now tracks the last
25 queries run by each Impala daemon.

• Additional metrics available on the Impala Debug Webpage.

New Features in Version 0.3 of the Impala Beta Release

• Several bug fixes. See Issues Fixed in Version 0.3 of the Beta Release on page 871.
• The state-store-service binary has been renamed statestored.
• The location of the Impala configuration files has changed from the /usr/lib/impala/conf directory to the

/etc/impala/conf directory.

New Features in Version 0.2 of the Impala Beta Release

• Several bug fixes. See Issues Fixed in Version 0.2 of the Beta Release on page 872.
• Added Default Query Options Default query options override all default QueryOption values when starting

impalad. The format is:

-default_query_options='key=value;key=value'

Incompatible Changes and Limitations in Apache Impala
The Impala version covered by this documentation library contains the following incompatible changes. These
are things such as file format changes, removed features, or changes to implementation, default configuration,
dependencies, or prerequisites that could cause issues during or after an Impala upgrade.

Even added SQL statements or clauses can produce incompatibilities, if you have databases, tables, or columns whose
names conflict with the new keywords.

Incompatible Changes Introduced in Impala 2.11.x

For the full list of issues closed in this release, including any that introduce behavior changes or incompatibilities, see
the changelog for Impala 2.11.

https://impala.apache.org/docs/changelog-2.11.html

 | Impala Release Notes | 806

Incompatible Changes Introduced in Impala 2.10.x

For the full list of issues closed in this release, including any that introduce behavior changes or incompatibilities, see
the changelog for Impala 2.10.

Incompatible Changes Introduced in Impala 2.9.x

For the full list of issues closed in this release, including any that introduce behavior changes or incompatibilities, see
the changelog for Impala 2.9.

Incompatible Changes Introduced in Impala 2.8.x

• Llama support is removed completely from Impala. Related flags (--enable_rm) and query options (such as
V_CPU_CORES) remain but do not have any effect.

If --enable_rm is passed to Impala, a warning is printed to the log on startup.
• The syntax related to Kudu tables includes a number of new reserved words, such as COMPRESSION, DEFAULT,

and ENCODING, that might conflict with names of existing tables, columns, or other identifiers from older Impala
versions. See Impala Reserved Words on page 776 for the full list of reserved words.

• The DDL syntax for Kudu tables, particularly in the CREATE TABLE statement, is different from the special
impala_next fork that was previously used for accessing Kudu tables from Impala:

• The DISTRIBUTE BY clause is now PARTITIONED BY.
• The INTO N BUCKETS clause is now PARTITIONS N.
• The SPLIT ROWS clause is replaced by different syntax for specifying the ranges covered by each partition.

• The DESCRIBE output for Kudu tables includes several extra columns.
• Non-primary-key columns can contain NULL values by default. The SHOW CREATE TABLE output for these

columns displays the NULL attribute. There was a period during early experimental versions of Impala + Kudu
where non-primary-key columns had the NOT NULL attribute by default.

• The IGNORE keyword that was present in early experimental versions of Impala + Kudu is no longer present.
The behavior of the IGNORE keyword is now the default: DML statements continue with warnings, instead of
failing with errors, if they encounter conditions such as “primary key already exists” for an INSERT statement or
“primary key already deleted” for a DELETE statement.

• The replication factor for Kudu tables must be an odd number.
• A UDF compiled into an LLVM IR bitcode module (.bc) might encounter a runtime error when native code

generation is turned off by setting the query option DISABLE_CODEGEN=1. This issue also applies when
running a built-in or native UDF with more than 20 arguments. See IMPALA-4432 for details. As a workaround,
either turn native code generation back on with the query option DISABLE_CODEGEN=0, or use the regular UDF
compilation path that does not produce an IR module.

Incompatible Changes Introduced in Impala 2.7.x

• Bug fixes related to parsing of floating-point values (IMPALA-1731 and IMPALA-3868) can change the results
of casting strings that represent invalid floating-point values. For example, formerly a string value beginning or
ending with inf, such as 1.23inf or infinite, now are converted to NULL when interpreted as a floating-
point value. Formerly, they were interpreted as the special “infinity” value when converting from string to
floating-point. Similarly, now only the string NaN (case-sensitive) is interpreted as the special “not a number”
value. String values containing multiple dots, such as 3..141 or 3.1.4.1, are now interpreted as NULL rather
than being converted to valid floating-point values.

Incompatible Changes Introduced in Impala 2.6.x

• The default for the RUNTIME_FILTER_MODE query option is changed to GLOBAL (the highest setting).
• The RUNTIME_BLOOM_FILTER_SIZE setting is now only used as a fallback if statistics are not available;

otherwise, Impala uses the statistics to estimate the appropriate size to use for each filter.

https://impala.apache.org/docs/changelog-2.10.html
https://impala.apache.org/docs/changelog-2.9.html
https://issues.apache.org/jira/browse/IMPALA-4432

 | Impala Release Notes | 807

• Admission control and dynamic resource pools are enabled by default. When upgrading from an earlier release,
you must turn on these settings yourself if they are not already enabled. See Admission Control and Query
Queuing on page 67 for details about admission control.

• Impala reserves some new keywords, in preparation for support for Kudu syntax: buckets, delete,
distribute, hash, ignore, split, and update.

• For Kerberized clusters, the Catalog service now uses the Kerberos principal instead of the operating
sytem user that runs the catalogd daemon. This eliminates the requirement to configure a
hadoop.user.group.static.mapping.overrides setting to put the OS user into the Sentry
administrative group, on clusters where the principal and the OS user name for this user are different.

• The mechanism for interpreting DECIMAL literals is improved, no longer going through an intermediate
conversion step to DOUBLE:

• Casting a DECIMAL value to TIMESTAMP DOUBLE produces a more precise value for the TIMESTAMP than
formerly.

• Certain function calls involving DECIMAL literals now succeed, when formerly they failed due to lack of a
function signature with a DOUBLE argument.

• Improved type accuracy for CASE return values. If all WHEN clauses of the CASE expression are of CHAR type,
the final result is also CHAR instead of being converted to STRING.

• The initial release of Impala 2.5 sometimes has a higher peak memory usage than in previous releases while
reading Parquet files. The following query options might help to reduce memory consumption in the Parquet
scanner:

• Reduce the number of scanner threads, for example: set num_scanner_threads=30
• Reduce the batch size, for example: set batch_size=512
• Increase the memory limit, for example: set mem_limit=64g

You can track the status of the fix for this issue at IMPALA-3662.
• The S3_SKIP_INSERT_STAGING query option, which is enabled by default, increases the speed of INSERT

operations for S3 tables. The speedup applies to regular INSERT, but not INSERT OVERWRITE. The
tradeoff is the possibility of inconsistent output files left behind if a node fails during INSERT execution. See
S3_SKIP_INSERT_STAGING Query Option (Impala 2.6 or higher only) on page 392 for details.

Certain features are turned off by default, to avoid regressions or unexpected behavior following an upgrade. Consider
turning on these features after suitable testing:

• Impala now recognizes the auth_to_local setting, specified through the HDFS configuration setting
hadoop.security.auth_to_local. This feature is disabled by default; to enable it, specify --
load_auth_to_local_rules=true in the impalad configuration settings.

• A new query option, PARQUET_ANNOTATE_STRINGS_UTF8, makes Impala include the UTF-8 annotation
metadata for STRING, CHAR, and VARCHAR columns in Parquet files created by INSERT or CREATE TABLE
AS SELECT statements.

• A new query option, PARQUET_FALLBACK_SCHEMA_RESOLUTION, lets Impala locate columns within
Parquet files based on column name rather than ordinal position. This enhancement improves interoperability with
applications that write Parquet files with a different order or subset of columns than are used in the Impala table.

Incompatible Changes Introduced in Impala 2.5.x

• The admission control default limit for concurrent queries (the max requests setting) is now unlimited instead of
200.

• Multiplying a mixture of DECIMAL and FLOAT or DOUBLE values now returns DOUBLE rather than DECIMAL.
This change avoids some cases where an intermediate value would underflow or overflow and become NULL
unexpectedly. The results of multiplying DECIMAL and FLOAT or DOUBLE might now be slightly less precise
than before. Previously, the intermediate types and thus the final result depended on the exact order of the values
of different types being multiplied, which made the final result values difficult to reason about.

• Previously, the _ and % wildcard characters for the LIKE operator would not match characters on the second
or subsequent lines of multi-line string values. The fix for issue IMPALA-2204 causes the wildcard matching to

https://issues.apache.org/jira/browse/IMPALA-3662
https://issues.apache.org/jira/browse/IMPALA-2204

 | Impala Release Notes | 808

apply to the entire string for values containing embedded \n characters. This could cause different results than in
previous Impala releases for identical queries on identical data.

• Formerly, all Impala UDFs and UDAs required running the CREATE FUNCTION statements to re-create them
after each catalogd restart. In Impala 2.5 and higher, functions written in C++ are persisted across restarts, and
the requirement to re-create functions only applies to functions written in Java. Adapt any function-reloading logic
that you have added to your Impala environment.

• CREATE TABLE LIKE no longer inherits HDFS caching settings from the source table.
• The SHOW DATABASES statement now returns two columns rather than one. The second column includes

the associated comment string, if any, for each database. Adjust any application code that examines the list of
databases and assumes the result set contains only a single column.

• The output of the SHOW FUNCTIONS statement includes two new columns, showing the kind of the function
(for example, BUILTIN) and whether or not the function persists across catalog server restarts. For example, the
SHOW FUNCTIONS output for the _impala_builtins database starts with:

+--------------+---
+-------------+---------------+
| return type | signature | binary
 type | is persistent |
+--------------+---
+-------------+---------------+
| BIGINT | abs(BIGINT) | BUILTIN
 | true |
| DECIMAL(*,*) | abs(DECIMAL(*,*)) | BUILTIN
 | true |
| DOUBLE | abs(DOUBLE) | BUILTIN
 | true |
...

Incompatible Changes Introduced in Impala 2.4.x

Other than support for DSSD storage, the Impala feature set for Impala 2.4 is the same as for Impala 2.3. Therefore,
there are no incompatible changes for Impala introduced in Impala 2.4.

Incompatible Changes Introduced in Impala 2.3.x

Note:

The use of the Llama component for integrated resource management within YARN is no longer supported with
Impala 2.3 and higher. The Llama support code is removed entirely in Impala 2.8 and higher.

For clusters running Impala alongside other data management components, you define static service pools to define
the resources available to Impala and other components. Then within the area allocated for Impala, you can create
dynamic service pools, each with its own settings for the Impala admission control feature.

• If Impala encounters a Parquet file that is invalid because of an incorrect magic number, the query skips the file.
This change is caused by the fix for issue IMPALA-2130. Previously, Impala would attempt to read the file despite
the possibility that the file was corrupted.

• Previously, calls to overloaded built-in functions could treat parameters as DOUBLE or FLOAT when no overload
had a signature that matched the exact argument types. Now Impala prefers the function signature with DECIMAL
parameters in this case. This change avoids a possible loss of precision in function calls such as greatest(0,
99999.8888); now both parameters are treated as DECIMAL rather than DOUBLE, avoiding any loss of
precision in the fractional value. This could cause slightly different results than in previous Impala releases for
certain function calls.

• Formerly, adding or subtracting a large interval value to a TIMESTAMP could produce a nonsensical result. Now
when the result goes outside the range of TIMESTAMP values, Impala returns NULL.

https://issues.apache.org/jira/browse/IMPALA-2130

 | Impala Release Notes | 809

• Formerly, it was possible to accidentally create a table with identical row and column delimiters. This could
happen unintentionally, when specifying one of the delimiters and using the default value for the other. Now an
attempt to use identical delimiters still succeeds, but displays a warning message.

• Formerly, Impala could include snippets of table data in log files by default, for example when reporting
conversion errors for data values. Now any such log messages are only produced at higher logging levels that you
would enable only during debugging.

Incompatible Changes Introduced in Impala 2.2.x

Changes to File Handling

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions .tmp or .copying are not considered part of the Impala table. The suffix matching is case-insensitive,
so for example Impala ignores both .copying and .COPYING suffixes.

The log rotation feature in Impala 2.2.0 and higher means that older log files are now removed by default. The default
is to preserve the latest 10 log files for each severity level, for each Impala-related daemon. If you have set up your
own log rotation processes that expect older files to be present, either adjust your procedures or change the Impala -
max_log_files setting.

Changes to Prerequisites

The prerequisite for CPU architecture has been relaxed in Impala 2.2.0 and higher. From this release onward,
Impala works on CPUs that have the SSSE3 instruction set. The SSE4 instruction set is no longer required. This
relaxed requirement simplifies the upgrade planning from Impala 1.x releases, which also worked on SSSE3-enabled
processors.

Incompatible Changes Introduced in Impala 2.1.x

Changes to Prerequisites

Currently, Impala 2.1.x does not function on CPUs without the SSE4.1 instruction set. This minimum CPU
requirement is higher than in previous versions, which relied on the older SSSE3 instruction set. Check the CPU level
of the hosts in your cluster before upgrading to Impala 2.1.

Changes to Output Format

The “small query” optimization feature introduces some new information in the EXPLAIN plan, which you might
need to account for if you parse the text of the plan output.

New Reserved Words

New SQL syntax introduces additional reserved words: FOR, GRANT, REVOKE, ROLE, ROLES, INCREMENTAL.

Incompatible Changes Introduced in Impala 2.0.5

No incompatible changes.

Incompatible Changes Introduced in Impala 2.0.4

No incompatible changes.

Incompatible Changes Introduced in Impala 2.0.3

Incompatible Changes Introduced in Impala 2.0.2

No incompatible changes.

 | Impala Release Notes | 810

Incompatible Changes Introduced in Impala 2.0.1

• The INSERT statement has always left behind a hidden work directory inside the data directory of the table.
Formerly, this hidden work directory was named .impala_insert_staging . In Impala 2.0.1 and later, this
directory name is changed to _impala_insert_staging . (While HDFS tools are expected to treat names
beginning either with underscore and dot as hidden, in practice names beginning with an underscore are more
widely supported.) If you have any scripts, cleanup jobs, and so on that rely on the name of this work directory,
adjust them to use the new name.

• The abs() function now takes a broader range of numeric types as arguments, and the return type is the same as
the argument type.

• Shorthand notation for character classes in regular expressions, such as \d for digit, are now available again
in regular expression operators and functions such as regexp_extract() and regexp_replace().
Some other differences in regular expression behavior remain between Impala 1.x and Impala 2.x releases. See
Incompatible Changes Introduced in Impala 2.0.0 on page 810 for details.

Incompatible Changes Introduced in Impala 2.0.0

Changes to Prerequisites

Currently, Impala 2.0.x does not function on CPUs without the SSE4.1 instruction set. This minimum CPU
requirement is higher than in previous versions, which relied on the older SSSE3 instruction set. Check the CPU level
of the hosts in your cluster before upgrading to Impala 2.0.

Changes to Query Syntax

The new syntax where query hints are allowed in comments causes some changes in the way comments are parsed
in the impala-shell interpreter. Previously, you could end a -- comment line with a semicolon and impala-
shell would treat that as a no-op statement. Now, a comment line ending with a semicolon is passed as an empty
statement to the Impala daemon, where it is flagged as an error.

Impala 2.0 and later uses a different support library for regular expression parsing than in earlier Impala versions.
Now, Impala uses the Google RE2 library rather than Boost for evaluating regular expressions. This implementation
change causes some differences in the allowed regular expression syntax, and in the way certain regex operators are
interpreted. The following are some of the major differences (not necessarily a complete list):

• .*? notation for non-greedy matches is now supported, where it was not in earlier Impala releases.
• By default, ^ and $ now match only begin/end of buffer, not begin/end of each line. This behavior can be

overridden in the regex itself using the m flag.
• By default, . does not match newline. This behavior can be overridden in the regex itself using the s flag.
• \Z is not supported.
• < and > for start of word and end of word are not supported.
• Lookahead and lookbehind are not supported.
• Shorthand notation for character classes, such as \d for digit, is not recognized. (This restriction is lifted in Impala

2.0.1, which restores the shorthand notation.)

Changes to Output Format

In Impala 2.0 and later, user() returns the full Kerberos principal string, such as user@example.com, in a
Kerberized environment.

The changed format for the user name in secure environments is also reflected where the user name is displayed in the
output of the PROFILE command.

In the output from SHOW FUNCTIONS, SHOW AGGREGATE FUNCTIONS, and SHOW ANALYTIC FUNCTIONS,
arguments and return types of arbitrary DECIMAL scale and precision are represented as DECIMAL(*,*). Formerly,
these items were displayed as DECIMAL(-1,-1).

https://code.google.com/p/re2/

 | Impala Release Notes | 811

Changes to Query Options

The PARQUET_COMPRESSION_CODEC query option has been replaced by the COMPRESSION_CODEC query
option.

Changes to Configuration Options

The meaning of the --idle_query_timeout configuration option is changed, to accommodate the new
QUERY_TIMEOUT_S query option. Rather than setting an absolute timeout period that applies to all queries, it now
sets a maximum timeout period, which can be adjusted downward for individual queries by specifying a value for the
QUERY_TIMEOUT_S query option. In sessions where no QUERY_TIMEOUT_S query option is specified, the --
idle_query_timeout timeout period applies the same as in earlier versions.

The --strict_unicode option of impala-shell was removed. To avoid problems with Unicode values in
impala-shell, define the following locale setting before running impala-shell:

export LC_CTYPE=en_US.UTF-8

New Reserved Words

Some new SQL syntax requires the addition of new reserved words: ANTI, ANALYTIC, OVER, PRECEDING,
UNBOUNDED, FOLLOWING, CURRENT, ROWS, RANGE, CHAR, VARCHAR.

Changes to Data Files

The default Parquet block size for Impala is changed from 1 GB to 256 MB. This change could have implications for
the sizes of Parquet files produced by INSERT and CREATE TABLE AS SELECT statements.

Although older Impala releases typically produced files that were smaller than the old default size of 1 GB, now the
file size matches more closely whatever value is specified for the PARQUET_FILE_SIZE query option. Thus, if
you use a non-default value for this setting, the output files could be larger than before. They still might be somewhat
smaller than the specified value, because Impala makes conservative estimates about the space needed to represent
each column as it encodes the data.

When you do not specify an explicit value for the PARQUET_FILE_SIZE query option, Impala tries to keep the
file size within the 256 MB default size, but Impala might adjust the file size to be somewhat larger if needed to
accommodate the layout for wide tables, that is, tables with hundreds or thousands of columns.

This change is unlikely to affect memory usage while writing Parquet files, because Impala does not pre-allocate the
memory needed to hold the entire Parquet block.

Incompatible Changes Introduced in Impala 1.4.4

No incompatible changes.

Incompatible Changes Introduced in Impala 1.4.3

No incompatible changes. The TLS/SSL security fix does not require any change in the way you interact with Impala.

Incompatible Changes Introduced in Impala 1.4.2

None. Impala 1.4.2 is purely a bug-fix release. It does not include any incompatible changes.

Incompatible Changes Introduced in Impala 1.4.1

None. Impala 1.4.1 is purely a bug-fix release. It does not include any incompatible changes.

 | Impala Release Notes | 812

Incompatible Changes Introduced in Impala 1.4.0

• There is a slight change to required security privileges in the Sentry framework. To create a new object, now you
need the ALL privilege on the parent object. For example, to create a new table, view, or function requires having
the ALL privilege on the database containing the new object. See Enabling Sentry Authorization for Impala on
page 87 for a full list of operations and associated privileges.

• With the ability of ORDER BY queries to process unlimited amounts of data with no LIMIT clause, the query
options DEFAULT_ORDER_BY_LIMIT and ABORT_ON_DEFAULT_LIMIT_EXCEEDED are now deprecated
and have no effect.

• There are some changes to the list of reserved words. The following keywords are new:

• API_VERSION
• BINARY
• CACHED
• CLASS
• PARTITIONS
• PRODUCED
• UNCACHED

The following were formerly reserved keywords, but are no longer reserved:

• COUNT
• GROUP_CONCAT
• NDV
• SUM

• The fix for issue IMPALA-973 changes the behavior of the INVALIDATE METADATA statement regarding
nonexistent tables. In Impala 1.4.0 and higher, the statement returns an error if the specified table is not in the
metastore database at all. It completes successfully if the specified table is in the metastore database but not yet
recognized by Impala, for example if the table was created through Hive. Formerly, you could issue this statement
for a completely nonexistent table, with no error.

Incompatible Changes Introduced in Impala 1.3.3

No incompatible changes. The TLS/SSL security fix does not require any change in the way you interact with Impala.

Incompatible Changes Introduced in Impala 1.3.2

With the fix for IMPALA-1019, you can use HDFS caching for files that are accessed by Impala.

Incompatible Changes Introduced in Impala 1.3.1

• In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by .*. See
REGEXP Operator on page 208 for examples. Previously, these operators only succeeded when the regular
expression matched the entire target string. This change improves compatibility with the regular expression
support for popular database systems. There is no change to the behavior of the regexp_extract() and
regexp_replace() built-in functions.

• The result set for the SHOW FUNCTIONS statement includes a new first column, with the data type of the return
value.

Incompatible Changes Introduced in Impala 1.3.0

• The EXPLAIN_LEVEL query option now accepts numeric options from 0 (most concise) to 3 (most verbose),
rather than only 0 or 1. If you formerly used SET EXPLAIN_LEVEL=1 to get detailed explain plans, switch to
SET EXPLAIN_LEVEL=3. If you used the mnemonic keyword (SET EXPLAIN_LEVEL=verbose), you do
not need to change your code because now level 3 corresponds to verbose.

https://issues.apache.org/jira/browse/IMPALA-973

 | Impala Release Notes | 813

• The keyword DECIMAL is now a reserved word. If you have any databases, tables, columns, or other objects
already named DECIMAL, quote any references to them using backticks (``) to avoid name conflicts with the
keyword.

Note: Although the DECIMAL keyword is a reserved word, currently Impala does not support DECIMAL as a
data type for columns.

• The query option formerly named YARN_POOL is now named REQUEST_POOL to reflect its broader use with the
Impala admission control feature.

• There are some changes to the list of reserved words.

• The names of aggregate functions are no longer reserved words, so you can have databases, tables, columns, or
other objects named AVG, MIN, and so on without any name conflicts.

• The internal function names DISTINCTPC and DISTINCTPCSA are no longer reserved words, although
DISTINCT is still a reserved word.

• The keywords CLOSE_FN and PREPARE_FN are now reserved words.
• The HDFS property dfs.client.file-block-storage-locations.timeout was renamed to

dfs.client.file-block-storage-locations.timeout.millis, to emphasize that the unit of
measure is milliseconds, not seconds. Impala requires a timeout of at least 10 seconds, making the minimum
value for this setting 10000. If you are not using cluster management software, you might need to edit the hdfs-
site.xml file in the Impala configuration directory for the new name and minimum value.

Incompatible Changes Introduced in Impala 1.2.4

There are no incompatible changes introduced in Impala 1.2.4.

Previously, after creating a table in Hive, you had to issue the INVALIDATE METADATA statement with no table
name, a potentially expensive operation on clusters with many databases, tables, and partitions. Starting in Impala
1.2.4, you can issue the statement INVALIDATE METADATA table_name for a table newly created through
Hive. Loading the metadata for only this one table is faster and involves less network overhead. Therefore, you might
revisit your setup DDL scripts to add the table name to INVALIDATE METADATA statements, in cases where you
create and populate the tables through Hive before querying them through Impala.

Incompatible Changes Introduced in Impala 1.2.3

Because the feature set of Impala 1.2.3 is identical to Impala 1.2.2, there are no new incompatible changes. See
Incompatible Changes Introduced in Impala 1.2.2 on page 813 if you are upgrading from Impala 1.2.1 or 1.1.x.

Incompatible Changes Introduced in Impala 1.2.2

The following changes to SQL syntax and semantics in Impala 1.2.2 could require updates to your SQL code, or
schema objects such as tables or views:

• With the addition of the CROSS JOIN keyword, you might need to rewrite any queries that refer to a table named
CROSS or use the name CROSS as a table alias:

-- Formerly, 'cross' in this query was an alias for t1
-- and it was a normal join query.
-- In 1.2.2 and higher, CROSS JOIN is a keyword, so 'cross'
-- is not interpreted as a table alias, and the query
-- uses the special CROSS JOIN processing rather than a
-- regular join.
select * from t1 cross join t2...

-- Now if CROSS is used in other context such as a table or column name,
-- use backticks to escape it.
create table `cross` (x int);
select * from `cross`;

 | Impala Release Notes | 814

• Formerly, a DROP DATABASE statement in Impala would not remove the top-level HDFS directory for that
database. The DROP DATABASE has been enhanced to remove that directory. (You still need to drop all the
tables inside the database first; this change only applies to the top-level directory for the entire database.)

• The keyword PARQUET is introduced as a synonym for PARQUETFILE in the CREATE TABLE and ALTER
TABLE statements, because that is the common name for the file format. (As opposed to SequenceFile and RCFile
where the “File” suffix is part of the name.) Documentation examples have been changed to prefer the new shorter
keyword. The PARQUETFILE keyword is still available for backward compatibility with older Impala versions.

• New overloads are available for several operators and built-in functions, allowing you to insert their result values
into smaller numeric columns such as INT, SMALLINT, TINYINT, and FLOAT without using a CAST() call. If
you remove the CAST() calls from INSERT statements, those statements might not work with earlier versions of
Impala.

Because many users are likely to upgrade straight from Impala 1.x to Impala 1.2.2, also read Incompatible Changes
Introduced in Impala 1.2.1 on page 814 for things to note about upgrading to Impala 1.2.x in general.

Incompatible Changes Introduced in Impala 1.2.1

The following changes to SQL syntax and semantics in Impala 1.2.1 could require updates to your SQL code, or
schema objects such as tables or views:

• In Impala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries,
and at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater
than all other values for sorting purposes. The original Impala behavior always put NULL values at the end, even
for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other
popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL
by adding the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.

The new catalogd service might require changes to any user-written scripts that stop, start, or restart Impala
services, install or upgrade Impala packages, or issue REFRESH or INVALIDATE METADATA statements:

• See Installing Impala on page 24, Upgrading Impala on page 30 and Starting Impala on page 31, for
usage information for the catalogd daemon.

• The REFRESH and INVALIDATE METADATA statements are no longer needed when the CREATE TABLE,
INSERT, or other table-changing or data-changing operation is performed through Impala. These statements are
still needed if such operations are done through Hive or by manipulating data files directly in HDFS, but in those
cases the statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement
on page 317 and INVALIDATE METADATA Statement on page 310 for the latest usage information for
those statements.

• See The Impala Catalog Service on page 15 for background information on the catalogd service.

Incompatible Changes Introduced in Impala 1.2.0 (Beta)

There are no incompatible changes to SQL syntax in Impala 1.2.0 (beta).

The new catalogd service might require changes to any user-written scripts that stop, start, or restart Impala
services, install or upgrade Impala packages, or issue REFRESH or INVALIDATE METADATA statements:

• See Installing Impala on page 24, Upgrading Impala on page 30 and Starting Impala on page 31, for
usage information for the catalogd daemon.

• The REFRESH and INVALIDATE METADATA statements are no longer needed when the CREATE TABLE,
INSERT, or other table-changing or data-changing operation is performed through Impala. These statements are
still needed if such operations are done through Hive or by manipulating data files directly in HDFS, but in those
cases the statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement
on page 317 and INVALIDATE METADATA Statement on page 310 for the latest usage information for
those statements.

• See The Impala Catalog Service on page 15 for background information on the catalogd service.

The new resource management feature interacts with both YARN and Llama services.

 | Impala Release Notes | 815

Incompatible Changes Introduced in Impala 1.1.1

There are no incompatible changes in Impala 1.1.1.

Previously, it was not possible to create Parquet data through Impala and reuse that table within Hive. Now that
Parquet support is available for Hive 10, reusing existing Impala Parquet data files in Hive requires updating the table
metadata. Use the following command if you are already running Impala 1.1.1:

ALTER TABLE table_name SET FILEFORMAT PARQUETFILE;

If you are running a level of Impala that is older than 1.1.1, do the metadata update through Hive:

ALTER TABLE table_name SET SERDE 'parquet.hive.serde.ParquetHiveSerDe';
ALTER TABLE table_name SET FILEFORMAT
 INPUTFORMAT "parquet.hive.DeprecatedParquetInputFormat"
 OUTPUTFORMAT "parquet.hive.DeprecatedParquetOutputFormat";

Impala 1.1.1 and higher can reuse Parquet data files created by Hive, without any action required.

As usual, make sure to upgrade the Impala LZO package to the latest level at the same time as you upgrade the Impala
server.

Incompatible Change Introduced in Impala 1.1

• The REFRESH statement now requires a table name; in Impala 1.0, the table name was optional. This syntax
change is part of the internal rework to make REFRESH a true Impala SQL statement so that it can be called
through the JDBC and ODBC APIs. REFRESH now reloads the metadata immediately, rather than marking it for
update the next time any affected table is accessed. The previous behavior, where omitting the table name caused a
refresh of the entire Impala metadata catalog, is available through the new INVALIDATE METADATA statement.
INVALIDATE METADATA can be specified with a table name to affect a single table, or without a table name
to affect the entire metadata catalog; the relevant metadata is reloaded the next time it is requested during the
processing for a SQL statement. See REFRESH Statement on page 317 and INVALIDATE METADATA
Statement on page 310 for the latest details about these statements.

Incompatible Changes Introduced in Impala 1.0

• If you use LZO-compressed text files, when you upgrade Impala to version 1.0, also update the Impala LZO
package to the latest level. See Using LZO-Compressed Text Files on page 696 for details.

Known Issues and Workarounds in Impala
The following sections describe known issues and workarounds in Impala, as of the current production release. This
page summarizes the most serious or frequently encountered issues in the current release, to help you make planning
decisions about installing and upgrading. Any workarounds are listed here. The bug links take you to the Impala
issues site, where you can see the diagnosis and whether a fix is in the pipeline.

Note: The online issue tracking system for Impala contains comprehensive information and is updated in real time.
To verify whether an issue you are experiencing has already been reported, or which release an issue is fixed in,
search on the issues.apache.org JIRA tracker.

For issues fixed in various Impala releases, see Fixed Issues in Apache Impala on page 831.

Impala Known Issues: Startup

These issues can prevent one or more Impala-related daemons from starting properly.

https://issues.apache.org/jira/

 | Impala Release Notes | 816

Problem retrieving FQDN causes startup problem on kerberized clusters

The method Impala uses to retrieve the host name while constructing the Kerberos principal is the gethostname()
system call. This function might not always return the fully qualified domain name, depending on the network
configuration. If the daemons cannot determine the FQDN, Impala does not start on a kerberized cluster.

This problem might occur immediately after an upgrade of a CDH cluster, due to changes in Cloudera Manager that
supplies the --hostname flag automatically to the Impala-related daemons. (See the issue “hostname parameter is
not passed to Impala catalog role” at the Cloudera Manager Known Issues page.)

Bugs: IMPALA-4978, IMPALA-5253

Severity: High

Resolution: The issue is expected to occur less frequently on systems with fixes for IMPALA-4978, IMPALA-5253,
or both. Even on systems with fixes for both of these issues, the workaround might still be required in some cases.

Workaround: Test if a host is affected by checking whether the output of the hostname command
includes the FQDN. On hosts where hostname only returns the short name, pass the command-line flag --
hostname=fully_qualified_domain_name in the startup options of all Impala-related daemons.

Impala Known Issues: Crashes and Hangs

These issues can cause Impala to quit or become unresponsive.

Altering Kudu table schema outside of Impala may result in crash on read

Creating a table in Impala, changing the column schema outside of Impala, and then reading again in Impala may
result in a crash. Neither Impala nor the Kudu client validates the schema immediately before reading, so Impala may
attempt to dereference pointers that aren't there. This happens if a string column is dropped and then a new, non-string
column is added with the old string column's name.

Bug: IMPALA-4828

Severity: High

Workaround: Run the statement REFRESH table_name after any occasion when the table structure, such as the
number, names, and data types of columns, are modified outside of Impala using the Kudu API.

Queries that take a long time to plan can cause webserver to block other queries

Trying to get the details of a query through the debug web page while the query is planning will block new queries
that had not started when the web page was requested. The web UI becomes unresponsive until the planning phase is
finished.

Bug: IMPALA-1972

Severity: High

Linking IR UDF module to main module crashes Impala

A UDF compiled as an LLVM module (.ll) could cause a crash when executed.

Bug: IMPALA-4595

Severity: High

Resolution: Fixed in Impala 2.8 and higher.

Workaround: Compile the external UDFs to a .so library instead of a .ll IR module.

Setting BATCH_SIZE query option too large can cause a crash

Using a value in the millions for the BATCH_SIZE query option, together with wide rows or large string values in
columns, could cause a memory allocation of more than 2 GB resulting in a crash.

Bug: IMPALA-3069

https://www.cloudera.com/documentation/enterprise/release-notes/topics/cm_rn_known_issues.html
https://issues.apache.org/jira/browse/IMPALA-4978
https://issues.apache.org/jira/browse/IMPALA-5253
https://issues.apache.org/jira/browse/IMPALA-4978
https://issues.apache.org/jira/browse/IMPALA-5253
https://issues.apache.org/jira/browse/IMPALA-4828
https://issues.apache.org/jira/browse/IMPALA-1972
https://issues.apache.org/jira/browse/IMPALA-4595
https://issues.apache.org/jira/browse/IMPALA-3069

 | Impala Release Notes | 817

Severity: High

Resolution: Fixed in Impala 2.7.0.

Impala should not crash for invalid avro serialized data

Malformed Avro data, such as out-of-bounds integers or values in the wrong format, could cause a crash when
queried.

Bug: IMPALA-3441

Severity: High

Resolution: Fixed in Impala 2.7.0 and Impala 2.6.2.

Queries may hang on server-to-server exchange errors

The DataStreamSender::Channel::CloseInternal() does not close the channel on an error. This
causes the node on the other side of the channel to wait indefinitely, causing a hang.

Bug: IMPALA-2592

Resolution: Fixed in Impala 2.5.0.

Impalad is crashing if udf jar is not available in hdfs location for first time

If the JAR file corresponding to a Java UDF is removed from HDFS after the Impala CREATE FUNCTION statement
is issued, the impalad daemon crashes.

Bug: IMPALA-2365

Resolution: Fixed in Impala 2.5.0.

Impala Known Issues: Performance

These issues involve the performance of operations such as queries or DDL statements.

Slow queries for Parquet tables with convert_legacy_hive_parquet_utc_timestamps=true

The configuration setting convert_legacy_hive_parquet_utc_timestamps=true uses an underlying
function that can be a bottleneck on high volume, highly concurrent queries due to the use of a global lock while
loading time zone information. This bottleneck can cause slowness when querying Parquet tables, up to 30x for scan-
heavy queries. The amount of slowdown depends on factors such as the number of cores and number of threads
involved in the query.

Note:

The slowdown only occurs when accessing TIMESTAMP columns within Parquet files that were generated by Hive,
and therefore require the on-the-fly timezone conversion processing.

Bug: IMPALA-3316

Severity: High

Workaround: If the TIMESTAMP values stored in the table represent dates only, with no time portion, consider
storing them as strings in yyyy-MM-dd format. Impala implicitly converts such string values to TIMESTAMP in
calls to date/time functions.

Slow DDL statements for tables with large number of partitions

DDL statements for tables with a large number of partitions might be slow.

Bug: IMPALA-1480

Workaround: Run the DDL statement in Hive if the slowness is an issue.

Resolution: Fixed in Impala 2.5.0.

https://issues.apache.org/jira/browse/IMPALA-3441
https://issues.apache.org/jira/browse/IMPALA-2592
https://issues.apache.org/jira/browse/IMPALA-2365
https://issues.apache.org/jira/browse/IMPALA-3316
https://issues.apache.org/jira/browse/IMPALA-1480

 | Impala Release Notes | 818

Interaction of File Handle Cache with HDFS Appends and Short-Circuit Reads

If a data file used by Impala is being continuously appended or overwritten in place by an HDFS mechanism, such
as hdfs dfs -appendToFile, interaction with the file handle caching feature in Impala 2.10 and higher could
cause short-circuit reads to sometimes be disabled on some DataNodes. When a mismatch is detected between the
cached file handle and a data block that was rewritten because of an append, short-circuit reads are turned off on the
affected host for a 10-minute period.

The possibility of encountering such an issue is the reason why the file handle caching feature is currently turned off
by default. See Scalability Considerations for Impala on page 672 for information about this feature and how to
enable it.

Bug: HDFS-12528

Severity: High

Workaround: Verify whether your ETL process is susceptible to this issue before enabling the file handle caching
feature. You can set the impalad configuration option unused_file_handle_timeout_sec to a time period
that is shorter than the HDFS setting dfs.client.read.shortcircuit.streams.cache.expiry.ms.
(Keep in mind that the HDFS setting is in milliseconds while the Impala setting is in seconds.)

Impala Known Issues: Usability

These issues affect the convenience of interacting directly with Impala, typically through the Impala shell or Hue.

Impala shell tarball is not usable on systems with setuptools versions where '0.7' is a substring of
the full version string

For example, this issue could occur on a system using setuptools version 20.7.0.

Bug: IMPALA-4570

Severity: High

Resolution: Fixed in Impala 2.8 and higher.

Workaround: Change to a setuptools version that does not have 0.7 as a substring.

Unexpected privileges in show output

Due to a timing condition in updating cached policy data from Sentry, the SHOW statements for Sentry roles could
sometimes display out-of-date role settings. Because Impala rechecks authorization for each SQL statement, this
discrepancy does not represent a security issue for other statements.

Bug: IMPALA-3133

Severity: High

Resolution: Fixes have been issued for some but not all Impala releases. Check the JIRA for details of fix releases.

Resolution: Fixed in Impala 2.6.0 and Impala 2.5.1.

Less than 100% progress on completed simple SELECT queries

Simple SELECT queries show less than 100% progress even though they are already completed.

Bug: IMPALA-1776

Unexpected column overflow behavior with INT datatypes

Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and
overflow conditions similar to how they do so with traditional database systems. Impala returns the largest or smallest
value in the range for the type. For example, valid values for a tinyint range from -128 to 127. In Impala, a
tinyint with a value of -200 returns -128 rather than NULL. A tinyint with a value of 200 returns 127.

Bug: IMPALA-3123

https://issues.apache.org/jira/browse/HDFS-12528
https://issues.apache.org/jira/browse/IMPALA-4570
https://issues.apache.org/jira/browse/IMPALA-3133
https://issues.apache.org/jira/browse/IMPALA-1776
https://issues.apache.org/jira/browse/IMPALA-3123

 | Impala Release Notes | 819

Impala Known Issues: JDBC and ODBC Drivers

These issues affect applications that use the JDBC or ODBC APIs, such as business intelligence tools or custom-
written applications in languages such as Java or C++.

ImpalaODBC: Can not get the value in the SQLGetData(m-x th column) after the SQLBindCol(m th
column)

If the ODBC SQLGetData is called on a series of columns, the function calls must follow the same order as the
columns. For example, if data is fetched from column 2 then column 1, the SQLGetData call for column 1 returns
NULL.

Bug: IMPALA-1792

Workaround: Fetch columns in the same order they are defined in the table.

Impala Known Issues: Security

These issues relate to security features, such as Kerberos authentication, Sentry authorization, encryption, auditing,
and redaction.

Malicious user can gain unauthorized access to Kudu table data via Impala

A malicious user with ALTER permissions on an Impala table can access any other Kudu table data by altering the
table properties to make it “external” and then changing the underlying table mapping to point to other Kudu tables.
This violates and works around the authorization requirement that creating a Kudu external table via Impala requires
an ALL privilege at the server scope. This privilege requirement for CREATE commands is enforced to precisely
avoid this scenario where a malicious user can change the underlying Kudu table mapping. The fix is to enforce the
same privilege requirement for ALTER commands that would make existing non-external Kudu tables external.

Bug: IMPALA-5638

Severity: High

Workaround: A temporary workaround is to revoke ALTER permissions on Impala tables.

Resolution: Upgrade to an Impala version containing the fix for IMPALA-5638.

Kerberos tickets must be renewable

In a Kerberos environment, the impalad daemon might not start if Kerberos tickets are not renewable.

Workaround: Configure your KDC to allow tickets to be renewed, and configure krb5.conf to request renewable
tickets.

Impala Known Issues: Resources

These issues involve memory or disk usage, including out-of-memory conditions, the spill-to-disk feature, and
resource management features.

Configuration to prevent crashes caused by thread resource limits

Impala could encounter a serious error due to resource usage under very high concurrency. The error message is
similar to:

F0629 08:20:02.956413 29088 llvm-codegen.cc:111] LLVM hit fatal error:
 Unable to allocate section memory!
terminate called after throwing an instance of
 'boost::exception_detail::clone_impl<boost::exception_detail::error_info_injector<boost::thread_resource_error>
 >'

Bug: IMPALA-5605

https://issues.apache.org/jira/browse/IMPALA-1792
https://issues.apache.org/jira/browse/IMPALA-5638
https://issues.apache.org/jira/browse/IMPALA-5638
https://issues.apache.org/jira/browse/IMPALA-5605

 | Impala Release Notes | 820

Severity: High

Workaround: To prevent such errors, configure each host running an impalad daemon with the following settings:

echo 2000000 > /proc/sys/kernel/threads-max
echo 2000000 > /proc/sys/kernel/pid_max
echo 8000000 > /proc/sys/vm/max_map_count

Add the following lines in /etc/security/limits.conf:

impala soft nproc 262144
impala hard nproc 262144

Memory usage when compact_catalog_topic flag enabled

The efficiency improvement from IMPALA-4029 can cause an increase in size of the updates to Impala catalog
metadata that are broadcast to the impalad daemons by the statestored daemon. The increase in catalog update
topic size results in higher CPU and network utilization. By default, the increase in topic size is about 5-7%. If the
compact_catalog_topic flag is used, the size increase is more substantial, with a topic size approximately
twice as large as in previous versions.

Bug: IMPALA-5500

Severity: Medium

Workaround: Consider leaving the compact_catalog_topic configuration setting at its default value of
false until this issue is resolved.

Resolution: A fix is in the pipeline. Check the status of IMPALA-5500 for the release where the fix is available.

Kerberos initialization errors due to high memory usage

On a kerberized cluster with high memory utilization, kinit commands executed after every
'kerberos_reinit_interval' may cause out-of-memory errors, because executing the command involves a
fork of the Impala process. The error looks similar to the following:

Failed to obtain Kerberos ticket for principal: <varname>principal_details</
varname>
Failed to execute shell cmd: 'kinit -k -t <varname>keytab_details</
varname>',
error was: Error(12): Cannot allocate memory

Bug: IMPALA-2294

Severity: High

Workaround:

The following command changes the vm.overcommit_memory setting immediately on a running host. However,
this setting is reset when the host is restarted.

echo 1 > /proc/sys/vm/overcommit_memory

To change the setting in a persistent way, add the following line to the /etc/sysctl.conf file:

vm.overcommit_memory=1

https://issues.apache.org/jira/browse/IMPALA-4029
https://issues.apache.org/jira/browse/IMPALA-5500
https://issues.apache.org/jira/browse/IMPALA-5500
https://issues.apache.org/jira/browse/IMPALA-2294

 | Impala Release Notes | 821

Then run sysctl -p. No reboot is needed.

DROP TABLE PURGE on S3A table may not delete externally written files

A DROP TABLE PURGE statement against an S3 table could leave the data files behind, if the table directory and the
data files were created with a combination of hadoop fs and aws s3 commands.

Bug: IMPALA-3558

Severity: High

Resolution: The underlying issue with the S3A connector depends on the resolution of HADOOP-13230.

Impala catalogd heap issues when upgrading to Impala 2.5

The default heap size for Impala catalogd has changed in Impala 2.5 and higher:

• Previously, by default catalogd was using the JVM's default heap size, which is the smaller of 1/4th of the
physical memory or 32 GB.

• Starting with Impala 2.5.0, the default catalogd heap size is 4 GB.

For example, on a host with 128GB physical memory this will result in catalogd heap decreasing from 32GB to 4GB.
This can result in out-of-memory errors in catalogd and leading to query failures.

Severity: High

Workaround: Increase the catalogd memory limit as follows.

For schemas with large numbers of tables, partitions, and data files, the catalogd daemon might encounter an out-
of-memory error. To increase the memory limit for the catalogd daemon:

1. Check current memory usage for the catalogd daemon by running the following commands on the host where
that daemon runs on your cluster:

 jcmd catalogd_pid VM.flags
 jmap -heap catalogd_pid

2. Decide on a large enough value for the catalogd heap. You express it as an environment variable value as
follows:

 JAVA_TOOL_OPTIONS="-Xmx8g"

3. On systems not using cluster management software, put this environment variable setting into the startup script for
the catalogd daemon, then restart the catalogd daemon.

4. Use the same jcmd and jmap commands as earlier to verify that the new settings are in effect.

Breakpad minidumps can be very large when the thread count is high

The size of the breakpad minidump files grows linearly with the number of threads. By default, each thread adds
8 KB to the minidump size. Minidump files could consume significant disk space when the daemons have a high
number of threads.

Bug: IMPALA-3509

Severity: High

Workaround: Add --minidump_size_limit_hint_kb=size to set a soft upper limit on the size of each
minidump file. If the minidump file would exceed that limit, Impala reduces the amount of information for each
thread from 8 KB to 2 KB. (Full thread information is captured for the first 20 threads, then 2 KB per thread after

https://issues.apache.org/jira/browse/IMPALA-3558
https://issues.apache.org/jira/browse/HADOOP-13230
https://issues.apache.org/jira/browse/IMPALA-3509

 | Impala Release Notes | 822

that.) The minidump file can still grow larger than the “hinted” size. For example, if you have 10,000 threads, the
minidump file can be more than 20 MB.

Parquet scanner memory increase after IMPALA-2736

The initial release of Impala 2.6 sometimes has a higher peak memory usage than in previous releases while reading
Parquet files.

Impala 2.6 addresses the issue IMPALA-2736, which improves the efficiency of Parquet scans by up to 2x. The
faster scans may result in a higher peak memory consumption compared to earlier versions of Impala due to the new
column-wise row materialization strategy. You are likely to experience higher memory consumption in any of the
following scenarios:

• Very wide rows due to projecting many columns in a scan.
• Very large rows due to big column values, for example, long strings or nested collections with many items.
• Producer/consumer speed imbalances, leading to more rows being buffered between a scan (producer) and

downstream (consumer) plan nodes.

Bug: IMPALA-3662

Severity: High

Workaround: The following query options might help to reduce memory consumption in the Parquet scanner:

• Reduce the number of scanner threads, for example: set num_scanner_threads=30
• Reduce the batch size, for example: set batch_size=512
• Increase the memory limit, for example: set mem_limit=64g

Process mem limit does not account for the JVM's memory usage

Some memory allocated by the JVM used internally by Impala is not counted against the memory limit for the
impalad daemon.

Bug: IMPALA-691

Workaround: To monitor overall memory usage, use the top command, or add the memory figures in the Impala
web UI /memz tab to JVM memory usage shown on the /metrics tab.

Fix issues with the legacy join and agg nodes using --enable_partitioned_hash_join=false and --
enable_partitioned_aggregation=false

Bug: IMPALA-2375

Workaround: Transition away from the “old-style” join and aggregation mechanism if practical.

Resolution: Fixed in Impala 2.5.0.

Impala Known Issues: Correctness

These issues can cause incorrect or unexpected results from queries. They typically only arise in very specific
circumstances.

Parquet scanner memory bug: I/O buffer is attached to output batch while scratch batch rows still
reference it

Impala queries may return incorrect results when scanning plain-encoded string columns in uncompressed Parquet
files. I/O buffers holding the string data are prematurely freed, leading to invalid memory reads and possibly non-
deterministic results. This does not affect Parquet files that use a compression codec such as Snappy. Snappy is both
strongly recommended generally and the default choice for Impala-written Parquet files.

How to determine whether a query might be affected:

• The query must reference STRING columns from a Parquet table.
• A selective filter on the Parquet table makes this issue more likely.

https://issues.apache.org/jira/browse/IMPALA-3662
https://issues.apache.org/jira/browse/IMPALA-691
https://issues.apache.org/jira/browse/IMPALA-2375

 | Impala Release Notes | 823

• Identify any uncompressed Parquet files processed by the query. Examine the HDFS_SCAN_NODE portion of
a query profile that scans the suspected table. Use a query that performs a full table scan, and materializes the
column values. (For example, SELECT MIN(colname) FROM tablename.) Look for “File Formats”. A
value containing PARQUET/NONE means uncompressed Parquet.

• Identify any plain-encoded string columns in the associated table. Pay special attention to tables containing
Parquet files generated through Hive, Spark, or other mechanisms outside of Impala, because Impala uses Snappy
compression by default for Parquet files. Use parquet-tools to dump the file metadata. Note that a column
could have several encodings within the same file (the column data is stored in several column chunks). Look for
VLE:PLAIN in the output of parquet-tools, which means the values are plain encoded.

Bug: IMPALA-4539

Severity: High

Resolution: Upgrade to a version of Impala containing the fix for IMPALA-4539.

Workaround: Use Snappy or another compression codec for Parquet files.

ABS(n) where n is the lowest bound for the int types returns negative values

If the abs() function evaluates a number that is right at the lower bound for an integer data type, the positive result
cannot be represented in the same type, and the result is returned as a negative number. For example, abs(-128)
returns -128 because the argument is interpreted as a TINYINT and the return value is also a TINYINT.

Bug: IMPALA-4513

Severity: High

Workaround: Cast the integer value to a larger type. For example, rewrite abs(tinyint_col) as
abs(cast(tinyint_col as smallint)).

Java udf expression returning string in group by can give incorrect results.

If the GROUP BY clause included a call to a Java UDF that returned a string value, the UDF could return an incorrect
result.

Bug: IMPALA-4266

Severity: High

Resolution: Fixed in Impala 2.8 and higher.

Workaround: Rewrite the expression to concatenate the results of the Java UDF with an empty string call. For
example, rewrite my_hive_udf() as concat(my_hive_udf(), '').

Incorrect assignment of NULL checking predicate through an outer join of a nested collection.

A query could return wrong results (too many or too few NULL values) if it referenced an outer-joined nested
collection and also contained a null-checking predicate (IS NULL, IS NOT NULL, or the <=> operator) in the
WHERE clause.

Bug: IMPALA-3084

Severity: High

Resolution: Fixed in Impala 2.7.0.

Incorrect result due to constant evaluation in query with outer join

An OUTER JOIN query could omit some expected result rows due to a constant such as FALSE in another join
clause. For example:

explain SELECT 1 FROM alltypestiny a1
 INNER JOIN alltypesagg a2 ON a1.smallint_col = a2.year AND false
 RIGHT JOIN alltypes a3 ON a1.year = a1.bigint_col;

https://issues.apache.org/jira/browse/IMPALA-4539
https://issues.apache.org/jira/browse/IMPALA-4539
https://issues.apache.org/jira/browse/IMPALA-4513
https://issues.apache.org/jira/browse/IMPALA-4266
https://issues.apache.org/jira/browse/IMPALA-3084

 | Impala Release Notes | 824

+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=1.00KB VCores=1 |
| |
| 00:EMPTYSET |
+---+

Bug: IMPALA-3094

Severity: High

Resolution:

Workaround:

Incorrect assignment of an inner join On-clause predicate through an outer join.

Impala may return incorrect results for queries that have the following properties:

• There is an INNER JOIN following a series of OUTER JOINs.
• The INNER JOIN has an On-clause with a predicate that references at least two tables that are on the nullable side

of the preceding OUTER JOINs.

The following query demonstrates the issue:

select 1 from functional.alltypes a left outer join
 functional.alltypes b on a.id = b.id left outer join
 functional.alltypes c on b.id = c.id right outer join
 functional.alltypes d on c.id = d.id inner join functional.alltypes e
on b.int_col = c.int_col;

The following listing shows the incorrect EXPLAIN plan:

+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=480.04MB VCores=4 |
| |
| 14:EXCHANGE [UNPARTITIONED] |
| | |
| 08:NESTED LOOP JOIN [CROSS JOIN, BROADCAST] |
	--13:EXCHANGE [BROADCAST]	
	04:SCAN HDFS [functional.alltypes e]	
	partitions=24/24 files=24 size=478.45KB	
07:HASH JOIN [RIGHT OUTER JOIN, PARTITIONED]		
	hash predicates: c.id = d.id	
	runtime filters: RF000 <- d.id	
	--12:EXCHANGE [HASH(d.id)]	
	03:SCAN HDFS [functional.alltypes d]	
	partitions=24/24 files=24 size=478.45KB	
06:HASH JOIN [LEFT OUTER JOIN, PARTITIONED]		
	hash predicates: b.id = c.id	
	other predicates: b.int_col = c.int_col <--- incorrect placement;	
 should be at node 07 or 08

https://issues.apache.org/jira/browse/IMPALA-3094

 | Impala Release Notes | 825

	runtime filters: RF001 <- c.int_col	
	--11:EXCHANGE [HASH(c.id)]	
	02:SCAN HDFS [functional.alltypes c]	
	partitions=24/24 files=24 size=478.45KB	
	runtime filters: RF000 -> c.id	
05:HASH JOIN [RIGHT OUTER JOIN, PARTITIONED]		
	hash predicates: b.id = a.id	
	runtime filters: RF002 <- a.id	
	--10:EXCHANGE [HASH(a.id)]	
	00:SCAN HDFS [functional.alltypes a]	
	partitions=24/24 files=24 size=478.45KB	
09:EXCHANGE [HASH(b.id)]		
01:SCAN HDFS [functional.alltypes b]		
partitions=24/24 files=24 size=478.45KB		
runtime filters: RF001 -> b.int_col, RF002 -> b.id		
+---+

Bug: IMPALA-3126

Severity: High

Workaround: High

For some queries, this problem can be worked around by placing the problematic ON clause predicate in the WHERE
clause instead, or changing the preceding OUTER JOINs to INNER JOINs (if the ON clause predicate would
discard NULLs). For example, to fix the problematic query above:

select 1 from functional.alltypes a
 left outer join functional.alltypes b
 on a.id = b.id
 left outer join functional.alltypes c
 on b.id = c.id
 right outer join functional.alltypes d
 on c.id = d.id
 inner join functional.alltypes e
where b.int_col = c.int_col

+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=480.04MB VCores=4 |
| |
| 14:EXCHANGE [UNPARTITIONED] |
| | |
| 08:NESTED LOOP JOIN [CROSS JOIN, BROADCAST] |
	--13:EXCHANGE [BROADCAST]	
	04:SCAN HDFS [functional.alltypes e]	
	partitions=24/24 files=24 size=478.45KB	
07:HASH JOIN [RIGHT OUTER JOIN, PARTITIONED]		
	hash predicates: c.id = d.id	
	other predicates: b.int_col = c.int_col <-- correct assignment	
	runtime filters: RF000 <- d.id	

https://issues.apache.org/jira/browse/IMPALA-3126

 | Impala Release Notes | 826

	--12:EXCHANGE [HASH(d.id)]	
	03:SCAN HDFS [functional.alltypes d]	
	partitions=24/24 files=24 size=478.45KB	
06:HASH JOIN [LEFT OUTER JOIN, PARTITIONED]		
	hash predicates: b.id = c.id	
	--11:EXCHANGE [HASH(c.id)]	
	02:SCAN HDFS [functional.alltypes c]	
	partitions=24/24 files=24 size=478.45KB	
	runtime filters: RF000 -> c.id	
05:HASH JOIN [RIGHT OUTER JOIN, PARTITIONED]		
	hash predicates: b.id = a.id	
	runtime filters: RF001 <- a.id	
	--10:EXCHANGE [HASH(a.id)]	
	00:SCAN HDFS [functional.alltypes a]	
	partitions=24/24 files=24 size=478.45KB	
09:EXCHANGE [HASH(b.id)]		
01:SCAN HDFS [functional.alltypes b]		
partitions=24/24 files=24 size=478.45KB		
runtime filters: RF001 -> b.id		
+---+

Impala may use incorrect bit order with BIT_PACKED encoding

Parquet BIT_PACKED encoding as implemented by Impala is LSB first. The parquet standard says it is MSB first.

Bug: IMPALA-3006

Severity: High, but rare in practice because BIT_PACKED is infrequently used, is not written by Impala, and is
deprecated in Parquet 2.0.

BST between 1972 and 1995

The calculation of start and end times for the BST (British Summer Time) time zone could be incorrect between 1972
and 1995. Between 1972 and 1995, BST began and ended at 02:00 GMT on the third Sunday in March (or second
Sunday when Easter fell on the third) and fourth Sunday in October. For example, both function calls should return
13, but actually return 12, in a query such as:

select
 extract(from_utc_timestamp(cast('1970-01-01 12:00:00' as timestamp),
 'Europe/London'), "hour") summer70start,
 extract(from_utc_timestamp(cast('1970-12-31 12:00:00' as timestamp),
 'Europe/London'), "hour") summer70end;

Bug: IMPALA-3082

Severity: High

parse_url() returns incorrect result if @ character in URL

If a URL contains an @ character, the parse_url() function could return an incorrect value for the hostname field.

Bug: https://issues.apache.org/jira/browse/IMPALA-1170IMPALA-1170

https://issues.apache.org/jira/browse/IMPALA-3006
https://issues.apache.org/jira/browse/IMPALA-3082
https://issues.apache.org/jira/browse/IMPALA-1170

 | Impala Release Notes | 827

Resolution: Fixed in Impala 2.5.0 and Impala 2.3.4.

% escaping does not work correctly when occurs at the end in a LIKE clause

If the final character in the RHS argument of a LIKE operator is an escaped \% character, it does not match a % final
character of the LHS argument.

Bug: IMPALA-2422

ORDER BY rand() does not work.

Because the value for rand() is computed early in a query, using an ORDER BY expression involving a call to
rand() does not actually randomize the results.

Bug: IMPALA-397

Duplicated column in inline view causes dropping null slots during scan

If the same column is queried twice within a view, NULL values for that column are omitted. For example, the result
of COUNT(*) on the view could be less than expected.

Bug: IMPALA-2643

Workaround: Avoid selecting the same column twice within an inline view.

Resolution: Fixed in Impala 2.5.0, Impala 2.3.2, and Impala 2.2.10.

Incorrect assignment of predicates through an outer join in an inline view.

A query involving an OUTER JOIN clause where one of the table references is an inline view might apply predicates
from the ON clause incorrectly.

Bug: IMPALA-1459

Resolution: Fixed in Impala 2.5.0, Impala 2.3.2, and Impala 2.2.9.

Crash: impala::Coordinator::ValidateCollectionSlots

A query could encounter a serious error if includes multiple nested levels of INNER JOIN clauses involving
subqueries.

Bug: IMPALA-2603

Incorrect assignment of On-clause predicate inside inline view with an outer join.

A query might return incorrect results due to wrong predicate assignment in the following scenario:

1. There is an inline view that contains an outer join
2. That inline view is joined with another table in the enclosing query block
3. That join has an On-clause containing a predicate that only references columns originating from the outer-joined

tables inside the inline view

Bug: IMPALA-2665

Resolution: Fixed in Impala 2.5.0, Impala 2.3.2, and Impala 2.2.9.

Wrong assignment of having clause predicate across outer join

In an OUTER JOIN query with a HAVING clause, the comparison from the HAVING clause might be applied at the
wrong stage of query processing, leading to incorrect results.

Bug: IMPALA-2144

Resolution: Fixed in Impala 2.5.0.

https://issues.apache.org/jira/browse/IMPALA-2422
https://issues.apache.org/jira/browse/IMPALA-397
https://issues.apache.org/jira/browse/IMPALA-2643
https://issues.apache.org/jira/browse/IMPALA-1459
https://issues.apache.org/jira/browse/IMPALA-2603
https://issues.apache.org/jira/browse/IMPALA-2665
https://issues.apache.org/jira/browse/IMPALA-2144

 | Impala Release Notes | 828

Wrong plan of NOT IN aggregate subquery when a constant is used in subquery predicate

A NOT IN operator with a subquery that calls an aggregate function, such as NOT IN (SELECT SUM(...)),
could return incorrect results.

Bug: IMPALA-2093

Resolution: Fixed in Impala 2.5.0 and Impala 2.3.4.

Impala Known Issues: Metadata

These issues affect how Impala interacts with metadata. They cover areas such as the metastore database, the
COMPUTE STATS statement, and the Impala catalogd daemon.

Catalogd may crash when loading metadata for tables with many partitions, many columns and
with incremental stats

Incremental stats use up about 400 bytes per partition for each column. For example, for a table with 20K partitions
and 100 columns, the memory overhead from incremental statistics is about 800 MB. When serialized for
transmission across the network, this metadata exceeds the 2 GB Java array size limit and leads to a catalogd
crash.

Bugs: IMPALA-2647, IMPALA-2648, IMPALA-2649

Workaround: If feasible, compute full stats periodically and avoid computing incremental stats for that table. The
scalability of incremental stats computation is a continuing work item.

Can't update stats manually via alter table after upgrading to Impala 2.0

Bug: IMPALA-1420

Workaround: On Impala 2.0, when adjusting table statistics manually by setting the numRows, you must also enable
the Boolean property STATS_GENERATED_VIA_STATS_TASK. For example, use a statement like the following to
set both properties with a single ALTER TABLE statement:

ALTER TABLE table_name SET TBLPROPERTIES('numRows'='new_value',
 'STATS_GENERATED_VIA_STATS_TASK' = 'true');

Resolution: The underlying cause is the issue HIVE-8648 that affects the metastore in Hive 0.13. The workaround is
only needed until the fix for this issue is incorporated into release of .

Impala Known Issues: Interoperability

These issues affect the ability to interchange data between Impala and other database systems. They cover areas such
as data types and file formats.

DESCRIBE FORMATTED gives error on Avro table

This issue can occur either on old Avro tables (created prior to Hive 1.1) or when changing the Avro schema file by
adding or removing columns. Columns added to the schema file will not show up in the output of the DESCRIBE
FORMATTED command. Removing columns from the schema file will trigger a NullPointerException.

As a workaround, you can use the output of SHOW CREATE TABLE to drop and recreate the table. This will
populate the Hive metastore database with the correct column definitions.

Warning: Only use this for external tables, or Impala will remove the data files. In case of an internal table,
set it to external first:

ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='TRUE');

https://issues.apache.org/jira/browse/IMPALA-2093
https://issues.apache.org/jira/browse/IMPALA-2647
https://issues.apache.org/jira/browse/IMPALA-2648
https://issues.apache.org/jira/browse/IMPALA-2649
https://issues.apache.org/jira/browse/IMPALA-1420
https://issues.apache.org/jira/browse/HIVE-8648

 | Impala Release Notes | 829

(The part in parentheses is case sensitive.) Make sure to pick the right choice between internal and external
when recreating the table. See Overview of Impala Tables on page 214 for the differences between internal
and external tables.

Severity: High

Deviation from Hive behavior: Impala does not do implicit casts between string and numeric and
boolean types.

Anticipated Resolution: None

Workaround: Use explicit casts.

Deviation from Hive behavior: Out of range values float/double values are returned as maximum
allowed value of type (Hive returns NULL)

Impala behavior differs from Hive with respect to out of range float/double values. Out of range values are returned as
maximum allowed value of type (Hive returns NULL).

Workaround: None

Configuration needed for Flume to be compatible with Impala

For compatibility with Impala, the value for the Flume HDFS Sink hdfs.writeFormat must be set to Text,
rather than its default value of Writable. The hdfs.writeFormat setting must be changed to Text before
creating data files with Flume; otherwise, those files cannot be read by either Impala or Hive.

Resolution: This information has been requested to be added to the upstream Flume documentation.

Avro Scanner fails to parse some schemas

Querying certain Avro tables could cause a crash or return no rows, even though Impala could DESCRIBE the table.

Bug: IMPALA-635

Workaround: Swap the order of the fields in the schema specification. For example, ["null", "string"]
instead of ["string", "null"].

Resolution: Not allowing this syntax agrees with the Avro specification, so it may still cause an error even when the
crashing issue is resolved.

Impala BE cannot parse Avro schema that contains a trailing semi-colon

If an Avro table has a schema definition with a trailing semicolon, Impala encounters an error when the table is
queried.

Bug: IMPALA-1024

Severity: Remove trailing semicolon from the Avro schema.

Fix decompressor to allow parsing gzips with multiple streams

Currently, Impala can only read gzipped files containing a single stream. If a gzipped file contains multiple
concatenated streams, the Impala query only processes the data from the first stream.

Bug: IMPALA-2154

Workaround: Use a different gzip tool to compress file to a single stream file.

Resolution: Fixed in Impala 2.5.0.

Impala incorrectly handles text data when the new line character \n\r is split between different
HDFS block

If a carriage return / newline pair of characters in a text table is split between HDFS data blocks, Impala incorrectly
processes the row following the \n\r pair twice.

https://issues.apache.org/jira/browse/IMPALA-635
https://issues.apache.org/jira/browse/IMPALA-1024
https://issues.apache.org/jira/browse/IMPALA-2154

 | Impala Release Notes | 830

Bug: IMPALA-1578

Workaround: Use the Parquet format for large volumes of data where practical.

Resolution: Fixed in Impala 2.6.0.

Invalid bool value not reported as a scanner error

In some cases, an invalid BOOLEAN value read from a table does not produce a warning message about the bad value.
The result is still NULL as expected. Therefore, this is not a query correctness issue, but it could lead to overlooking
the presence of invalid data.

Bug: IMPALA-1862

Incorrect results with basic predicate on CHAR typed column.

When comparing a CHAR column value to a string literal, the literal value is not blank-padded and so the comparison
might fail when it should match.

Bug: IMPALA-1652

Workaround: Use the RPAD() function to blank-pad literals compared with CHAR columns to the expected length.

Impala Known Issues: Limitations

These issues are current limitations of Impala that require evaluation as you plan how to integrate Impala into your
data management workflow.

Set limits on size of expression trees

Very deeply nested expressions within queries can exceed internal Impala limits, leading to excessive memory usage.

Bug: IMPALA-4551

Severity: High

Resolution:

Workaround: Avoid queries with extremely large expression trees. Setting the query option
disable_codegen=true may reduce the impact, at a cost of longer query runtime.

Impala does not support running on clusters with federated namespaces

Impala does not support running on clusters with federated namespaces. The impalad process will not start on a
node running such a filesystem based on the org.apache.hadoop.fs.viewfs.ViewFs class.

Bug: IMPALA-77

Anticipated Resolution: Limitation

Workaround: Use standard HDFS on all Impala nodes.

Impala Known Issues: Miscellaneous / Older Issues

These issues do not fall into one of the above categories or have not been categorized yet.

A failed CTAS does not drop the table if the insert fails.

If a CREATE TABLE AS SELECT operation successfully creates the target table but an error occurs while querying
the source table or copying the data, the new table is left behind rather than being dropped.

Bug: IMPALA-2005

Workaround: Drop the new table manually after a failed CREATE TABLE AS SELECT.

https://issues.apache.org/jira/browse/IMPALA-1578
https://issues.apache.org/jira/browse/IMPALA-1862
https://issues.apache.org/jira/browse/IMPALA-1652
https://issues.apache.org/jira/browse/IMPALA-4551
https://issues.apache.org/jira/browse/IMPALA-77
https://issues.apache.org/jira/browse/IMPALA-2005

 | Impala Release Notes | 831

Casting scenarios with invalid/inconsistent results

Using a CAST() function to convert large literal values to smaller types, or to convert special values such as NaN or
Inf, produces values not consistent with other database systems. This could lead to unexpected results from queries.

Bug: IMPALA-1821

Support individual memory allocations larger than 1 GB

The largest single block of memory that Impala can allocate during a query is 1 GiB. Therefore, a query could fail or
Impala could crash if a compressed text file resulted in more than 1 GiB of data in uncompressed form, or if a string
function such as group_concat() returned a value greater than 1 GiB.

Bug: IMPALA-1619

Resolution: Fixed in Impala 2.7.0 and Impala 2.6.3.

Impala Parser issue when using fully qualified table names that start with a number.

A fully qualified table name starting with a number could cause a parsing error. In a name such as
db.571_market, the decimal point followed by digits is interpreted as a floating-point number.

Bug: IMPALA-941

Workaround: Surround each part of the fully qualified name with backticks (``).

Impala should tolerate bad locale settings

If the LC_* environment variables specify an unsupported locale, Impala does not start.

Bug: IMPALA-532

Workaround: Add LC_ALL="C" to the environment settings for both the Impala daemon and the Statestore
daemon. See Modifying Impala Startup Options on page 32 for details about modifying these environment
settings.

Resolution: Fixing this issue would require an upgrade to Boost 1.47 in the Impala distribution.

Log Level 3 Not Recommended for Impala

The extensive logging produced by log level 3 can cause serious performance overhead and capacity issues.

Workaround: Reduce the log level to its default value of 1, that is, GLOG_v=1. See Setting Logging Levels on page
766 for details about the effects of setting different logging levels.

Fixed Issues in Apache Impala
The following sections describe the major issues fixed in each Impala release.

For known issues that are currently unresolved, see Known Issues and Workarounds in Impala on page 815.

Issues Fixed in Impala 2.1.10

For the full list of issues closed in this release, including bug fixes, see the changelog for Impala 2.11.

Issues Fixed in Impala 2.10.0

For the full list of issues closed in this release, including bug fixes, see the changelog for Impala 2.10.

Issues Fixed in Impala 2.9.0

For the full list of issues closed in this release, including bug fixes, see the changelog for Impala 2.9.

https://issues.apache.org/jira/browse/IMPALA-1821
https://issues.apache.org/jira/browse/IMPALA-1619
https://issues.apache.org/jira/browse/IMPALA-941
https://issues.apache.org/jira/browse/IMPALA-532
https://impala.apache.org/docs/changelog-2.11.html
https://impala.apache.org/docs/changelog-2.10.html
https://impala.apache.org/docs/changelog-2.9.html

 | Impala Release Notes | 832

Issues Fixed in Impala 2.8.0

For the full list of Impala fixed issues in Impala 2.8, see this report in the Impala JIRA tracker.

Issues Fixed in Impala 2.7.0

For the full list of Impala fixed issues in Impala 2.7.0, see this report in the Impala JIRA tracker.

Issues Fixed in Impala 2.6.3

Issues Fixed in Impala 2.6.2

Issues Fixed in Impala 2.6.0

The following list contains the most critical fixed issues (priority='Blocker') from the JIRA system. For the
full list of fixed issues in Impala 2.6.0, see this report in the Impala JIRA tracker.

RuntimeState::error_log_ crashes

A crash could occur, with stack trace pointing to impala::RuntimeState::ErrorLog.

Bug: IMPALA-3385

Severity: High

HiveUdfCall::Open() produces unsynchronized access to JniUtil::global_refs_ vector

A crash could occur because of contention between multiple calls to Java UDFs.

Bug: IMPALA-3378

Severity: High

HBaseTableWriter::CreatePutList() produces unsynchronized access to JniUtil::global_refs_ vector

A crash could occur because of contention between multiple concurrent statements writing to HBase.

Bug: IMPALA-3379

Severity: High

Stress test failure: sorter.cc:745] Check failed: i == 0 (1 vs. 0)

A crash or wrong results could occur if the spill-to-disk mechanism encountered a zero-length string at the very end
of a data block.

Bug: IMPALA-3317

Severity: High

String data coming out of agg can be corrupted by blocking operators

If a query plan contains an aggregation node producing string values anywhere within a subplan (that is,if in the
SQL statement, the aggregate function appears within an inline view over a collection column), the results of the
aggregation may be incorrect.

Bug: IMPALA-3311

Severity: High

CTAS with subquery throws AuthzException

A CREATE TABLE AS SELECT operation could fail with an authorization error, due to a slight difference in the
privilege checking for the CTAS operation.

https://issues.apache.org/jira/issues/?jql=type%20%3D%20bug%20and%20project%20%3D%20IMPALA%20AND%20resolution%20%3D%20fixed%20AND%20affectedVersion%20!%3D%20%22Impala%202.8.0%22%20AND%20fixVersion%20%3D%20%22Impala%202.8.0%22%20and%20not%20labels%20%3D%20broken-build%20order%20by%20priority%20desc
https://issues.apache.org/jira/issues/?jql=%20type%20%3D%20bug%20and%20project%20%3D%20IMPALA%20AND%20resolution%20%3D%20fixed%20AND%20affectedVersion%20!%3D%20%22Impala%202.7.0%22%20AND%20fixVersion%20%3D%20%22Impala%202.7.0%22%20and%20not%20labels%20%3D%20broken-build%20order%20by%20priority%20desc
https://issues.apache.org/jira/issues/?jql=%20type%20%3D%20bug%20and%20project%20%3D%20IMPALA%20AND%20resolution%20%3D%20fixed%20AND%20affectedVersion%20!%3D%20%22Impala%202.6.0%22%20AND%20fixVersion%20%3D%20%22Impala%202.6.0%22%20and%20not%20labels%20%3D%20broken-build%20order%20by%20priority%20desc
https://issues.apache.org/jira/browse/IMPALA-3385
https://issues.apache.org/jira/browse/IMPALA-3378
https://issues.apache.org/jira/browse/IMPALA-3379
https://issues.apache.org/jira/browse/IMPALA-3317
https://issues.apache.org/jira/browse/IMPALA-3311

 | Impala Release Notes | 833

Bug: IMPALA-3269

Severity: High

Crash on inserting into table with binary and parquet

Impala incorrectly allowed BINARY to be specified as a column type, resulting in a crash during a write to a Parquet
table with a column of that type.

Bug: IMPALA-3237

Severity: High

RowBatch::MaxTupleBufferSize() calculation incorrect, may lead to memory corruption

A crash could occur while querying tables with very large rows, for example wide tables with many columns or very
large string values. This problem was identified in Impala 2.3, but had low reproducibility in subsequent releases. The
fix ensures the memory allocation size is correct.

Bug: IMPALA-3105

Severity: High

Thrift buffer overflows when serialize more than 3355443200 bytes in impala

A very large memory allocation within the catalogd daemon could exceed an internal Thrift limit, causing a crash.

Bug: IMPALA-3494

Severity: High

Altering table partition's storage format is not working and crashing the daemon

If a partitioned table used a file format other than Avro, and the file format of an individual partition was changed to
Avro, subsequent queries could encounter a crash.

Bug: IMPALA-3314

Severity: High

Race condition may cause scanners to spin with runtime filters on Avro or Sequence files

A timing problem during runtime filter processing could cause queries against Avro or SequenceFile tables to hang.

Bug: IMPALA-3798

Severity: High

Issues Fixed in Impala 2.5.4

Issues Fixed in Impala 2.5.2

Issues Fixed in Impala 2.5.1

Issues Fixed in Impala 2.5.0

The following list contains the most critical issues (priority='Blocker') from the JIRA system. For the full list
of fixed issues in Impala 2.5, see this report in the Impala JIRA tracker.

Stress test hit assert in LLVM: external function could not be resolved

Bug: IMPALA-2683

The stress test was running a build with the TPC-H, TPC-DS, and TPC-H nested queries with scale factor 3.

https://issues.apache.org/jira/browse/IMPALA-3269
https://issues.apache.org/jira/browse/IMPALA-3237
https://issues.apache.org/jira/browse/IMPALA-3105
https://issues.apache.org/jira/browse/IMPALA-3494
https://issues.apache.org/jira/browse/IMPALA-3314
https://issues.apache.org/jira/browse/IMPALA-3798
https://issues.apache.org/jira/issues/?jql=%20type%20%3D%20bug%20and%20project%20%3D%20IMPALA%20AND%20resolution%20%3D%20fixed%20AND%20affectedVersion%20!%3D%20%22Impala%202.5.0%22%20AND%20fixVersion%20%3D%20%22Impala%202.5.0%22%20and%20not%20labels%20%3D%20broken-build%20order%20by%20priority%20desc
https://issues.apache.org/jira/browse/IMPALA-2683

 | Impala Release Notes | 834

Impalad is crashing if udf jar is not available in hdfs location for first time

Bug: IMPALA-2365

If a UDF JAR was not available in the HDFS location specified in the CREATE FUNCTION statement, the
impalad daemon could crash.

PAGG hits mem_limit when switching to I/O buffers

Bug: IMPALA-2535

A join query could fail with an out-of-memory error despite the apparent presence of sufficient memory. The cause
was the internal ordering of operations that could cause a later phase of the query to allocate memory required by an
earlier phase of the query. The workaround was to either increase or decrease the MEM_LIMIT query option, because
the issue would only occur for a specific combination of memory limit and data volume.

Prevent migrating incorrectly inferred identity predicates into inline views

Bug: IMPALA-2643

Referring to the same column twice in a view definition could cause the view to omit rows where that column
contained a NULL value. This could cause incorrect results due to an inaccurate COUNT(*) value or rows missing
from the result set.

Fix migration/assignment of On-clause predicates inside inline views

Bug: IMPALA-1459

Some combinations of ON clauses in join queries could result in comparisons being applied at the wrong stage
of query processing, leading to incorrect results. Wrong predicate assignment could happen under the following
conditions:

• The query includes an inline view that contains an outer join.
• That inline view is joined with another table in the enclosing query block.
• That join has an ON clause containing a predicate that only references columns originating from the outer-joined

tables inside the inline view.

Wrong plan of NOT IN aggregate subquery when a constant is used in subquery predicate

Bug: IMPALA-2093

IN subqueries might return wrong results if the left-hand side of the IN is a constant. For example:

select * from alltypestiny t1
 where 10 not in (select sum(int_col) from alltypestiny);

Parquet DictDecoders accumulate throughout query

Bug: IMPALA-2940

Parquet dictionary decoders can accumulate throughout query execution, leading to excessive memory usage. One
decoder is created per-column per-split.

Planner doesn't set the has_local_target field correctly

Bug: IMPALA-3056

MemPool allocation growth behavior

Bug: IMPALA-2742

Currently, the MemPool would always double the size of the last allocation. This can lead to bad behavior if the
MemPool transferred the ownership of all its data except the last chunk. In the next allocation, the next allocated
chunk would double the size of this large chunk, which can be undesirable.

https://issues.apache.org/jira/browse/IMPALA-2365
https://issues.apache.org/jira/browse/IMPALA-2535
https://issues.apache.org/jira/browse/IMPALA-2643
https://issues.apache.org/jira/browse/IMPALA-1459
https://issues.apache.org/jira/browse/IMPALA-2093
https://issues.apache.org/jira/browse/IMPALA-2940
https://issues.apache.org/jira/browse/IMPALA-3056
https://issues.apache.org/jira/browse/IMPALA-2742

 | Impala Release Notes | 835

Drop partition operations don't follow the catalog's locking protocol

Bug: IMPALA-3035

The CatalogOpExecutor.alterTableDropPartition() function violates the locking protocol used in
the catalog that requires catalogLock_ to be acquired before any table-level lock. That may cause deadlocks when
ALTER TABLE DROP PARTITION is executed concurrently with other DDL operations.

HAVING clause without aggregation not applied properly

Bug: IMPALA-2215

A query with a HAVING clause but no GROUP BY clause was not being rejected, despite being invalid syntax. For
example:

select case when 1=1 then 'didit' end as c1 from (select 1 as one) a having
 1!=1;

Hit DCHECK Check failed: HasDateOrTime()

Bug: IMPALA-2914

TimestampValue::ToTimestampVal() requires a valid TimestampValue as input. This requirement was
not enforced in some places, leading to serious errors.

Aggregation spill loop gives up too early leading to mem limit exceeded errors

Bug: IMPALA-2986

An aggregation query could fail with an out-of-memory error, despite sufficient memory being reported as available.

DataStreamSender::Channel::CloseInternal() does not close the channel on an error.

Bug: IMPALA-2592

Some queries do not close an internal communication channel on an error. This will cause the node on the other side
of the channel to wait indefinitely, causing the query to hang. For example, this issue could happen on a Kerberos-
enabled system if the credential cache was outdated. Although the affected query hangs, the impalad daemons
continue processing other queries.

Codegen does not catch exceptions in FROM_UNIXTIME()

Bug: IMPALA-2184

Querying for the min or max value of a timestamp cast from a bigint via from_unixtime() fails silently and
crashes instances of impalad when the input includes a value outside of the valid range.

Workaround: Disable native code generation with:

SET disable_codegen=true;

Impala returns wrong result for function 'conv(bigint, from_base, to_base)'

Bug: IMPALA-2788

Impala returns wrong result for function conv(). Function conv(bigint, from_base, to_base) returns
an correct result, while conv(string, from_base, to_base) returns the correct value. For example:

select 2061013007, conv(2061013007, 16, 10), conv('2061013007', 16, 10);
+------------+--------------------------+----------------------------+
| 2061013007 | conv(2061013007, 16, 10) | conv('2061013007', 16, 10) |

https://issues.apache.org/jira/browse/IMPALA-3035
https://issues.apache.org/jira/browse/IMPALA-2215
https://issues.apache.org/jira/browse/IMPALA-2914
https://issues.apache.org/jira/browse/IMPALA-2986
https://issues.apache.org/jira/browse/IMPALA-2592
https://issues.apache.org/jira/browse/IMPALA-2184
https://issues.apache.org/jira/browse/IMPALA-2788

 | Impala Release Notes | 836

+------------+--------------------------+----------------------------+
| 2061013007 | 1627467783 | 139066421255 |
+------------+--------------------------+----------------------------+
Fetched 1 row(s) in 0.65s

select 2061013007, conv(cast(2061013007 as bigint), 16, 10),
 conv('2061013007', 16, 10);
+------------+--
+----------------------------+
| 2061013007 | conv(cast(2061013007 as bigint), 16, 10) | conv('2061013007',
 16, 10) |
+------------+--
+----------------------------+
| 2061013007 | 1627467783 | 139066421255
 |
+------------+--
+----------------------------+

select 2061013007, conv(cast(2061013007 as string), 16, 10),
 conv('2061013007', 16, 10);
+------------+--
+----------------------------+
| 2061013007 | conv(cast(2061013007 as string), 16, 10) | conv('2061013007',
 16, 10) |
+------------+--
+----------------------------+
| 2061013007 | 139066421255 | 139066421255
 |
+------------+--
+----------------------------+

select 2061013007, conv(cast(cast(2061013007 as decimal(20,0)) as bigint),
 16, 10), conv('2061013007', 16, 10);
+------------
+---
+----------------------------+
| 2061013007 | conv(cast(cast(2061013007 as decimal(20,0)) as bigint), 16,
 10) | conv('2061013007', 16, 10) |
+------------
+---
+----------------------------+
| 2061013007 | 1627467783
 | 139066421255 |
+------------
+---
+----------------------------+

Workaround: Cast the value to string and use conv(string, from_base, to_base) for conversion.

Issues Fixed in Impala 2.4.1

Issues Fixed in Impala 2.4.0

The set of fixes for Impala in Impala 2.4.0 is the same as in Impala 2.3.2.

Issues Fixed in Impala 2.3.4

Issues Fixed in Impala 2.3.2

This section lists the most serious or frequently encountered customer issues fixed in Impala 2.3.2.

 | Impala Release Notes | 837

SEGV in AnalyticEvalNode touching NULL input_stream_

A query involving an analytic function could encounter a serious error. This issue was encountered infrequently,
depending upon specific combinations of queries and data.

Bug: IMPALA-2829

Free local allocations per row batch in non-partitioned AGG and HJ

An outer join query could fail unexpectedly with an out-of-memory error when the “spill to disk” mechanism was
turned off.

Bug: IMPALA-2722

Free local allocations once for every row batch when building hash tables

A join query could encounter a serious error due to an internal failure to allocate memory, which resulted in
dereferencing a NULL pointer.

Bug: IMPALA-2612

Prevent migrating incorrectly inferred identity predicates into inline views

Referring to the same column twice in a view definition could cause the view to omit rows where that column
contained a NULL value. This could cause incorrect results due to an inaccurate COUNT(*) value or rows missing
from the result set.

Bug: IMPALA-2643

Fix GRANTs on URIs with uppercase letters

A GRANT statement for a URI could be ineffective if the URI contained uppercase letters, for example in an
uppercase directory name. Subsequent statements, such as CREATE EXTERNAL TABLE with a LOCATION clause,
could fail with an authorization exception.

Bug: IMPALA-2695

Avoid sending large partition stats objects over thrift

The catalogd daemon could encounter a serious error when loading the incremental statistics metadata for tables
with large numbers of partitions and columns. The problem occurred when the internal representation of metadata
for the table exceeded 2 GB, for example in a table with 20K partitions and 77 columns. The fix causes a COMPUTE
INCREMENTAL STATS operation to fail if it would produce metadata that exceeded the maximum size.

Bug: IMPALA-2664, IMPALA-2648

Throw AnalysisError if table properties are too large (for the Hive metastore)

CREATE TABLE or ALTER TABLE statements could fail with metastore database errors due to length limits on the
SERDEPROPERTIES and TBLPROPERTIES clauses. (The limit on key size is 256, while the limit on value size
is 4000.) The fix makes Impala handle these error conditions more cleanly, by detecting too-long values rather than
passing them to the metastore database.

Bug: IMPALA-2226

Make MAX_PAGE_HEADER_SIZE configurable

Impala could fail to access Parquet data files with page headers larger than 8 MB, which could occur, for example,
if the minimum or maximum values for a column were long strings. The fix adds a configuration setting --
max_page_header_size, which you can use to increase the Impala size limit to a value higher than 8 MB.

Bug: IMPALA-2273

https://issues.apache.org/jira/browse/IMPALA-2829
https://issues.apache.org/jira/browse/IMPALA-2722
https://issues.apache.org/jira/browse/IMPALA-2612
https://issues.apache.org/jira/browse/IMPALA-2643
https://issues.apache.org/jira/browse/IMPALA-2695
https://issues.apache.org/jira/browse/IMPALA-2664
https://issues.apache.org/jira/browse/IMPALA-2648
https://issues.apache.org/jira/browse/IMPALA-2226
https://issues.apache.org/jira/browse/IMPALA-2273

 | Impala Release Notes | 838

reduce scanner memory usage

Queries on Parquet tables could consume excessive memory (potentially multiple gigabytes) due to producing
large intermediate data values while evaluating groups of rows. The workaround was to reduce the size of the
NUM_SCANNER_THREADS query option, the BATCH_SIZE query option, or both.

Bug: IMPALA-2473

Handle error when distinct and aggregates are used with a having clause

A query that included a DISTINCT operator and a HAVING clause, but no aggregate functions or GROUP BY, would
fail with an uninformative error message.

Bug: IMPALA-2113

Handle error when star based select item and aggregate are incorrectly used

A query that included * in the SELECT list, in addition to an aggregate function call, would fail with an
uninformative message if the query had no GROUP BY clause.

Bug: IMPALA-2225

Refactor MemPool usage in HBase scan node

Queries involving HBase tables used substantially more memory than in earlier Impala versions. The problem
occurred starting in Impala 2.2.8, as a result of the changes for IMPALA-2284. The fix for this issue involves
removing a separate memory work area for HBase queries and reusing other memory that was already allocated.

Bug: IMPALA-2731

Fix migration/assignment of On-clause predicates inside inline views

Some combinations of ON clauses in join queries could result in comparisons being applied at the wrong stage
of query processing, leading to incorrect results. Wrong predicate assignment could happen under the following
conditions:

• The query includes an inline view that contains an outer join.
• That inline view is joined with another table in the enclosing query block.
• That join has an ON clause containing a predicate that only references columns originating from the outer-joined

tables inside the inline view.

Bug: IMPALA-1459

DCHECK in parquet scanner after block read error

A debug build of Impala could encounter a serious error after encountering some kinds of I/O errors for Parquet files.
This issue only occurred in debug builds, not release builds.

Bug: IMPALA-2558

PAGG hits mem_limit when switching to I/O buffers

A join query could fail with an out-of-memory error despite the apparent presence of sufficient memory. The cause
was the internal ordering of operations that could cause a later phase of the query to allocate memory required by an
earlier phase of the query. The workaround was to either increase or decrease the MEM_LIMIT query option, because
the issue would only occur for a specific combination of memory limit and data volume.

Bug: IMPALA-2535

Fix check failed: sorter_runs_.back()->is_pinned_

A query could fail with an internal error while calculating the memory limit. This was an infrequent condition
uncovered during stress testing.

Bug: IMPALA-2559

https://issues.apache.org/jira/browse/IMPALA-2473
https://issues.apache.org/jira/browse/IMPALA-2113
https://issues.apache.org/jira/browse/IMPALA-2225
https://issues.apache.org/jira/browse/IMPALA-2731
https://issues.apache.org/jira/browse/IMPALA-1459
https://issues.apache.org/jira/browse/IMPALA-2558
https://issues.apache.org/jira/browse/IMPALA-2535
https://issues.apache.org/jira/browse/IMPALA-2559

 | Impala Release Notes | 839

Don't ignore Status returned by DataStreamRecvr::CreateMerger()

A query could fail with an internal error while calculating the memory limit. This was an infrequent condition
uncovered during stress testing.

Bug: IMPALA-2614, IMPALA-2559

DataStreamSender::Send() does not return an error status if SendBatch() failed

Bug: IMPALA-2591

Re-enable SSL and Kerberos on server-server

These fixes lift the restriction on using SSL encryption and Kerberos authentication together for internal
communication between Impala components.

Bug: IMPALA-2598, IMPALA-2747

Issues Fixed in Impala 2.3.1

The version of Impala that is included with Impala 2.3.1 is identical to Impala 2.3.0. There are no new bug fixes, new
features, or incompatible changes.

Issues Fixed in Impala 2.3.0

This section lists the most serious or frequently encountered customer issues fixed in Impala 2.3. Any issues already
fixed in Impala 2.2 maintenance releases (up through Impala 2.2.8) are also included. Those issues are listed under the
respective Impala 2.2 sections and are not repeated here.

Fixes for Serious Errors

A number of issues were resolved that could result in serious errors when encountered. The most critical or
commonly encountered are listed here.

Bugs: IMPALA-2168, IMPALA-2378, IMPALA-2369, IMPALA-2357, IMPALA-2319, IMPALA-2314, IMPALA-2016

Fixes for Correctness Errors

A number of issues were resolved that could result in wrong results when encountered. The most critical or
commonly encountered are listed here.

Bugs: IMPALA-2192, IMPALA-2440, IMPALA-2090, IMPALA-2086, IMPALA-1947, IMPALA-1917

Issues Fixed in Impala 2.2.10

Issues Fixed in Impala 2.2.9

This section lists the most frequently encountered customer issues fixed in Impala 2.2.9.

Query return empty result if it contains NullLiteral in inlineview

If an inline view in a FROM clause contained a NULL literal, the result set was empty.

Bug: IMPALA-1917

HBase scan node uses 2-4x memory after upgrade to Impala 2.2.8

Queries involving HBase tables used substantially more memory than in earlier Impala versions. The problem
occurred starting in Impala 2.2.8, as a result of the changes for IMPALA-2284. The fix for this issue involves
removing a separate memory work area for HBase queries and reusing other memory that was already allocated.

Bug: IMPALA-2731

https://issues.apache.org/jira/browse/IMPALA-2614
https://issues.apache.org/jira/browse/IMPALA-2559
https://issues.apache.org/jira/browse/IMPALA-2591
https://issues.apache.org/jira/browse/IMPALA-2598
https://issues.apache.org/jira/browse/IMPALA-2747
https://issues.apache.org/jira/browse/IMPALA-2168
https://issues.apache.org/jira/browse/IMPALA-2378
https://issues.apache.org/jira/browse/IMPALA-2369
https://issues.apache.org/jira/browse/IMPALA-2357
https://issues.apache.org/jira/browse/IMPALA-2319
https://issues.apache.org/jira/browse/IMPALA-2314
https://issues.apache.org/jira/browse/IMPALA-2016
https://issues.apache.org/jira/browse/IMPALA-2192
https://issues.apache.org/jira/browse/IMPALA-2440
https://issues.apache.org/jira/browse/IMPALA-2090
https://issues.apache.org/jira/browse/IMPALA-2086
https://issues.apache.org/jira/browse/IMPALA-1947
https://issues.apache.org/jira/browse/IMPALA-1917
https://issues.apache.org/jira/browse/IMPALA-1917
https://issues.apache.org/jira/browse/IMPALA-2731

 | Impala Release Notes | 840

Fix migration/assignment of On-clause predicates inside inline views

Some combinations of ON clauses in join queries could result in comparisons being applied at the wrong stage
of query processing, leading to incorrect results. Wrong predicate assignment could happen under the following
conditions:

• The query includes an inline view that contains an outer join.
• That inline view is joined with another table in the enclosing query block.
• That join has an ON clause containing a predicate that only references columns originating from the outer-joined

tables inside the inline view.

Bug: IMPALA-1459

Fix wrong predicate assignment in outer joins

The join predicate for an OUTER JOIN clause could be applied at the wrong stage of query processing, leading to
incorrect results.

Bug: IMPALA-2446

Avoid sending large partition stats objects over thrift

The catalogd daemon could encounter a serious error when loading the incremental statistics metadata for tables
with large numbers of partitions and columns. The problem occurred when the internal representation of metadata
for the table exceeded 2 GB, for example in a table with 20K partitions and 77 columns. The fix causes a COMPUTE
INCREMENTAL STATS operation to fail if it would produce metadata that exceeded the maximum size.

Bug: IMPALA-2648, IMPALA-2664

Avoid overflow when adding large intervals to TIMESTAMPs

Adding or subtracting a large INTERVAL value to a TIMESTAMP value could produce an incorrect result, with the
value wrapping instead of returning an out-of-range error.

Bug: IMPALA-1675

Analysis exception when a binary operator contains an IN operator with values

An IN operator with literal values could cause a statement to fail if used as the argument to a binary operator, such as
an equality test for a BOOLEAN value.

Bug: IMPALA-1949

Make MAX_PAGE_HEADER_SIZE configurable

Impala could fail to access Parquet data files with page headers larger than 8 MB, which could occur, for example,
if the minimum or maximum values for a column were long strings. The fix adds a configuration setting --
max_page_header_size, which you can use to increase the Impala size limit to a value higher than 8 MB.

Bug: IMPALA-2273

Fix spilling sorts with var-len slots that are NULL or empty.

A query that activated the spill-to-disk mechanism could fail if it contained a sort expression involving certain
combinations of fixed-length or variable-length types.

Bug: IMPALA-2357

Work-around IMPALA-2344: Fail query with OOM in case block->Pin() fails

Some queries that activated the spill-to-disk mechanism could produce a serious error if there was insufficient
memory to set up internal work areas. Now those queries produce normal out-of-memory errors instead.

Bug: IMPALA-2344

https://issues.apache.org/jira/browse/IMPALA-1459
https://issues.apache.org/jira/browse/IMPALA-2446
https://issues.apache.org/jira/browse/IMPALA-2648
https://issues.apache.org/jira/browse/IMPALA-2664
https://issues.apache.org/jira/browse/IMPALA-1675
https://issues.apache.org/jira/browse/IMPALA-1949
https://issues.apache.org/jira/browse/IMPALA-2273
https://issues.apache.org/jira/browse/IMPALA-2357
https://issues.apache.org/jira/browse/IMPALA-2344

 | Impala Release Notes | 841

Crash (likely race) tearing down BufferedBlockMgr on query failure

A serious error could occur under rare circumstances, due to a race condition while freeing memory during heavily
concurrent workloads.

Bug: IMPALA-2252

QueryExecState doesn't check for query cancellation or errors

A call to SetError() in a user-defined function (UDF) would not cause the query to fail as expected.

Bug: IMPALA-1746

Impala throws IllegalStateException when inserting data into a partition while select subquery
group by partition columns

An INSERT ... SELECT operation into a partitioned table could fail if the SELECT query included a GROUP BY
clause referring to the partition key columns.

Bug: IMPALA-2533

Issues Fixed in Impala 2.2.8

This section lists the most frequently encountered customer issues fixed in Impala 2.2.8.

Impala is unable to read hive tables created with the "STORED AS AVRO" clause

Impala could not read Avro tables created in Hive with the STORED AS AVRO clause.

Bug: IMPALA-1136, IMPALA-2161

make Parquet scanner fail query if the file size metadata is stale

If a Parquet file in HDFS was overwritten by a smaller file, Impala could encounter a serious error. Issuing a
INVALIDATE METADATA statement before a subsequent query would avoid the error. The fix allows Impala to
handle such inconsistencies in Parquet file length cleanly regardless of whether the table metadata is up-to-date.

Bug: IMPALA-2213

Avoid allocating StringBuffer > 1GB in ScannerContext::Stream::GetBytesInternal()

Impala could encounter a serious error when reading compressed text files larger than 1 GB. The fix causes Impala to
issue an error message instead in this case.

Bug: IMPALA-2249

Disallow long (1<<30) strings in group_concat()

A query using the group_concat() function could encounter a serious error if the returned string value was larger
than 1 GB. Now the query fails with an error message in this case.

Bug: IMPALA-2284

avoid FnvHash64to32 with empty inputs

An edge case in the algorithm used to distribute data among nodes could result in uneven distribution of work for
some queries, with all data sent to the same node.

Bug: IMPALA-2270

The catalog does not close the connection to HMS during table invalidation

A communication error could occur between Impala and the Hive metastore database, causing Impala operations that
update table metadata to fail.

Bug: IMPALA-2348

https://issues.apache.org/jira/browse/IMPALA-2252
https://issues.apache.org/jira/browse/IMPALA-1746
https://issues.apache.org/jira/browse/IMPALA-2533
https://issues.apache.org/jira/browse/IMPALA-1136
https://issues.apache.org/jira/browse/IMPALA-2161
https://issues.apache.org/jira/browse/IMPALA-2213
https://issues.apache.org/jira/browse/IMPALA-2249
https://issues.apache.org/jira/browse/IMPALA-2284
https://issues.apache.org/jira/browse/IMPALA-2270
https://issues.apache.org/jira/browse/IMPALA-2348

 | Impala Release Notes | 842

Wrong DCHECK in PHJ::ProcessProbeBatch

Certain queries could encounter a serious error if the spill-to-disk mechanism was activated.

Bug: IMPALA-2364

Avoid cardinality 0 in scan nodes of small tables and low selectivity

Impala could generate a suboptimal query plan for some queries involving small tables.

Bug: IMPALA-2165

Issues Fixed in Impala 2.2.7

This section lists the most frequently encountered customer issues fixed in Impala 2.2.7.

Warn if table stats are potentially corrupt.

Impala warns if it detects a discrepancy in table statistics: a table considered to have zero rows even though there are
data files present. In this case, Impala also skips query optimizations that are normally applied to very small tables.

Bug: IMPALA-1983:

Pass correct child node in 2nd phase merge aggregation.

A query could encounter a serious error if it included a particular combination of aggregate functions and inline
views.

Bug: IMPALA-2266

Set the output smap of an EmptySetNode produced from an empty inline view.

A query could encounter a serious error if it included an inline view whose subquery had no FROM clause.

Bug: IMPALA-2216

Set an InsertStmt's result exprs from the source statement's result exprs.

A CREATE TABLE AS SELECT or INSERT ... SELECT statement could produce different results than a
SELECT statement, for queries including a FULL JOIN clause and including literal values in the select list.

Bug: IMPALA-2203

Fix planning of empty union operands with analytics.

A query could return incorrect results if it contained a UNION clause, calls to analytic functions, and a constant
expression that evaluated to FALSE.

Bug: IMPALA-2088

Retain eq predicates bound by grouping slots with complex grouping exprs.

A query containing an INNER JOIN clause could return undesired rows. Some predicate specified in the ON clause
could be omitted from the filtering operation.

Bug: IMPALA-2089

Row count not set for empty partition when spec is used with compute incremental stats

A COMPUTE INCREMENTAL STATS statement could leave the row count for an emptyp partition as -1, rather than
initializing the row count to 0. The missing statistic value could result in reduced query performance.

Bug: IMPALA-2199

https://issues.apache.org/jira/browse/IMPALA-2364
https://issues.apache.org/jira/browse/IMPALA-2165
https://issues.apache.org/jira/browse/IMPALA-1983
https://issues.apache.org/jira/browse/IMPALA-2266
https://issues.apache.org/jira/browse/IMPALA-2216
https://issues.apache.org/jira/browse/IMPALA-2203
https://issues.apache.org/jira/browse/IMPALA-2088
https://issues.apache.org/jira/browse/IMPALA-2089
https://issues.apache.org/jira/browse/IMPALA-2199

 | Impala Release Notes | 843

Explicit aliases + ordinals analysis bug

A query could encounter a serious error if it included column aliases with the same names as table columns, and used
ordinal numbers in an ORDER BY or GROUP BY clause.

Bug: IMPALA-1898

Fix TupleIsNullPredicate to return false if no tuples are nullable.

A query could return incorrect results if it included an outer join clause, inline views, and calls to functions such as
coalesce() that can generate NULL values.

Bug: IMPALA-1987

fix Expr::ComputeResultsLayout() logic

A query could return incorrect results if the table contained multiple CHAR columns with length of 2 or less, and the
query included a GROUP BY clause that referred to multiple such columns.

Bug: IMPALA-2178

Substitute an InsertStmt's partition key exprs with the root node's smap.

An INSERT statement could encounter a serious error if the SELECT portion called an analytic function.

Bug: IMPALA-1737

Issues Fixed in Impala Impala 2.2.5

This section lists the most frequently encountered customer issues fixed in Impala 2.2.5.

Impala DML/DDL operations corrupt table metadata leading to Hive query failures

When the Impala COMPUTE STATS statement was run on a partitioned Parquet table that was created in Hive, the
table subsequently became inaccessible in Hive. The table was still accessible to Impala. Regaining access in Hive
required a workaround of creating a new table. The error displayed in Hive was:

Error: Error while compiling statement: FAILED: SemanticException
 Class not found: org.apache.impala.hive.serde.ParquetInputFormat
 (state=42000,code=40000)

Bug: IMPALA-2048

Avoiding a DCHECK of NULL hash table in spilled right joins

A query could encounter a serious error if it contained a RIGHT OUTER, RIGHT ANTI, or FULL OUTER join
clause and approached the memory limit on a host so that the “spill to disk” mechanism was activated.

Bug: IMPALA-1929

Bug in PrintTColumnValue caused wrong stats for TINYINT partition cols

Declaring a partition key column as a TINYINT caused problems with the COMPUTE STATS statement. The
associated partitions would always have zero estimated rows, leading to potential inefficient query plans.

Bug: IMPALA-2136

Where clause does not propagate to joins inside nested views

A query that referred to a view whose query referred to another view containing a join, could return incorrect results.
WHERE clauses for the outermost query were not always applied, causing the result set to include additional rows that
should have been filtered out.

Bug: IMPALA-2018

https://issues.apache.org/jira/browse/IMPALA-1898
https://issues.apache.org/jira/browse/IMPALA-1987
https://issues.apache.org/jira/browse/IMPALA-2178
https://issues.apache.org/jira/browse/IMPALA-1737
https://issues.apache.org/jira/browse/IMPALA-2048
https://issues.apache.org/jira/browse/IMPALA-1929
https://issues.apache.org/jira/browse/IMPALA-2136
https://issues.apache.org/jira/browse/IMPALA-2018

 | Impala Release Notes | 844

Add effective_user() builtin

The user() function returned the name of the logged-in user, which might not be the same as the user name being
checked for authorization if, for example, delegation was enabled.

Bug: IMPALA-2064

Resolution: Rather than change the behavior of the user() function, the fix introduces an additional function
effective_user() that returns the user name that is checked during authorization.

Make UTC to local TimestampValue conversion faster.

Query performance was improved substantially for Parquet files containing TIMESTAMP data written by Hive, when
the -convert_legacy_hive_parquet_utc_timestamps=true setting is in effect.

Bug: IMPALA-2125

Workaround IMPALA-1619 in BufferedBlockMgr::ConsumeMemory()

A join query could encounter a serious error if the query approached the memory limit on a host so that the “spill
to disk” mechanism was activated, and data volume in the join was large enough that an internal memory buffer
exceeded 1 GB in size on a particular host. (Exceeding this limit would only happen for huge join queries, because
Impala could split this intermediate data into 16 parts during the join query, and the buffer only contains compact
bookkeeping data rather than the actual join column data.)

Bug: IMPALA-2065

Issues Fixed in Impala 2.2.3

This section lists the most frequently encountered customer issues fixed in Impala 2.2.3.

Enable using Isilon as the underlying filesystem.

Enabling Impala to work with the Isilon filesystem involves a number of fixes to performance and flexibility for
dealing with I/O using remote reads. See Using Impala with Isilon Storage on page 763 for details on using Impala
and Isilon together.

Bug: IMPALA-1968, IMPALA-1730

Expand set of supported timezones.

The set of timezones recognized by Impala was expanded. You can always find the latest list of supported timezones
in the Impala source code, in the file timezone_db.cc.

Bug: IMPALA-1381

Impala Timestamp ISO-8601 Support.

Impala can now process TIMESTAMP literals including a trailing z, signifying “Zulu” time, a synonym for UTC.

Bug: IMPALA-1963

Fix wrong warning when insert overwrite to empty table

An INSERT OVERWRITE operation would encounter an error if the SELECT portion of the statement returned zero
rows, such as with a LIMIT 0 clause.

Bug: IMPALA-2008

Expand parsing of decimals to include scientific notation

DECIMAL literals can now include e scientific notation. For example, now CAST(1e3 AS DECIMAL(5,3)) is
a valid expression. Formerly it returned NULL. Some scientific expressions might have worked before in DECIMAL
context, but only when the scale was 0.

Bug: IMPALA-1952

https://issues.apache.org/jira/browse/IMPALA-2064
https://issues.apache.org/jira/browse/IMPALA-2125
https://issues.apache.org/jira/browse/IMPALA-2065
https://issues.apache.org/jira/browse/IMPALA-1968
https://issues.apache.org/jira/browse/IMPALA-1730
https://github.com/apache/impala/blob/master/be/src/exprs/timezone_db.cc
https://issues.apache.org/jira/browse/IMPALA-1381
https://issues.apache.org/jira/browse/IMPALA-1963
https://issues.apache.org/jira/browse/IMPALA-2008
https://issues.apache.org/jira/browse/IMPALA-1952

 | Impala Release Notes | 845

Issues Fixed in Impala 2.2.1

This section lists the most frequently encountered customer issues fixed in Impala 2.2.1.

Issues Fixed in Impala 2.2.0

This section lists the most frequently encountered customer issues fixed in Impala 2.2.0.

For the full list of fixed issues in Impala 2.2.0, including over 40 critical issues, see this report in the Impala JIRA
tracker.

Altering a column's type causes column stats to stop sticking for that column

When the type of a column was changed in either Hive or Impala through ALTER TABLE CHANGE COLUMN,
the metastore database did not correctly propagate that change to the table that contains the column statistics. The
statistics (particularly the NDV) for that column were permanently reset and could not be changed by Impala's
COMPUTE STATS command. The underlying cause is a Hive bug (HIVE-9866).

Bug: IMPALA-1607

Resolution: Resolved by incorporating the fix for HIVE-9866.

Workaround: On systems without the corresponding Hive fix, change the column back to its original type. The stats
reappear and you can recompute or drop them.

Impala may leak or use too many file descriptors

If a file was truncated in HDFS without a corresponding REFRESH in Impala, Impala could allocate memory for file
descriptors and not free that memory.

Bug: IMPALA-1854

Spurious stale block locality messages

Impala could issue messages stating the block locality metadata was stale, when the metadata was actually fine.
The internal “remote bytes read” counter was not being reset properly. This issue did not cause an actual slowdown
in query execution, but the spurious error could result in unnecessary debugging work and unnecessary use of the
INVALIDATE METADATA statement.

Bug: IMPALA-1712

DROP TABLE fails after COMPUTE STATS and ALTER TABLE RENAME to a different database.

When a table was moved from one database to another, the column statistics were not pointed to the new database.i
This could result in lower performance for queries due to unavailable statistics, and also an inability to drop the table.

Bug: IMPALA-1711

IMPALA-1556 causes memory leak with secure connections

impalad daemons could experience a memory leak on clusters using Kerberos authentication, with memory usage
growing as more data is transferred across the secure channel, either to the client program or between Impala nodes.
The same issue affected LDAP-secured clusters to a lesser degree, because the LDAP security only covers data
transferred back to client programs.

Bug: IMPALA-1674

unix_timestamp() does not return correct time

The unix_timestamp() function could return an incorrect value (a constant value of 1).

Bug: IMPALA-1623

https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.2%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.2%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-1607
https://issues.apache.org/jira/browse/HIVE-9866
https://issues.apache.org/jira/browse/IMPALA-1854
https://issues.apache.org/jira/browse/IMPALA-1712
https://issues.apache.org/jira/browse/IMPALA-1711
https://issues.apache.org/jira/browse/IMPALA-1674
https://issues.apache.org/jira/browse/IMPALA-1623

 | Impala Release Notes | 846

Impala incorrectly handles text data missing a newline on the last line

Some queries did not recognize the final line of a text data file if the line did not end with a newline character.
This could lead to inconsistent results, such as a different number of rows for SELECT COUNT(*) as opposed to
SELECT *.

Bug: IMPALA-1476

Impala's ACLs check do not consider all group ACLs, only checked first one.

If the HDFS user ID associated with the impalad process had read or write access in HDFS based on group
membership, Impala statements could still fail with HDFS permission errors if that group was not the first listed
group for that user ID.

Bug: IMPALA-1805

Fix infinite loop opening or closing file with invalid metadata

Truncating a file in HDFS, after Impala had cached the file metadata, could produce a hang when Impala queried a
table containing that file.

Bug: IMPALA-1794

Cannot write Parquet files when values are larger than 64KB

Impala could sometimes fail to INSERT into a Parquet table if a column value such as a STRING was larger than 64
KB.

Bug: IMPALA-1705

Impala Will Not Run on Certain Intel CPUs

This fix relaxes the CPU requirement for Impala. Now only the SSSE3 instruction set is required. Formerly, SSE4.1
instructions were generated, making Impala refuse to start on some older CPUs.

Bug: IMPALA-1646

Issues Fixed in Impala 2.1.10

Issues Fixed in Impala 2.1.7

This section lists the most significant Impala issues fixed in Impala 2.1.7.

Query return empty result if it contains NullLiteral in inlineview

If an inline view in a FROM clause contained a NULL literal, the result set was empty.

Bug: IMPALA-1917

Fix edge cases for decimal/integer cast

A value of type DECIMAL(3,0) could be incorrectly cast to TINYINT. The resulting out-of-range value could be
incorrect. After the fix, the smallest type that is allowed for this cast is INT, and attempting to use DECIMAL(3,0)
in a TINYINT context produces a “loss of precision” error.

Bug: IMPALA-2264

Constant filter expressions are not checked for errors and state cleanup on exception / DCHECK on
destroying an ExprContext

An invalid constant expression in a WHERE clause (for example, an invalid regular expression pattern) could fail to
clean up internal state after raising a query error. Therefore, certain combinations of invalid expressions in a query
could cause a crash, or cause a query to continue when it should halt with an error.

Bug: IMPALA-1756, IMPALA-2514

https://issues.apache.org/jira/browse/IMPALA-1476
https://issues.apache.org/jira/browse/IMPALA-1805
https://issues.apache.org/jira/browse/IMPALA-1794
https://issues.apache.org/jira/browse/IMPALA-1705
https://issues.apache.org/jira/browse/IMPALA-1646
https://issues.apache.org/jira/browse/IMPALA-1917
https://issues.apache.org/jira/browse/IMPALA-2264
https://issues.apache.org/jira/browse/IMPALA-1756
https://issues.apache.org/jira/browse/IMPALA-2514

 | Impala Release Notes | 847

QueryExecState does not check for query cancellation or errors

A call to SetError() in a user-defined function (UDF) would not cause the query to fail as expected.

Bug: IMPALA-1746, IMPALA-2141

Issues Fixed in Impala 2.1.6

This section lists the most significant Impala issues fixed in Impala 2.1.6.

Wrong DCHECK in PHJ::ProcessProbeBatch

Certain queries could encounter a serious error if the spill-to-disk mechanism was activated.

Bug: IMPALA-2364

LargestSpilledPartition was not checking if partition is closed

Certain queries could encounter a serious error if the spill-to-disk mechanism was activated.

Bug: IMPALA-2314

Avoid cardinality 0 in scan nodes of small tables and low selectivity

Impala could generate a suboptimal query plan for some queries involving small tables.

Bug: IMPALA-2165

fix Expr::ComputeResultsLayout() logic

Queries using the GROUP BY operator on multiple CHAR columns with length less than or equal to 2 characters could
return incorrect results for some columns.

Bug: IMPALA-2178

Properly unescape string value for HBase filters

Queries against HBase tables could return incomplete results if the WHERE clause included string comparisons using
literals containing escaped quotation marks.

Bug: IMPALA-2133

Avoiding a DCHECK of NULL hash table in spilled right joins

A query could encounter a serious error if it contained a RIGHT OUTER, RIGHT ANTI, or FULL OUTER join
clause and approached the memory limit on a host so that the “spill to disk” mechanism was activated.

Bug: IMPALA-1929

Issues Fixed in Impala 2.1.5

This section lists the most significant Impala issues fixed in Impala 2.1.5.

Avoid calling ProcessBatch with out_batch->AtCapacity in right joins

Queries including RIGHT OUTER JOIN, RIGHT ANTI JOIN, or FULL OUTER JOIN clauses and involving a
high volume of data could encounter a serious error.

Bug: IMPALA-1919

Issues Fixed in Impala 2.1.4

This section lists the most significant Impala issues fixed in Impala 2.1.4.

https://issues.apache.org/jira/browse/IMPALA-1746
https://issues.apache.org/jira/browse/IMPALA-2141
https://issues.apache.org/jira/browse/IMPALA-2364
https://issues.apache.org/jira/browse/IMPALA-2314
https://issues.apache.org/jira/browse/IMPALA-2165
https://issues.apache.org/jira/browse/IMPALA-2178
https://issues.apache.org/jira/browse/IMPALA-2133
https://issues.apache.org/jira/browse/IMPALA-1929
https://issues.apache.org/jira/browse/IMPALA-1919

 | Impala Release Notes | 848

Crash: impala::TupleIsNullPredicate::Prepare

When expressions that tested for NULL were used in combination with analytic functions, an error could occur. (The
original crash issue was fixed by an earlier patch.)

Bug: IMPALA-1519

Expand parsing of decimals to include scientific notation

DECIMAL literals could include e scientific notation. For example, now CAST(1e3 AS DECIMAL(5,3)) is a
valid expression. Formerly it returned NULL. Some scientific expressions might have worked before in DECIMAL
context, but only when the scale was 0.

Bug: IMPALA-1952

INSERT/CTAS evaluates and applies constant predicates.

An INSERT OVERWRITE statement would write new data, even if a constant clause such as WHERE 1 = 0 should
have prevented it from writing any rows.

Bug: IMPALA-1860

Assign predicates below analytic functions with a compatible partition by clause

If the PARTITION BY clause in an analytic function refers to partition key columns in a partitioned table, now
Impala can perform partition pruning during the analytic query.

Bug: IMPALA-1900

FIRST_VALUE may produce incorrect results with preceding windows

A query using the FIRST_VALUE analytic function and a window defined with the PRECEDING keyword could
produce wrong results.

Bug: IMPALA-1888

FIRST_VALUE rewrite fn type might not match slot type

A query referencing a DECIMAL column with the FIRST_VALUE analytic function could encounter an error.

Bug: IMPALA-1559

AnalyticEvalNode cannot handle partition/order by exprs with NaN

A query using an analytic function could encounter an error if the evaluation of an analytic ORDER BY or
PARTITION expression resulted in a NaN value, for example if the ORDER BY or PARTITION contained a division
operation where both operands were zero.

Bug: IMPALA-1808

AnalyticEvalNode not properly handling nullable tuples

An analytic function containing only an OVER clause could encounter an error if another part of the query
(specifically an outer join) produced all-NULL tuples.

Bug: IMPALA-1562

Issues Fixed in Impala 2.1.3

This section lists the most significant issues fixed in Impala 2.1.3.

Add compatibility flag for Hive-Parquet-Timestamps

When Hive writes TIMESTAMP values, it represents them in the local time zone of the server. Impala
expects TIMESTAMP values to always be in the UTC time zone, possibly leading to inconsistent results
depending on which component created the data files. This patch introduces a new startup flag, -

https://issues.apache.org/jira/browse/IMPALA-1519
https://issues.apache.org/jira/browse/IMPALA-1952
https://issues.apache.org/jira/browse/IMPALA-1860
https://issues.apache.org/jira/browse/IMPALA-1900
https://issues.apache.org/jira/browse/IMPALA-1888
https://issues.apache.org/jira/browse/IMPALA-1559
https://issues.apache.org/jira/browse/IMPALA-1808
https://issues.apache.org/jira/browse/IMPALA-1562

 | Impala Release Notes | 849

convert_legacy_hive_parquet_utc_timestamps for the impalad daemon. Specify -
convert_legacy_hive_parquet_utc_timestamps=true to make Impala recognize Parquet data files
written by Hive and automatically adjust TIMESTAMP values read from those files into the UTC time zone for
compatibility with other Impala TIMESTAMP processing. Although this setting is currently turned off by default,
consider enabling it if practical in your environment, for maximum interoperability with Hive-created Parquet files.

Bug: IMPALA-1658

Use snprintf() instead of lexical_cast() in float-to-string casts

Converting a floating-point value to a STRING could be slower than necessary.

Bug: IMPALA-1738

Fix partition spilling cleanup when new stream OOMs

Certain calls to aggregate functions with STRING arguments could encounter a serious error when the system ran
low on memory and attempted to activate the spill-to-disk mechanism. The error message referenced the function
impala::AggregateFunctions::StringValGetValue.

Bug: IMPALA-1865

Impala's ACLs check do not consider all group ACLs, only checked first one.

If the HDFS user ID associated with the impalad process had read or write access in HDFS based on group
membership, Impala statements could still fail with HDFS permission errors if that group was not the first listed
group for that user ID.

Bug: IMPALA-1805

Fix infinite loop opening or closing file with invalid metadata

Truncating a file in HDFS, after Impala had cached the file metadata, could produce a hang when Impala queried a
table containing that file.

Bug: IMPALA-1794

external-data-source-executor leaking global jni refs

Successive calls to the data source API could result in excessive memory consumption, with memory allocated but
never freed.

Bug: IMPALA-1801

Spurious stale block locality messages

Impala could issue messages stating the block locality metadata was stale, when the metadata was actually fine.
The internal “remote bytes read” counter was not being reset properly. This issue did not cause an actual slowdown
in query execution, but the spurious error could result in unnecessary debugging work and unnecessary use of the
INVALIDATE METADATA statement.

Bug: IMPALA-1712

Issues Fixed in Impala 2.1.2

This section lists the most significant issues fixed in Impala 2.1.2.

For the full list of fixed issues in Impala 2.1.2, see this report in the Impala JIRA tracker.

Impala incorrectly handles double numbers with more than 19 significant decimal digits

When a floating-point value was read from a text file and interpreted as a FLOAT or DOUBLE value, it could be
incorrectly interpreted if it included more than 19 significant digits.

Bug: IMPALA-1622

https://issues.apache.org/jira/browse/IMPALA-1658
https://issues.apache.org/jira/browse/IMPALA-1738
https://issues.apache.org/jira/browse/IMPALA-1865
https://issues.apache.org/jira/browse/IMPALA-1805
https://issues.apache.org/jira/browse/IMPALA-1794
https://issues.apache.org/jira/browse/IMPALA-1801
https://issues.apache.org/jira/browse/IMPALA-1712
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.1.2%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-1622

 | Impala Release Notes | 850

unix_timestamp() does not return correct time

The unix_timestamp() function could return an incorrect value (a constant value of 1).

Bug: IMPALA-1623

Row Count Mismatch: Partition pruning with NULL

A query against a partitioned table could return incorrect results if the WHERE clause compared the partition key to
NULL using operators such as = or !=.

Bug: IMPALA-1535

Fetch column stats in bulk using new (Hive .13) HMS APIs

The performance of the COMPUTE STATS statement and queries was improved, particularly for wide tables.

Bug: IMPALA-1120

Issues Fixed in Impala 2.1.1

This section lists the most significant issues fixed in Impala 2.1.1.

For the full list of fixed issues in Impala 2.1.1, see this report in the Impala JIRA tracker.

IMPALA-1556 causes memory leak with secure connections

impalad daemons could experience a memory leak on clusters using Kerberos authentication, with memory usage
growing as more data is transferred across the secure channel, either to the client program or between Impala nodes.
The same issue affected LDAP-secured clusters to a lesser degree, because the LDAP security only covers data
transferred back to client programs.

Bug: https://issues.apache.org/jira/browse/IMPALA-1674 IMPALA-1674

TSaslServerTransport::Factory::getTransport() leaks transport map entries

impalad daemons in clusters secured by Kerberos or LDAP could experience a slight memory leak on each
connection. The accumulation of unreleased memory could cause problems on long-running clusters.

Bug: IMPALA-1668

Issues Fixed in Impala 2.1.0

This section lists the most significant issues fixed in Impala 2.1.0.

For the full list of fixed issues in Impala 2.1.0, see this report in the Impala JIRA tracker.

Kerberos fetches 3x slower

Transferring large result sets back to the client application on Kerberos

Bug: IMPALA-1455

Compressed file needs to be hold on entirely in Memory

Queries on gzipped text files required holding the entire data file and its uncompressed representation in memory at
the same time. SELECT and COMPUTE STATS statements could fail or perform inefficiently as a result. The fix
enables streaming reads for gzipped text, so that the data is uncompressed as it is read.

Bug: IMPALA-1556

Cannot read hbase metadata with NullPointerException: null

Impala might not be able to access HBase tables, depending on the associated levels of Impala and HBase on the
system.

https://issues.apache.org/jira/browse/IMPALA-1623
https://issues.apache.org/jira/browse/IMPALA-1535
https://issues.apache.org/jira/browse/IMPALA-1120
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.1.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-1674
https://issues.apache.org/jira/browse/IMPALA-1668
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-1455
https://issues.apache.org/jira/browse/IMPALA-1556

 | Impala Release Notes | 851

Bug: IMPALA-1611

Serious errors / crashes

Improved code coverage in Impala testing uncovered a number of potentially serious errors that could occur with
specific query syntax. These errors are resolved in Impala 2.1.

Bug: IMPALA-1553, IMPALA-1528, IMPALA-1526, IMPALA-1524, IMPALA-1508, IMPALA-1493, IMPALA-1501,
IMPALA-1483

Issues Fixed in Impala 2.0.5

For the full list of fixed issues in Impala 2.0.5, see this report in the Impala JIRA tracker.

Issues Fixed in Impala 2.0.4

This section lists the most significant issues fixed in Impala 2.0.4.

For the full list of fixed issues in Impala 2.0.4, see this report in the Impala JIRA tracker.

Add compatibility flag for Hive-Parquet-Timestamps

When Hive writes TIMESTAMP values, it represents them in the local time zone of the server. Impala
expects TIMESTAMP values to always be in the UTC time zone, possibly leading to inconsistent results
depending on which component created the data files. This patch introduces a new startup flag, -
convert_legacy_hive_parquet_utc_timestamps for the impalad daemon. Specify -
convert_legacy_hive_parquet_utc_timestamps=true to make Impala recognize Parquet data files
written by Hive and automatically adjust TIMESTAMP values read from those files into the UTC time zone for
compatibility with other Impala TIMESTAMP processing. Although this setting is currently turned off by default,
consider enabling it if practical in your environment, for maximum interoperability with Hive-created Parquet files.

Bug: IMPALA-1658

IoMgr infinite loop opening/closing file when shorter than cached metadata size

If a table data file was replaced by a shorter file outside of Impala, such as with INSERT OVERWRITE in Hive
producing an empty output file, subsequent Impala queries could hang.

Bug: IMPALA-1794

Issues Fixed in Impala 2.0.3

This section lists the most significant issues fixed in Impala 2.0.3.

For the full list of fixed issues in Impala 2.0.3, see this report in the Impala JIRA tracker.

Anti join could produce incorrect results when spilling

An anti-join query (or a NOT EXISTS operation that was rewritten internally into an anti-join) could produce
incorrect results if Impala reached its memory limit, causing the query to write temporary results to disk.

Bug: IMPALA-1471

Row Count Mismatch: Partition pruning with NULL

A query against a partitioned table could return incorrect results if the WHERE clause compared the partition key to
NULL using operators such as = or !=.

Bug: IMPALA-1535

Fetch column stats in bulk using new (Hive .13) HMS APIs

The performance of the COMPUTE STATS statement and queries was improved, particularly for wide tables.

https://issues.apache.org/jira/browse/IMPALA-1611
https://issues.apache.org/jira/browse/IMPALA-1553
https://issues.apache.org/jira/browse/IMPALA-1528
https://issues.apache.org/jira/browse/IMPALA-1526
https://issues.apache.org/jira/browse/IMPALA-1524
https://issues.apache.org/jira/browse/IMPALA-1508
https://issues.apache.org/jira/browse/IMPALA-1493
https://issues.apache.org/jira/browse/IMPALA-1501
https://issues.apache.org/jira/browse/IMPALA-1483
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.0.5%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.0.4%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-1658
https://issues.apache.org/jira/browse/IMPALA-1794
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.0.3%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-1471
https://issues.apache.org/jira/browse/IMPALA-1535

 | Impala Release Notes | 852

Bug: IMPALA-1120

Issues Fixed in Impala 2.0.2

This section lists the most significant issues fixed in Impala 2.0.2.

For the full list of fixed issues in Impala 2.0.2, see this report in the Impala JIRA tracker.

GROUP BY on STRING column produces inconsistent results

Some operations in queries submitted through Hue or other HiveServer2 clients could produce inconsistent results.

Bug: IMPALA-1453

Fix leaked file descriptor and excessive file descriptor use

Impala could encounter an error from running out of file descriptors. The fix reduces the amount of time file
descriptors are kept open, and avoids leaking file descriptors when read operations encounter errors.

unix_timestamp() does not return correct time

The unix_timestamp() function could return a constant value 1 instead of a representation of the time.

Bug: IMPALA-1623

Impala should randomly select cached replica

To avoid putting too heavy a load on any one node, Impala now randomizes which scan node processes each HDFS
data block rather than choosing the first cached block replica.

Bug: IMPALA-1586

Impala does not always give short name to Llama.

In clusters secured by Kerberos or LDAP, a discrepancy in internal transmission of user names could cause a
communication error with Llama.

Bug: IMPALA-1606

accept unmangled native UDF symbols

The CREATE FUNCTION statement could report that it could not find a function entry point within the .so file for a
UDF written in C++, even if the corresponding function was present.

Bug: IMPALA-1475

Issues Fixed in Impala 2.0.1

This section lists the most significant issues fixed in Impala 2.0.1.

For the full list of fixed issues in Impala 2.0.1, see this report in the Impala JIRA tracker.

Queries fail with metastore exception after upgrade and compute stats

After running the COMPUTE STATS statement on an Impala table, subsequent queries on that table could fail with
the exception message Failed to load metadata for table: default.stats_test.

Bug: https://issues.apache.org/jira/browse/IMPALA-1416 IMPALA-1416

Workaround: Upgrading to a level of that includes the fix for HIVE-8627, prevents the problem from affecting
future COMPUTE STATS statements. On affected levels of , or for Impala tables that have become inaccessible,
the workaround is to disable the hive.metastore.try.direct.sql setting in the Hive metastore hive-
site.xml file and issue the INVALIDATE METADATA statement for the affected table. You do not need to rerun
the COMPUTE STATS statement for the table.

https://issues.apache.org/jira/browse/IMPALA-1120
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.0.2%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-1453
https://issues.apache.org/jira/browse/IMPALA-1623
https://issues.apache.org/jira/browse/IMPALA-1586
https://issues.apache.org/jira/browse/IMPALA-1606
https://issues.apache.org/jira/browse/IMPALA-1475
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.0.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-1416

 | Impala Release Notes | 853

Issues Fixed in Impala 2.0.0

This section lists the most significant issues fixed in Impala 2.0.0.

For the full list of fixed issues in Impala 2.0.0, see this report in the Impala JIRA tracker.

Join Hint is dropped when used inside a view

Hints specified within a view query did not take effect when the view was queried, leading to slow performance. As
part of this fix, Impala now supports hints embedded within comments.

Bug: IMPALA-99"5

WHERE condition ignored in simple query with RIGHT JOIN

Potential wrong results for some types of queries.

Bug: IMPALA-110"1

Query with self joined table may produce incorrect results

Potential wrong results for some types of queries.

Bug: IMPALA-110"2

Incorrect plan after reordering predicates (inner join following outer join)

Potential wrong results for some types of queries.

Bug: IMPALA-111"8

Combining fragments with compatible data partitions can lead to incorrect results due to type
incompatibilities (missing casts).

Potential wrong results for some types of queries.

Bug: IMPALA-112"3

Predicate dropped: Inline view + DISTINCT aggregate in outer query

Potential wrong results for some types of queries.

Bug: IMPALA-116"5

Reuse of a column in JOIN predicate may lead to incorrect results

Potential wrong results for some types of queries.

Bug: IMPALA-135"3

Usage of TRUNC with string timestamp reliably crashes node

Serious error for certain combinations of function calls and data types.

Bug: IMPALA-110"5

Timestamp Cast Returns invalid TIMESTAMP

Serious error for certain combinations of function calls and data types.

Bug: IMPALA-110"9

IllegalStateException upon JOIN of DECIMAL columns with different precision

DECIMAL columns with different precision could not be compared in join predicates.

Bug: IMPALA-112"1

https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+2.0%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-995
https://issues.apache.org/jira/browse/IMPALA-1101
https://issues.apache.org/jira/browse/IMPALA-1102
https://issues.apache.org/jira/browse/IMPALA-1118
https://issues.apache.org/jira/browse/IMPALA-1123
https://issues.apache.org/jira/browse/IMPALA-1165
https://issues.apache.org/jira/browse/IMPALA-1353
https://issues.apache.org/jira/browse/IMPALA-1105
https://issues.apache.org/jira/browse/IMPALA-1109
https://issues.apache.org/jira/browse/IMPALA-1121

 | Impala Release Notes | 854

Allow creating Avro tables without column definitions. Allow COMPUTE STATS to always work on
Impala-created Avro tables.

Hive-created Avro tables with columns specified by a JSON file or literal could produce errors when queried in
Impala, and could not be used with the COMPUTE STATS statement. Now you can create such tables in Impala to
avoid such errors.

Bug: IMPALA-110"4

Ensure all webserver output is escaped

The Impala debug web UI did not properly encode all output.

Bug: IMPALA-113"3

Queries with union in inline view have empty resource requests

Certain queries could run without obeying the limits imposed by resource management.

Bug: IMPALA-123"6

Impala does not employ ACLs when checking path permissions for LOAD and INSERT

Certain INSERT and LOAD DATA statements could fail unnecessarily, if the target directories in HDFS had
restrictive HDFS permissions, but those permissions were overridden by HDFS extended ACLs.

Bug: IMPALA-127"9

Impala does not map principals to lowercase, affecting Sentry authorisation

In a Kerberos environment, the principal name was not mapped to lowercase, causing issues when a user logged in
with an uppercase principal name and Sentry authorization was enabled.

Bug: IMPALA-133"4

Issues Fixed in Impala 1.4.4

Issues Fixed in Impala 1.4.3

Impala 1.4.3 includes fixes to address what is known as the POODLE vulnerability in SSLv3. SSLv3 access is
disabled in the Impala debug web UI.

Issues Fixed in Impala 1.4.2

This section lists the most significant issues fixed in Impala 1.4.2.

For the full list of fixed issues in Impala 1.4.2, see this report in the Impala JIRA tracker.

Issues Fixed in Impala 1.4.1

This section lists the most significant issues fixed in Impala 1.4.1.

For the full list of fixed issues in Impala 1.4.1, see this report in the Impala JIRA tracker.

impalad terminating with Boost exception

Occasionally, a non-trivial query run through Llama could encounter a serious error. The detailed error in the log was:

boost::exception_detail::clone_impl
 <boost::exception_detail::error_info_injector<boost::lock_error> >

Severity: High

https://issues.apache.org/jira/browse/IMPALA-1104
https://issues.apache.org/jira/browse/IMPALA-1133
https://issues.apache.org/jira/browse/IMPALA-1236
https://issues.apache.org/jira/browse/IMPALA-1279
https://issues.apache.org/jira/browse/IMPALA-1334
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.4.2%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.4.1%22+and+resolution%3D%22Fixed%22

 | Impala Release Notes | 855

Impalad uses wrong string format when writing logs

Impala log files could contain internal error messages due to a problem formatting certain strings. The messages
consisted of a Java call stack starting with:

jni-util.cc:177] java.util.MissingFormatArgumentException: Format specifier
 's'

Update HS2 client API.

A downlevel version of the HiveServer2 API could cause difficulty retrieving the precision and scale of a DECIMAL
value.

Bug: IMPALA-1107

Impalad catalog updates can fail with error: "IllegalArgumentException: fromKey out of range"

The error in the title could occur following a DDL statement. This issue was discovered during internal testing and
has not been reported in customer environments.

Bug: IMPALA-1093

"Total" time counter does not capture all the network transmit time

The time for some network operations was not counted in the report of total time for a query, making it difficult to
diagnose network-related performance issues.

Bug: IMPALA-1131

Impala will crash when reading certain Avro files containing bytes data

Certain Avro fields for byte data could cause Impala to be unable to read an Avro data file, even if the field was not
part of the Impala table definition. With this fix, Impala can now read these Avro data files, although Impala queries
cannot refer to the “bytes” fields.

Bug: IMPALA-1149

Support specifying a custom AuthorizationProvider in Impala

The --authorization_policy_provider_class option for impalad was added
back. This option specifies a custom AuthorizationProvider class rather than the default
HadoopGroupAuthorizationProvider. It had been used for internal testing, then removed in Impala 1.4.0,
but it was considered useful by some customers.

Bug: IMPALA-1142

Issues Fixed in Impala 1.4.0

This section lists the most significant issues fixed in Impala 1.4.0.

For the full list of fixed issues in Impala 1.4.0, see this report in the Impala JIRA tracker.

Failed DCHECK in disk-io-mgr-reader-context.cc:174

The serious error in the title could occur, with the supplemental message:

num_used_buffers_ < 0: #used=-1 during cancellation HDFS cached data

The issue was due to the use of HDFS caching with data files accessed by Impala. Support for HDFS caching in
Impala was introduced in Impala 1.4.0. The fix for this issue was backported to Impala 1.3.x, and is the only change
in Impala 1.3.2.

Bug: IMPALA-1019

https://issues.apache.org/jira/browse/IMPALA-1107
https://issues.apache.org/jira/browse/IMPALA-1093
https://issues.apache.org/jira/browse/IMPALA-1131
https://issues.apache.org/jira/browse/IMPALA-1149
https://issues.apache.org/jira/browse/IMPALA-1142
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.4%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-1019

 | Impala Release Notes | 856

Resolution: This issue is fixed in Impala 1.3.2. The addition of HDFS caching support in Impala 1.4 means that this
issue does not apply to any new level of Impala.

impala-shell only works with ASCII characters

The impala-shell interpreter could encounter errors processing SQL statements containing non-ASCII
characters.

Bug: IMPALA-489

The extended view definition SQL text in Views created by Impala should always have fully-
qualified table names

When a view was accessed while inside a different database, references to tables were not resolved unless the names
were fully qualified when the view was created.

Bug: IMPALA-962

Impala forgets about partitions with non-existant locations

If an ALTER TABLE specified a non-existent HDFS location for a partition, afterwards Impala would not be able to
access the partition at all.

Bug: IMPALA-741

CREATE TABLE LIKE fails if source is a view

The CREATE TABLE LIKE clause was enhanced to be able to create a table with the same column definitions as a
view. The resulting table is a text table unless the STORED AS clause is specified, because a view does not have an
associated file format to inherit.

Bug: IMPALA-834

Improve partition pruning time

Operations on tables with many partitions could be slow due to the time to evaluate which partitions were affected.
The partition pruning code was speeded up substantially.

Bug: IMPALA-887

Improve compute stats performance

The performance of the COMPUTE STATS statement was improved substantially. The efficiency of its internal
operations was improved, and some statistics are no longer gathered because they are not currently used for planning
Impala queries.

Bug: IMPALA-1003

When I run CREATE TABLE new_table LIKE avro_table, the schema does not get mapped properly
from an avro schema to a hive schema

After a CREATE TABLE LIKE statement using an Avro table as the source, the new table could have incorrect
metadata and be inaccessible, depending on how the original Avro table was created.

Bug: IMPALA-185

Race condition in IoMgr. Blocked ranges enqueued after cancel.

Impala could encounter a serious error after a query was cancelled.

Bug: IMPALA-1046

Deadlock in scan node

A deadlock condition could make all impalad daemons hang, making the cluster unresponsive for Impala queries.

Bug: IMPALA-1083

https://issues.apache.org/jira/browse/IMPALA-489
https://issues.apache.org/jira/browse/IMPALA-962
https://issues.apache.org/jira/browse/IMPALA-741
https://issues.apache.org/jira/browse/IMPALA-834
https://issues.apache.org/jira/browse/IMPALA-887
https://issues.apache.org/jira/browse/IMPALA-1003
https://issues.apache.org/jira/browse/IMPALA-185
https://issues.apache.org/jira/browse/IMPALA-1046
https://issues.apache.org/jira/browse/IMPALA-1083

 | Impala Release Notes | 857

Issues Fixed in Impala 1.3.3

Impala 1.3.3 includes fixes to address what is known as the POODLE vulnerability in SSLv3. SSLv3 access is
disabled in the Impala debug web UI.

Issues Fixed in Impala 1.3.2

This backported bug fix is the only change between Impala 1.3.1 and Impala 1.3.2.

Failed DCHECK in disk-io-mgr-reader-context.cc:174

The serious error in the title could occur, with the supplemental message:

num_used_buffers_ < 0: #used=-1 during cancellation HDFS cached data

The issue was due to the use of HDFS caching with data files accessed by Impala. Support for HDFS caching in
Impala was introduced in Impala 1.4.0. The fix for this issue was backported to Impala 1.3.x, and is the only change
in Impala 1.3.2.

Bug: IMPALA-1019

Resolution: This issue is fixed in Impala 1.3.2. The addition of HDFS caching support in Impala 1.4 means that this
issue does not apply to any new level of Impala.

Issues Fixed in Impala 1.3.1

This section lists the most significant issues fixed in Impala 1.3.1.

For the full list of fixed issues in Impala 1.3.1, see this report in the Impala JIRA tracker.

Impalad crashes when left joining inline view that has aggregate using distinct

Impala could encounter a severe error in a query combining a left outer join with an inline view containing a
COUNT(DISTINCT) operation.

Bug: IMPALA-904

Incorrect result with group by query with null value in group by data

If the result of a GROUP BY operation is NULL, the resulting row might be omitted from the result set. This issue
depends on the data values and data types in the table.

Bug: IMPALA-901

Drop Function does not clear local library cache

When a UDF is dropped through the DROP FUNCTION statement, and then the UDF is re-created with a new .so
library or JAR file, the original version of the UDF is still used when the UDF is called from queries.

Bug: IMPALA-786

Workaround: Restart the impalad daemon on all nodes.

Compute stats doesn't propagate underlying error correctly

If a COMPUTE STATS statement encountered an error, the error message is “Query aborted” with no further detail.
Common reasons why a COMPUTE STATS statement might fail include network errors causing the coordinator node
to lose contact with other impalad instances, and column names that match Impala reserved words. (Currently, if a
column name is an Impala reserved word, COMPUTE STATS always returns an error.)

Bug: IMPALA-762

https://issues.apache.org/jira/browse/IMPALA-1019
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.3.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-904
https://issues.apache.org/jira/browse/IMPALA-901
https://issues.apache.org/jira/browse/IMPALA-786
https://issues.apache.org/jira/browse/IMPALA-762

 | Impala Release Notes | 858

Inserts should respect changes in partition location

After an ALTER TABLE statement that changes the LOCATION property of a partition, a subsequent INSERT
statement would always use a path derived from the base data directory for the table.

Bug: IMPALA-624

Text data with carriage returns generates wrong results for count(*)

A COUNT(*) operation could return the wrong result for text tables using nul characters (ASCII value 0) as
delimiters.

Bug: IMPALA-13

Workaround: Impala adds support for ASCII 0 characters as delimiters through the clause FIELDS TERMINATED
BY '\0'.

IO Mgr should take instance memory limit into account when creating io buffers

Impala could allocate more memory than necessary during certain operations.

Bug: IMPALA-488

Workaround: Before issuing a COMPUTE STATS statement for a Parquet table, reduce the number of threads
used in that operation by issuing SET NUM_SCANNER_THREADS=2 in impala-shell. Then issue UNSET
NUM_SCANNER_THREADS before continuing with queries.

Impala should provide an option for new sub directories to automatically inherit the permissions of
the parent directory

When new subdirectories are created underneath a partitioned table by an INSERT statement, previously the new
subdirectories always used the default HDFS permissions for the impala user, which might not be suitable for
directories intended to be read and written by other components also.

Bug: IMPALA-827

Resolution: In Impala 1.3.1 and higher, you can specify the --insert_inherit_permissions configuration
when starting the impalad daemon.

Illegal state exception (or crash) in query with UNION in inline view

Impala could encounter a severe error in a query where the FROM list contains an inline view that includes a UNION.
The exact type of the error varies.

Bug: IMPALA-888

INSERT column reordering doesn't work with SELECT clause

The ability to specify a subset of columns in an INSERT statement, with order different than in the target table, was
not working as intended.

Bug: IMPALA-945

Issues Fixed in Impala 1.3.0

This section lists the most significant issues fixed in Impala 1.3.0, primarily issues that could cause wrong results, or
cause problems running the COMPUTE STATS statement, which is very important for performance and scalability.

For the full list of fixed issues, see this report in the Impala JIRA tracker.

Inner join after right join may produce wrong results

The automatic join reordering optimization could incorrectly reorder queries with an outer join or semi join followed
by an inner join, producing incorrect results.

Bug: IMPALA-860

https://issues.apache.org/jira/browse/IMPALA-624
https://issues.apache.org/jira/browse/IMPALA-13
https://issues.apache.org/jira/browse/IMPALA-488
https://issues.apache.org/jira/browse/IMPALA-827
https://issues.apache.org/jira/browse/IMPALA-888
https://issues.apache.org/jira/browse/IMPALA-945
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.3%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-860

 | Impala Release Notes | 859

Workaround: Including the STRAIGHT_JOIN keyword in the query prevented the issue from occurring.

Incorrect results with codegen on multi-column group by with NULLs.

A query with a GROUP BY clause referencing multiple columns could introduce incorrect NULL values in some
columns of the result set. The incorrect NULL values could appear in rows where a different GROUP BY column
actually did return NULL.

Bug: IMPALA-850

Using distinct inside aggregate function may cause incorrect result when using having clause

A query could return incorrect results if it combined an aggregate function call, a DISTINCT operator, and a
HAVING clause, without a GROUP BY clause.

Bug: IMPALA-845

Aggregation on union inside (inline) view not distributed properly.

An aggregation query or a query with ORDER BY and LIMIT could be executed on a single node in some cases,
rather than distributed across the cluster. This issue affected queries whose FROM clause referenced an inline view
containing a UNION.

Bug: IMPALA-831

Wrong expression may be used in aggregate query if there are multiple similar expressions

If a GROUP BY query referenced the same columns multiple times using different operators, result rows could
contain multiple copies of the same expression.

Bug: IMPALA-817

Incorrect results when changing the order of aggregates in the select list with codegen enabled

Referencing the same columns in both a COUNT() and a SUM() call in the same query, or some other combinations
of aggregate function calls, could incorrectly return a result of 0 from one of the aggregate functions. This issue
affected references to TINYINT and SMALLINT columns, but not INT or BIGINT columns.

Bug: IMPALA-765

Workaround: Setting the query option DISABLE_CODEGEN=TRUE prevented the incorrect results. Switching the
order of the function calls could also prevent the issue from occurring.

Union queries give Wrong result in a UNION followed by SIGSEGV in another union

A UNION query could produce a wrong result, followed by a serious error for a subsequent UNION query.

Bug: IMPALA-723

String data in MR-produced parquet files may be read incorrectly

Impala could return incorrect string results when reading uncompressed Parquet data files containing multiple row
groups. This issue only affected Parquet data files produced by MapReduce jobs.

Bug: IMPALA-729

Compute stats need to use quotes with identifiers that are Impala keywords

Using a column or table name that conflicted with Impala keywords could prevent running the COMPUTE STATS
statement for the table.

Bug: IMPALA-777

COMPUTE STATS child queries do not inherit parent query options.

The COMPUTE STATS statement did not use the setting of the MEM_LIMIT query option in impala-shell,
potentially causing problems gathering statistics for wide Parquet tables.

https://issues.apache.org/jira/browse/IMPALA-850
https://issues.apache.org/jira/browse/IMPALA-845
https://issues.apache.org/jira/browse/IMPALA-831
https://issues.apache.org/jira/browse/IMPALA-817
https://issues.apache.org/jira/browse/IMPALA-765
https://issues.apache.org/jira/browse/IMPALA-723
https://issues.apache.org/jira/browse/IMPALA-729
https://issues.apache.org/jira/browse/IMPALA-777

 | Impala Release Notes | 860

Bug: IMPALA-903

COMPUTE STATS should update partitions in batches

The COMPUTE STATS statement could be slow or encounter a timeout while analyzing a table with many partitions.

Bug: IMPALA-880

Fail early (in analysis) when COMPUTE STATS is run against Avro table with no columns

If the columns for an Avro table were all defined in the TBLPROPERTIES or SERDEPROPERTIES clauses, the
COMPUTE STATS statement would fail after completely analyzing the table, potentially causing a long delay.
Although the COMPUTE STATS statement still does not work for such tables, now the problem is detected and
reported immediately.

Bug: IMPALA-867

Workaround: Re-create the Avro table with columns defined in SQL style, using the output of SHOW CREATE
TABLE. (See the JIRA page for detailed steps.)

Issues Fixed in the 1.2.4 Release

This section lists the most significant issues fixed in Impala 1.2.4. For the full list of fixed issues, see this report in the
Impala JIRA tracker.

The Catalog Server exits with an OOM error after a certain number of CREATE statements

A large number of concurrent CREATE TABLE statements can cause the catalogd process to consume excessive
memory, and potentially be killed due to an out-of-memory condition.

Bug: IMPALA-818

Workaround: Restart the catalogd service and re-try the DDL operations that failed.

Catalog Server consumes excessive cpu cycle

A large number of tables and partitions could result in unnecessary CPU overhead during Impala idle time and
background operations.

Bug: IMPALA-821

Resolution: Catalog server processing was optimized in several ways.

Query against Avro table crashes Impala with codegen enabled

A query against a TIMESTAMP column in an Avro table could encounter a serious issue.

Bug: IMPALA-828

Workaround: Set the query option DISABLE_CODEGEN=TRUE

Statestore seems to send concurrent heartbeats to the same subscriber leading to repeated
"Subscriber 'hostname' is registering with statestore, ignoring update" messages

Impala nodes could produce repeated error messages after recovering from a communication error with the statestore
service.

Bug: IMPALA-809

Join predicate incorrectly ignored

A join query could produce wrong results if multiple equality comparisons between the same tables referred to the
same column.

Bug: IMPALA-805

https://issues.apache.org/jira/browse/IMPALA-903
https://issues.apache.org/jira/browse/IMPALA-880
https://issues.apache.org/jira/browse/IMPALA-867
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.4%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.4%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-818
https://issues.apache.org/jira/browse/IMPALA-821
https://issues.apache.org/jira/browse/IMPALA-828
https://issues.apache.org/jira/browse/IMPALA-809
https://issues.apache.org/jira/browse/IMPALA-805

 | Impala Release Notes | 861

Query result differing between Impala and Hive

Certain outer join queries could return wrong results. If one of the tables involved in the join was an inline view, some
tests from the WHERE clauses could be applied to the wrong phase of the query.

ArrayIndexOutOfBoundsException / Invalid query handle when reading large HBase cell

An HBase cell could contain a value larger than 32 KB, leading to a serious error when Impala queries that table. The
error could occur even if the applicable row is not part of the result set.

Bug: IMPALA-715

Workaround: Use smaller values in the HBase table, or exclude the column containing the large value from the
result set.

select with distinct and full outer join, impalad coredump

A query involving a DISTINCT operator combined with a FULL OUTER JOIN could encounter a serious error.

Bug: IMPALA-735

Workaround: Set the query option DISABLE_CODEGEN=TRUE

Impala cannot load tables with more than Short.MAX_VALUE number of partitions

If a table had more than 32,767 partitions, Impala would not recognize the partitions above the 32K limit and query
results could be incomplete.

Bug: IMPALA-749

Various issues with HBase row key specification

Queries against HBase tables could fail with an error if the row key was compared to a function return value rather
than a string constant. Also, queries against HBase tables could fail if the WHERE clause contained combinations of
comparisons that could not possibly match any row key.

Resolution: Queries now return appropriate results when function calls are used in the row key comparison. For
queries involving non-existent row keys, such as WHERE row_key IS NULL or where the lower bound is greater
than the upper bound, the query succeeds and returns an empty result set.

Issues Fixed in the 1.2.3 Release

This release is a fix release that supercedes Impala 1.2.2, with the same features and fixes as 1.2.2 plus one additional
fix for compatibility with Parquet files generated outside of Impala by components such as Hive, Pig, or MapReduce.

Impala cannot read Parquet files with multiple row groups

An early version of the parquet-mr library writes files that are not readable by Impala, due to the presence of
multiple row groups. Queries involving these data files might result in a crash or a failure with an error such as
“Column chunk should not contain two dictionary pages”.

This issue does not occur for Parquet files produced by Impala INSERT statements, because Impala only produces
files with a single row group.

Bug: IMPALA-720

Issues Fixed in the 1.2.2 Release

This section lists the most significant issues fixed in Impala 1.2.2. For the full list of fixed issues, see this report in the
Impala JIRA tracker.

https://issues.apache.org/jira/browse/IMPALA-715
https://issues.apache.org/jira/browse/IMPALA-735
https://issues.apache.org/jira/browse/IMPALA-749
https://issues.apache.org/jira/browse/IMPALA-720
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.2%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.2%22+and+resolution%3D%22Fixed%22

 | Impala Release Notes | 862

Order of table references in FROM clause is critical for optimal performance

Impala does not currently optimize the join order of queries; instead, it joins tables in the order in which they are
listed in the FROM clause. Queries that contain one or more large tables on the right hand side of joins (either an
explicit join expressed as a JOIN statement or a join implicit in the list of table references in the FROM clause) may
run slowly or crash Impala due to out-of-memory errors. For example:

SELECT ... FROM small_table JOIN large_table

Anticipated Resolution: Fixed in Impala 1.2.2.

Workaround: In Impala 1.2.2 and higher, use the COMPUTE STATS statement to gather statistics for each table
involved in the join query, after data is loaded. Prior to Impala 1.2.2, modify the query, if possible, to join the largest
table first. For example:

SELECT ... FROM small_table JOIN large_table

should be modified to:

SELECT ... FROM large_table JOIN small_table

Parquet in CDH4.5 writes data files that are sometimes unreadable by Impala

Some Parquet files could be generated by other components that Impala could not read.

Bug: IMPALA-694

Resolution: The underlying issue is being addressed by a fix in the Parquet libraries. Impala 1.2.2 works around the
problem and reads the existing data files.

Deadlock in statestore when unregistering a subscriber and building a topic update

The statestore service cound experience an internal error leading to a hang.

Bug: IMPALA-699

IllegalStateException when doing a union involving a group by

A UNION query where one side involved a GROUP BY operation could cause a serious error.

Bug: IMPALA-687

Impala Parquet Writer hit DCHECK in RleEncoder

A serious error could occur when doing an INSERT into a Parquet table.

Bug: IMPALA-689

Hive UDF jars cannot be loaded by the FE

If the JAR file for a Java-based Hive UDF was not in the CLASSPATH, the UDF could not be called during a query.

Bug: IMPALA-695

Issues Fixed in the 1.2.1 Release

This section lists the most significant issues fixed in Impala 1.2.1. For the full list of fixed issues, see this report in the
Impala JIRA tracker.

Scanners use too much memory when reading past scan range

While querying a table with long column values, Impala could over-allocate memory leading to an out-of-memory
error. This problem was observed most frequently with tables using uncompressed RCFile or text data files.

https://issues.apache.org/jira/browse/IMPALA-694
https://issues.apache.org/jira/browse/IMPALA-699
https://issues.apache.org/jira/browse/IMPALA-687
https://issues.apache.org/jira/browse/IMPALA-689
https://issues.apache.org/jira/browse/IMPALA-695
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.1%22+and+resolution%3D%22Fixed%22

 | Impala Release Notes | 863

Bug: IMPALA-525

Resolution: Fixed in 1.2.1

Join node consumes memory way beyond mem-limit

A join query could allocate a temporary work area that was larger than needed, leading to an out-of-memory error.
The fix makes Impala return unused memory to the system when the memory limit is reached, avoiding unnecessary
memory errors.

Bug: IMPALA-657

Resolution: Fixed in 1.2.1

Excessive memory consumption when query tables with 1k columns (Parquet file)

Impala could encounter an out-of-memory condition setting up work areas for Parquet tables with many columns. The
fix reduces the size of the allocated memory when not actually needed to hold table data.

Bug: IMPALA-652

Resolution: Fixed in 1.2.1

Issues Fixed in the 1.2.0 Beta Release

This section lists the most significant issues fixed in Impala 1.2 (beta). For the full list of fixed issues, see this report
in the Impala JIRA tracker.

Issues Fixed in the 1.1.1 Release

This section lists the most significant issues fixed in Impala 1.1.1. For the full list of fixed issues, see this report in the
Impala JIRA tracker.

Unexpected LLVM Crash When Querying Doubles on CentOS 5.x

Certain queries involving DOUBLE columns could fail with a serious error. The fix improves the generation of native
machine instructions for certain chipsets.

Bug: IMPALA-477

"block size is too big" error with Snappy-compressed RCFile containing null

Queries could fail with a “block size is too big” error, due to NULL values in RCFile tables using Snappy
compression.

Bug: IMPALA-482

Cannot query RC file for table that has more columns than the data file

Queries could fail if an Impala RCFile table was defined with more columns than in the corresponding RCFile data
files.

Bug: IMPALA-510

Views Sometimes Not Utilizing Partition Pruning

Certain combinations of clauses in a view definition for a partitioned table could result in inefficient performance and
incorrect results.

Bug: IMPALA-495

https://issues.apache.org/jira/browse/IMPALA-525
https://issues.apache.org/jira/browse/IMPALA-657
https://issues.apache.org/jira/browse/IMPALA-652
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.2%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.2%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.1.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.1.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-477
https://issues.apache.org/jira/browse/IMPALA-482
https://issues.apache.org/jira/browse/IMPALA-510
https://issues.apache.org/jira/browse/IMPALA-495

 | Impala Release Notes | 864

Update the serde name we write into the metastore for Parquet tables

The SerDes class string written into Parquet data files created by Impala was updated for compatibility with Parquet
support in Hive. See Incompatible Changes Introduced in Impala 1.1.1 on page 815 for the steps to update older
Parquet data files for Hive compatibility.

Bug: IMPALA-485

Selective queries over large tables produce unnecessary memory consumption

A query returning a small result sets from a large table could tie up memory unnecessarily for the duration of the
query.

Bug: IMPALA-534

Impala stopped to query AVRO tables

Queries against Avro tables could fail depending on whether the Avro schema URL was specified in the
TBLPROPERTIES or SERDEPROPERTIES field. The fix causes Impala to check both fields for the schema URL.

Bug: IMPALA-538

Impala continues to allocate more memory even though it has exceed its mem-limit

Queries could allocate substantially more memory than specified in the impalad -mem_limit startup option. The
fix causes more frequent checking of the limit during query execution.

Bug: IMPALA-520

Issues Fixed in the 1.1.0 Release

This section lists the most significant issues fixed in Impala 1.1. For the full list of fixed issues, see this report in the
Impala JIRA tracker.

10-20% perf regression for most queries across all table formats

This issue is due to a performance tradeoff between systems running many queries concurrently, and systems running
a single query. Systems running only a single query could experience lower performance than in early beta releases.
Systems running many queries simultaneously should experience higher performance than in the beta releases.

planner fails with "Join requires at least one equality predicate between the two tables" when
"from" table order does not match "where" join order

A query could fail if it involved 3 or more tables and the last join table was specified as a subquery.

Bug: IMPALA-85

Parquet writer uses excessive memory with partitions

INSERT statements against partitioned tables using the Parquet format could use excessive amounts of memory as
the number of partitions grew large.

Bug: IMPALA-257

Comments in impala-shell in interactive mode are not handled properly causing syntax errors or
wrong results

The impala-shell interpreter did not accept comment entered at the command line, making it problematic to copy
and paste from scripts or other code examples.

Bug: IMPALA-192

Cancelled queries sometimes aren't removed from the inflight query list

The Impala web UI would sometimes display a query as if it were still running, after the query was cancelled.

https://issues.apache.org/jira/browse/IMPALA-485
https://issues.apache.org/jira/browse/IMPALA-534
https://issues.apache.org/jira/browse/IMPALA-538
https://issues.apache.org/jira/browse/IMPALA-520
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-85
https://issues.apache.org/jira/browse/IMPALA-257
https://issues.apache.org/jira/browse/IMPALA-192

 | Impala Release Notes | 865

Bug: IMPALA-364

Impala's 1.0.1 Shell Broke Python 2.4 Compatibility (AttributeError: 'module' object has no attribute
'field_size_limit)

The impala-shell command in Impala 1.0.1 does not work with Python 2.4, which is the default on Red Hat 5.

For the impala-shell command in Impala 1.0, the -o option (pipe output to a file) does not work with Python
2.4.

Bug: IMPALA-396

Issues Fixed in the 1.0.1 Release

This section lists the most significant issues fixed in Impala 1.0.1. For the full list of fixed issues, see this report in the
Impala JIRA tracker.

Impala parquet scanner cannot read all data files generated by other frameworks

Impala might issue an erroneous error message when processing a Parquet data file produced by a non-Impala
Hadoop component.

Bug: IMPALA-333

Resolution: Fixed

Impala is unable to query RCFile tables which describe fewer columns than the file's header.

If an RCFile table definition had fewer columns than the fields actually in the data files, queries would fail.

Bug: IMPALA-293

Resolution: Fixed

Impala does not correctly substitute _HOST with hostname in --principal

The _HOST placeholder in the --principal startup option was not substituted with the correct hostname,
potentially leading to a startup error in setups using Kerberos authentication.

Bug: IMPALA-351

Resolution: Fixed

HBase query missed the last region

A query for an HBase table could omit data from the last region.

Bug: IMPALA-356

Resolution: Fixed

Hbase region changes are not handled correctly

After a region in an HBase table was split or moved, an Impala query might return incomplete or out-of-date results.

Bug: IMPALA-300

Resolution: Fixed

Query state for successful create table is EXCEPTION

After a successful CREATE TABLE statement, the corresponding query state would be incorrectly reported as
EXCEPTION.

Bug: IMPALA-349

Resolution: Fixed

https://issues.apache.org/jira/browse/IMPALA-364
https://issues.apache.org/jira/browse/IMPALA-396
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.0.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/issues/?jql=project%3Dimpala+and+fixVersion%3D%22Impala+1.0.1%22+and+resolution%3D%22Fixed%22
https://issues.apache.org/jira/browse/IMPALA-333
https://issues.apache.org/jira/browse/IMPALA-293
https://issues.apache.org/jira/browse/IMPALA-351
https://issues.apache.org/jira/browse/IMPALA-356
https://issues.apache.org/jira/browse/IMPALA-300
https://issues.apache.org/jira/browse/IMPALA-349

 | Impala Release Notes | 866

Double check release of JNI-allocated byte-strings

Operations involving calls to the Java JNI subsystem (for example, queries on HBase tables) could allocate memory
but not release it.

Bug: IMPALA-358

Resolution: Fixed

Impala returns 0 for bad time values in UNIX_TIMESTAMP, Hive returns NULL

Impala returns 0 for bad time values in UNIX_TIMESTAMP, Hive returns NULL.

Impala:

impala> select UNIX_TIMESTAMP('10:02:01') ;
impala> 0

Hive:

hive> select UNIX_TIMESTAMP('10:02:01') FROM tmp;
hive> NULL

Bug: IMPALA-16

Anticipated Resolution: Fixed

INSERT INTO TABLE SELECT <constant> does not work.

Insert INTO TABLE SELECT <constant> will not insert any data and may return an error.

Anticipated Resolution: Fixed

Issues Fixed in the 1.0 GA Release

Here are the major user-visible issues fixed in Impala 1.0. For a full list of fixed issues, see this report in the Impala
JIRA tracker.

Undeterministically receive "ERROR: unknown row bach destination..." and "ERROR: Invalid query
handle" from impala shell when running union query

A query containing both UNION and LIMIT clauses could intermittently cause the impalad process to halt with a
segmentation fault.

Bug: IMPALA-183

Resolution: Fixed

Insert with NULL partition keys results in SIGSEGV.

An INSERT statement specifying a NULL value for one of the partitioning columns could cause the impalad
process to halt with a segmentation fault.

Bug: IMPALA-190

Resolution: Fixed

INSERT queries don't show completed profiles on the debug webpage

In the Impala web user interface, the profile page for an INSERT statement showed obsolete information for the
statement once it was complete.

Bug: IMPALA-217

Resolution: Fixed

https://issues.apache.org/jira/browse/IMPALA-358
https://issues.apache.org/jira/browse/IMPALA-16
https://issues.apache.org/jira/issues/?jql=project+%3D+impala+AND+resolution+%3D+Fixed+AND+fixVersion+%3D+%22Impala+1.0%22+ORDER+BY+key+ASC%2C+assignee+ASC%2C+priority+DESC
https://issues.apache.org/jira/issues/?jql=project+%3D+impala+AND+resolution+%3D+Fixed+AND+fixVersion+%3D+%22Impala+1.0%22+ORDER+BY+key+ASC%2C+assignee+ASC%2C+priority+DESC
https://issues.apache.org/jira/browse/IMPALA-183
https://issues.apache.org/jira/browse/IMPALA-190
https://issues.apache.org/jira/browse/IMPALA-217

 | Impala Release Notes | 867

Impala HBase scan is very slow

Queries involving an HBase table could be slower than expected, due to excessive memory usage on the Impala
nodes.

Bug: IMPALA-231

Resolution: Fixed

Add some library version validation logic to impalad when loading impala-lzo shared library

No validation was done to check that the impala-lzo shared library was compatible with the version of Impala,
possibly leading to a crash when using LZO-compressed text files.

Bug: IMPALA-234

Resolution: Fixed

Workaround: Always upgrade the impala-lzo library at the same time as you upgrade Impala itself.

Problems inserting into tables with TIMESTAMP partition columns leading table metadata loading
failures and failed dchecks

INSERT statements for tables partitioned on columns involving datetime types could appear to succeed, but cause
errors for subsequent queries on those tables. The problem was especially serious if an improperly formatted
timestamp value was specified for the partition key.

Bug: IMPALA-238

Resolution: Fixed

Ctrl-C sometimes interrupts shell in system call, rather than cancelling query

Pressing Ctrl-C in the impala-shell interpreter could sometimes display an error and return control to the shell,
making it impossible to cancel the query.

Bug: IMPALA-243

Resolution: Fixed

Empty string partition value causes metastore update failure

Specifying an empty string or NULL for a partition key in an INSERT statement would fail.

Bug: IMPALA-252

Resolution: Fixed. The behavior for empty partition keys was made more compatible with the corresponding Hive
behavior.

Round() does not output the right precision

The round() function did not always return the correct number of significant digits.

Bug: IMPALA-266

Resolution: Fixed

Cannot cast string literal to string

Casting from a string literal back to the same type would cause an “invalid type cast” error rather than leaving the
original value unchanged.

Bug: IMPALA-267

Resolution: Fixed

Excessive mem usage for certain queries which are very selective

Some queries that returned very few rows experienced unnecessary memory usage.

https://issues.apache.org/jira/browse/IMPALA-231
https://issues.apache.org/jira/browse/IMPALA-234
https://issues.apache.org/jira/browse/IMPALA-238
https://issues.apache.org/jira/browse/IMPALA-243
https://issues.apache.org/jira/browse/IMPALA-252
https://issues.apache.org/jira/browse/IMPALA-266
https://issues.apache.org/jira/browse/IMPALA-267

 | Impala Release Notes | 868

Bug: IMPALA-288

Resolution: Fixed

HdfsScanNode crashes in UpdateCounters

A serious error could occur for relatively small and inexpensive queries.

Bug: IMPALA-289

Resolution: Fixed

Parquet performance issues on large dataset

Certain aggregation queries against Parquet tables were inefficient due to lower than required thread utilization.

Bug: IMPALA-292

Resolution: Fixed

impala not populating hive metadata correctly for create table

The Impala CREATE TABLE command did not fill in the owner and tbl_type columns in the Hive metastore
database.

Bug: IMPALA-295

Resolution: Fixed. The metadata was made more Hive-compatible.

impala daemons die if statestore goes down

The impalad instances in a cluster could halt when the statestored process became unavailable.

Bug: IMPALA-312

Resolution: Fixed

Constant SELECT clauses do not work in subqueries

A subquery would fail if the SELECT statement inside it returned a constant value rather than querying a table.

Bug: IMPALA-67

Resolution: Fixed

Right outer Join includes NULLs as well and hence wrong result count

The result set from a right outer join query could include erroneous rows containing NULL values.

Bug: IMPALA-90

Resolution: Fixed

Parquet scanner hangs for some queries

The Parquet scanner non-deterministically hangs when executing some queries.

Bug: IMPALA-204

Resolution: Fixed

Issues Fixed in Version 0.7 of the Beta Release

Impala does not gracefully handle unsupported Hive table types (INDEX and VIEW tables)

When attempting to load metadata from an unsupported Hive table type (INDEX and VIEW tables), Impala fails with
an unclear error message.

Bug: IMPALA-167

https://issues.apache.org/jira/browse/IMPALA-288
https://issues.apache.org/jira/browse/IMPALA-289
https://issues.apache.org/jira/browse/IMPALA-292
https://issues.apache.org/jira/browse/IMPALA-295
https://issues.apache.org/jira/browse/IMPALA-312
https://issues.apache.org/jira/browse/IMPALA-67
https://issues.apache.org/jira/browse/IMPALA-90
https://issues.apache.org/jira/browse/IMPALA-204
https://issues.apache.org/jira/browse/IMPALA-167

 | Impala Release Notes | 869

Resolution: Fixed in 0.7

DDL statements (CREATE/ALTER/DROP TABLE) are not supported in the Impala Beta Release

Resolution: Fixed in 0.7

Avro is not supported in the Impala Beta Release

Resolution: Fixed in 0.7

Workaround: None

Impala does not currently allow limiting the memory consumption of a single query

It is currently not possible to limit the memory consumption of a single query. All tables on the right hand side of
JOIN statements need to be able to fit in memory. If they do not, Impala may crash due to out of memory errors.

Resolution: Fixed in 0.7

Aggregate of a subquery result set returns wrong results if the subquery contains a 'limit' and data
is distributed across multiple nodes

Aggregate of a subquery result set returns wrong results if the subquery contains a 'limit' clause and data is distributed
across multiple nodes. From the query plan, it looks like we are just summing the results from each worker node.

Bug: IMPALA-20

Resolution: Fixed in 0.7

Partition pruning for arbitrary predicates that are fully bound by a particular partition column

We currently cannot utilize a predicate like "country_code in ('DE', 'FR', 'US')" to do partitioning pruning, because
that requires an equality predicate or a binary comparison.

We should create a superclass of planner.ValueRange, ValueSet, that can be constructed with an arbitrary predicate,
and whose isInRange(analyzer, valueExpr) constructs a literal predicate by substitution of the valueExpr into the
predicate.

Bug: IMPALA-144

Resolution: Fixed in 0.7

Issues Fixed in Version 0.6 of the Beta Release

Impala reads the NameNode address and port as command line parameters

Impala reads the NameNode address and port as command line parameters rather than reading them from core-
site.xml. Updating the NameNode address in the core-site.xml file does not propagate to Impala.

Severity: Low

Resolution: Fixed in 0.6 - Impala reads the namenode location and port from the Hadoop configuration files, though
setting -nn and -nn_port overrides this. Users are advised not to set -nn or -nn_port.

Queries may fail on secure environment due to impalad Kerberos ticket expiration

Queries may fail on secure environment due to impalad Kerberos tickets expiring. This can happen if the Impala
-kerberos_reinit_interval flag is set to a value ten minutes or less. This may lead to an impalad
requesting a ticket with a lifetime that is less than the time to the next ticket renewal.

Bug: IMPALA-64

Resolution: Fixed in 0.6

https://issues.apache.org/jira/browse/IMPALA-20
https://issues.apache.org/jira/browse/IMPALA-144
https://issues.apache.org/jira/browse/IMPALA-64

 | Impala Release Notes | 870

Concurrent queries may fail when Impala uses Thrift to communicate with the Hive Metastore

Concurrent queries may fail when Impala is using Thrift to communicate with part of the Hive Metastore such as the
Hive Metastore Service. In such a case, the error get_fields failed: out of sequence response"
may occur because Impala shared a single Hive Metastore Client connection across threads. With Impala 0.6, a
separate connection is used for each metadata request.

Bug: IMPALA-48

Resolution: Fixed in 0.6

impalad fails to start if unable to connect to the Hive Metastore

Impala fails to start if it is unable to establish a connection with the Hive Metastore. This behavior was fixed,
allowing Impala to start, even when no Metastore is available.

Bug: IMPALA-58

Resolution: Fixed in 0.6

Impala treats database names as case-sensitive in some contexts

In some queries (including "USE database" statements), database names are treated as case-sensitive. This may lead
queries to fail with an IllegalStateException.

Bug: IMPALA-44

Resolution: Fixed in 0.6

Impala does not ignore hidden HDFS files

Impala does not ignore hidden HDFS files, meaning those files prefixed with a period '.' or underscore '_'. This
diverges from Hive/MapReduce, which skips these files.

Bug: IMPALA-18

Resolution: Fixed in 0.6

Issues Fixed in Version 0.5 of the Beta Release

Impala may have reduced performance on tables that contain a large number of partitions

Impala may have reduced performance on tables that contain a large number of partitions. This is due to extra
overhead reading/parsing the partition metadata.

Resolution: Fixed in 0.5

Backend client connections not getting cached causes an observable latency in secure clusters

Backend impalads do not cache connections to the coordinator. On a secure cluster, this introduces a latency
proportional to the number of backend clients involved in query execution, as the cost of establishing a secure
connection is much higher than in the non-secure case.

Bug: IMPALA-38

Resolution: Fixed in 0.5

Concurrent queries may fail with error: "Table object has not been been initialised : `PARTITIONS`"

Concurrent queries may fail with error: "Table object has not been been initialised :
`PARTITIONS`". This was due to a lack of locking in the Impala table/database metadata cache.

Bug: IMPALA-30

Resolution: Fixed in 0.5

https://issues.apache.org/jira/browse/IMPALA-48
https://issues.apache.org/jira/browse/IMPALA-58
https://issues.apache.org/jira/browse/IMPALA-44
https://issues.apache.org/jira/browse/IMPALA-18
https://issues.apache.org/jira/browse/IMPALA-38
https://issues.apache.org/jira/browse/IMPALA-30

 | Impala Release Notes | 871

UNIX_TIMESTAMP format behaviour deviates from Hive when format matches a prefix of the time
value

The Impala UNIX_TIMESTAMP(val, format) operation compares the length of format and val and returns NULL if
they do not match. Hive instead effectively truncates val to the length of the format parameter.

Bug: IMPALA-15

Resolution: Fixed in 0.5

Issues Fixed in Version 0.4 of the Beta Release

Impala fails to refresh the Hive metastore if a Hive temporary configuration file is removed

Impala is impacted by Hive bug HIVE-3596 which may cause metastore refreshes to fail if a Hive temporary
configuration file is deleted (normally located at /tmp/hive-<user>-<tmp_number>.xml). Additionally, the
impala-shell will incorrectly report that the failed metadata refresh completed successfully.

Anticipated Resolution: To be fixed in a future release

Workaround: Restart the impalad service. Use the impalad log to check for metadata refresh errors.

lpad/rpad builtin functions is not correct.

The lpad/rpad builtin functions generate the wrong results.

Resolution: Fixed in 0.4

Files with .gz extension reported as 'not supported'

Compressed files with extensions incorrectly generate an exception.

Bug: IMPALA-14

Resolution: Fixed in 0.4

Queries with large limits would hang.

Some queries with large limits were hanging.

Resolution: Fixed in 0.4

Order by on a string column produces incorrect results if there are empty strings

Resolution: Fixed in 0.4

Issues Fixed in Version 0.3 of the Beta Release

All table loading errors show as unknown table

If Impala is unable to load the metadata for a table for any reason, a subsequent query referring to that table will
return an unknown table error message, even if the table is known.

Resolution: Fixed in 0.3

A table that cannot be loaded will disappear from SHOW TABLES

After failing to load metadata for a table, Impala removes that table from the list of known tables returned in SHOW
TABLES. Subsequent attempts to query the table returns 'unknown table', even if the metadata for that table is fixed.

Resolution: Fixed in 0.3

Impala cannot read from HBase tables that are not created as external tables in the hive metastore.

Attempting to select from these tables fails.

Resolution: Fixed in 0.3

https://issues.apache.org/jira/browse/IMPALA-15
https://issues.apache.org/jira/browse/HIVE-3596
https://issues.apache.org/jira/browse/IMPALA-14

 | Impala Release Notes | 872

Certain queries that contain OUTER JOINs may return incorrect results

Queries that contain OUTER JOINs may not return the correct results if there are predicates referencing any of the
joined tables in the WHERE clause.

Resolution: Fixed in 0.3.

Issues Fixed in Version 0.2 of the Beta Release

Subqueries which contain aggregates cannot be joined with other tables or Impala may crash

Subqueries that contain an aggregate cannot be joined with another table or Impala may crash. For example:

SELECT * FROM (SELECT sum(col1) FROM some_table GROUP BY col1) t1 JOIN
 other_table ON (...);

Resolution: Fixed in 0.2

An insert with a limit that runs as more than one query fragment inserts more rows than the limit.

For example:

INSERT OVERWRITE TABLE test SELECT * FROM test2 LIMIT 1;

Resolution: Fixed in 0.2

Query with limit clause might fail.

For example:

SELECT * FROM test2 LIMIT 1;

Resolution: Fixed in 0.2

Files in unsupported compression formats are read as plain text.

Attempting to read such files does not generate a diagnostic.

Resolution: Fixed in 0.2

Impala server raises a null pointer exception when running an HBase query.

When querying an HBase table whose row-key is string type, the Impala server may raise a null pointer exception.

Resolution: Fixed in 0.2

	Contents
	Introducing Apache Impala
	Impala Benefits
	How Impala Works with Apache Hadoop
	Primary Impala Features

	Impala Concepts and Architecture
	Components of the Impala Server
	The Impala Daemon
	The Impala Statestore
	The Impala Catalog Service

	Developing Impala Applications
	Overview of the Impala SQL Dialect
	Overview of Impala Programming Interfaces

	How Impala Fits Into the Hadoop Ecosystem
	How Impala Works with Hive
	Overview of Impala Metadata and the Metastore
	How Impala Uses HDFS
	How Impala Uses HBase

	Planning for Impala Deployment
	Impala Requirements
	Supported Operating Systems
	Hive Metastore and Related Configuration
	Java Dependencies
	Networking Configuration Requirements
	Hardware Requirements
	User Account Requirements

	Cluster Sizing Guidelines for Impala
	Guidelines for Designing Impala Schemas

	Installing Impala
	What is Included in an Impala Installation

	Managing Impala
	Post-Installation Configuration for Impala
	Configuring Impala to Work with ODBC
	Configuring Impala to Work with JDBC
	Configuring the JDBC Port
	Choosing the JDBC Driver
	Enabling Impala JDBC Support on Client Systems
	Establishing JDBC Connections
	Notes about JDBC and ODBC Interaction with Impala SQL Features
	Kudu Considerations for DML Statements

	Upgrading Impala
	Upgrading Impala

	Starting Impala
	Starting Impala from the Command Line
	Modifying Impala Startup Options
	Configuring Impala Startup Options through the Command Line
	Checking the Values of Impala Configuration Options
	Startup Options for impalad Daemon
	Startup Options for statestored Daemon
	Startup Options for catalogd Daemon

	Impala Tutorials
	Tutorials for Getting Started
	Explore a New Impala Instance
	Load CSV Data from Local Files
	Point an Impala Table at Existing Data Files
	Describe the Impala Table
	Query the Impala Table
	Data Loading and Querying Examples
	Loading Data
	Sample Queries

	Advanced Tutorials
	Attaching an External Partitioned Table to an HDFS Directory Structure
	Switching Back and Forth Between Impala and Hive
	Cross Joins and Cartesian Products with the CROSS JOIN Operator

	Dealing with Parquet Files with Unknown Schema

	Impala Administration
	Admission Control and Query Queuing
	Overview of Impala Admission Control
	Concurrent Queries and Admission Control
	Memory Limits and Admission Control
	How Impala Admission Control Relates to Other Resource Management Tools
	How Impala Schedules and Enforces Limits on Concurrent Queries
	How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)
	SQL and Schema Considerations for Admission Control
	Configuring Admission Control
	Configuring Admission Control Using the Command Line
	Example of Admission Control Configuration
	Guidelines for Using Admission Control

	Resource Management for Impala
	How Resource Limits Are Enforced
	impala-shell Query Options for Resource Management
	Limitations of Resource Management for Impala

	Setting Timeout Periods for Daemons, Queries, and Sessions
	Increasing the Statestore Timeout
	Setting the Idle Query and Idle Session Timeouts for impalad
	Setting Timeout and Retries for Thrift Connections to the Backend Client
	Cancelling a Query

	Using Impala through a Proxy for High Availability
	Overview of Proxy Usage and Load Balancing for Impala
	Special Proxy Considerations for Clusters Using Kerberos
	Example of Configuring HAProxy Load Balancer for Impala

	Managing Disk Space for Impala Data

	Impala Security
	Security Guidelines for Impala
	Securing Impala Data and Log Files
	Installation Considerations for Impala Security
	Securing the Hive Metastore Database
	Securing the Impala Web User Interface
	Configuring TLS/SSL for Impala
	Using the Command Line
	Using TLS/SSL with Business Intelligence Tools
	Specifying TLS/SSL Minimum Allowed Version and Ciphers

	Enabling Sentry Authorization for Impala
	The Sentry Privilege Model
	Starting the impalad Daemon with Sentry Authorization Enabled
	Using Impala with the Sentry Service (Impala 1.4 or higher only)
	Using Impala with the Sentry Policy File
	Policy File Location and Format
	Examples of Policy File Rules for Security Scenarios
	Using Multiple Policy Files for Different Databases

	Setting Up Schema Objects for a Secure Impala Deployment
	Privilege Model and Object Hierarchy
	Debugging Failed Sentry Authorization Requests
	The DEFAULT Database in a Secure Deployment

	Impala Authentication
	Enabling Kerberos Authentication for Impala
	Requirements for Using Impala with Kerberos
	Configuring Impala to Support Kerberos Security
	Enabling Kerberos for Impala

	Enabling Kerberos for Impala with a Proxy Server
	Using a Web Browser to Access a URL Protected by Kerberos HTTP SPNEGO
	Enabling Impala Delegation for Kerberos Users
	Using TLS/SSL with Business Intelligence Tools
	Enabling Access to Internal Impala APIs for Kerberos Users
	Mapping Kerberos Principals to Short Names for Impala
	Kerberos-Related Memory Overhead for Large Clusters

	Enabling LDAP Authentication for Impala
	Requirements for Using Impala with LDAP
	Client-Server Considerations for LDAP
	Server-Side LDAP Setup
	Support for Custom Bind Strings
	Secure LDAP Connections
	LDAP Authentication for impala-shell Interpreter
	Enabling LDAP for Impala in Hue
	Enabling Impala Delegation for LDAP Users
	LDAP Restrictions for Impala

	Using Multiple Authentication Methods with Impala
	Configuring Impala Delegation for Hue and BI Tools

	Auditing Impala Operations
	Durability and Performance Considerations for Impala Auditing
	Format of the Audit Log Files
	Which Operations Are Audited

	Viewing Lineage Information for Impala Data

	Impala SQL Language Reference
	Comments
	Data Types
	ARRAY Complex Type (Impala 2.3 or higher only)
	BIGINT Data Type
	BOOLEAN Data Type
	CHAR Data Type (Impala 2.0 or higher only)
	DECIMAL Data Type (Impala 1.4 or higher only)
	DOUBLE Data Type
	FLOAT Data Type
	INT Data Type
	MAP Complex Type (Impala 2.3 or higher only)
	REAL Data Type
	SMALLINT Data Type
	STRING Data Type
	STRUCT Complex Type (Impala 2.3 or higher only)
	TIMESTAMP Data Type
	TINYINT Data Type
	VARCHAR Data Type (Impala 2.0 or higher only)
	Complex Types (Impala 2.3 or higher only)
	Benefits of Impala Complex Types
	Overview of Impala Complex Types
	Design Considerations for Complex Types
	How Complex Types Differ from Traditional Data Warehouse Schemas
	Physical Storage for Complex Types
	File Format Support for Impala Complex Types
	Choosing Between Complex Types and Normalized Tables
	Differences Between Impala and Hive Complex Types
	Limitations and Restrictions for Complex Types

	Using Complex Types from SQL
	Complex Type Syntax for DDL Statements
	SQL Statements that Support Complex Types
	DDL Statements and Complex Types
	Queries and Complex Types

	Pseudocolumns for ARRAY and MAP Types
	ITEM and POS Pseudocolumns
	KEY and VALUE Pseudocolumns

	Loading Data Containing Complex Types
	Using Complex Types as Nested Types
	Accessing Complex Type Data in Flattened Form Using Views

	Tutorials and Examples for Complex Types
	Sample Schema and Data for Experimenting with Impala Complex Types
	Constructing Parquet Files with Complex Columns Using Hive
	Flattening Normalized Tables into a Single Table with Complex Types
	Interchanging Complex Type Tables and Data Files with Hive and Other Components

	Literals
	Numeric Literals
	String Literals
	Boolean Literals
	Timestamp Literals
	NULL

	SQL Operators
	Arithmetic Operators
	BETWEEN Operator
	Comparison Operators
	EXISTS Operator
	ILIKE Operator
	IN Operator
	IREGEXP Operator
	IS DISTINCT FROM Operator
	IS NULL Operator
	IS TRUE Operator
	LIKE Operator
	Logical Operators
	REGEXP Operator
	RLIKE Operator

	Impala Schema Objects and Object Names
	Overview of Impala Aliases
	Overview of Impala Databases
	Overview of Impala Functions
	Overview of Impala Identifiers
	Overview of Impala Tables
	Internal Tables
	External Tables
	File Formats
	Kudu Tables

	Overview of Impala Views

	Impala SQL Statements
	DDL Statements
	DML Statements
	ALTER TABLE Statement
	ALTER VIEW Statement
	COMPUTE STATS Statement
	CREATE DATABASE Statement
	CREATE FUNCTION Statement
	CREATE ROLE Statement (Impala 2.0 or higher only)
	CREATE TABLE Statement
	CREATE VIEW Statement
	DELETE Statement (Impala 2.8 or higher only)
	DESCRIBE Statement
	DROP DATABASE Statement
	DROP FUNCTION Statement
	DROP ROLE Statement (Impala 2.0 or higher only)
	DROP STATS Statement
	DROP TABLE Statement
	DROP VIEW Statement
	EXPLAIN Statement
	GRANT Statement (Impala 2.0 or higher only)
	INSERT Statement
	VALUES Clause

	INVALIDATE METADATA Statement
	LOAD DATA Statement
	REFRESH Statement
	REVOKE Statement (Impala 2.0 or higher only)
	SELECT Statement
	Joins in Impala SELECT Statements
	ORDER BY Clause
	GROUP BY Clause
	HAVING Clause
	LIMIT Clause
	OFFSET Clause
	UNION Clause
	Subqueries in Impala SELECT Statements
	TABLESAMPLE Clause
	WITH Clause
	DISTINCT Operator
	Query Hints in Impala SELECT Statements

	SET Statement
	Query Options for the SET Statement
	ABORT_ON_DEFAULT_LIMIT_EXCEEDED Query Option
	ABORT_ON_ERROR Query Option
	ALLOW_UNSUPPORTED_FORMATS Query Option
	APPX_COUNT_DISTINCT Query Option (Impala 2.0 or higher only)
	BATCH_SIZE Query Option
	BUFFER_POOL_LIMIT Query Option
	COMPRESSION_CODEC Query Option (Impala 2.0 or higher only)
	DEBUG_ACTION Query Option
	DECIMAL_V2 Query Option
	DEFAULT_JOIN_DISTRIBUTION_MODE Query Option
	DEFAULT_ORDER_BY_LIMIT Query Option
	DEFAULT_SPILLABLE_BUFFER_SIZE Query Option
	DISABLE_CODEGEN Query Option
	DISABLE_ROW_RUNTIME_FILTERING Query Option (Impala 2.5 or higher only)
	DISABLE_STREAMING_PREAGGREGATIONS Query Option (Impala 2.5 or higher only)
	DISABLE_UNSAFE_SPILLS Query Option (Impala 2.0 or higher only)
	EXEC_SINGLE_NODE_ROWS_THRESHOLD Query Option (Impala 2.1 or higher only)
	EXPLAIN_LEVEL Query Option
	HBASE_CACHE_BLOCKS Query Option
	HBASE_CACHING Query Option
	LIVE_PROGRESS Query Option (Impala 2.3 or higher only)
	LIVE_SUMMARY Query Option (Impala 2.3 or higher only)
	MAX_ERRORS Query Option
	MAX_IO_BUFFERS Query Option
	MAX_ROW_SIZE Query Option
	MAX_NUM_RUNTIME_FILTERS Query Option (Impala 2.5 or higher only)
	MAX_SCAN_RANGE_LENGTH Query Option
	MEM_LIMIT Query Option
	MIN_SPILLABLE_BUFFER_SIZE Query Option
	MT_DOP Query Option
	NUM_NODES Query Option
	NUM_SCANNER_THREADS Query Option
	OPTIMIZE_PARTITION_KEY_SCANS Query Option (Impala 2.5 or higher only)
	PARQUET_COMPRESSION_CODEC Query Option
	PARQUET_ANNOTATE_STRINGS_UTF8 Query Option (Impala 2.6 or higher only)
	PARQUET_FALLBACK_SCHEMA_RESOLUTION Query Option (Impala 2.6 or higher only)
	PARQUET_FILE_SIZE Query Option
	PREFETCH_MODE Query Option (Impala 2.6 or higher only)
	QUERY_TIMEOUT_S Query Option (Impala 2.0 or higher only)
	REQUEST_POOL Query Option
	REPLICA_PREFERENCE Query Option (Impala 2.7 or higher only)
	RESERVATION_REQUEST_TIMEOUT Query Option
	RUNTIME_BLOOM_FILTER_SIZE Query Option (Impala 2.5 or higher only)
	RUNTIME_FILTER_MAX_SIZE Query Option (Impala 2.6 or higher only)
	RUNTIME_FILTER_MIN_SIZE Query Option (Impala 2.6 or higher only)
	RUNTIME_FILTER_MODE Query Option (Impala 2.5 or higher only)
	RUNTIME_FILTER_WAIT_TIME_MS Query Option (Impala 2.5 or higher only)
	S3_SKIP_INSERT_STAGING Query Option (Impala 2.6 or higher only)
	SCAN_NODE_CODEGEN_THRESHOLD Query Option (Impala 2.5 or higher only)
	SCHEDULE_RANDOM_REPLICA Query Option (Impala 2.5 or higher only)
	SCRATCH_LIMIT Query Option
	SUPPORT_START_OVER Query Option
	SYNC_DDL Query Option
	V_CPU_CORES Query Option

	SHOW Statement
	SHOW FILES Statement
	SHOW ROLES Statement
	SHOW CURRENT ROLE
	SHOW ROLE GRANT Statement
	SHOW GRANT ROLE Statement
	SHOW DATABASES
	SHOW TABLES Statement
	SHOW CREATE TABLE Statement
	SHOW TABLE STATS Statement
	SHOW COLUMN STATS Statement
	SHOW PARTITIONS Statement
	SHOW FUNCTIONS Statement

	TRUNCATE TABLE Statement (Impala 2.3 or higher only)
	UPDATE Statement (Impala 2.8 or higher only)
	UPSERT Statement (Impala 2.8 or higher only)
	USE Statement

	Impala Built-In Functions
	Impala Mathematical Functions
	Impala Bit Functions
	Impala Type Conversion Functions
	Impala Date and Time Functions
	Impala Conditional Functions
	Impala String Functions
	Impala Miscellaneous Functions
	Impala Aggregate Functions
	APPX_MEDIAN Function
	AVG Function
	COUNT Function
	GROUP_CONCAT Function
	MAX Function
	MIN Function
	NDV Function
	STDDEV, STDDEV_SAMP, STDDEV_POP Functions
	SUM Function
	VARIANCE, VARIANCE_SAMP, VARIANCE_POP, VAR_SAMP, VAR_POP Functions

	Impala Analytic Functions
	OVER Clause
	Window Clause
	AVG Function - Analytic Context
	COUNT Function - Analytic Context
	CUME_DIST Function (Impala 2.3 or higher only)
	DENSE_RANK Function
	FIRST_VALUE Function
	LAG Function
	LAST_VALUE Function
	LEAD Function
	MAX Function - Analytic Context
	MIN Function - Analytic Context
	NTILE Function (Impala 2.3 or higher only)
	PERCENT_RANK Function (Impala 2.3 or higher only)
	RANK Function
	ROW_NUMBER Function
	SUM Function - Analytic Context

	Impala User-Defined Functions (UDFs)
	UDF Concepts
	UDFs and UDAFs
	Native Impala UDFs
	Using Hive UDFs with Impala

	Runtime Environment for UDFs
	Installing the UDF Development Package
	Writing User-Defined Functions (UDFs)
	Getting Started with UDF Coding
	Data Types for Function Arguments and Return Values
	Variable-Length Argument Lists
	Handling NULL Values
	Memory Allocation for UDFs
	Thread-Safe Work Area for UDFs
	Error Handling for UDFs

	Writing User-Defined Aggregate Functions (UDAFs)
	The Underlying Functions for a UDA
	Intermediate Results for UDAs

	Building and Deploying UDFs
	Performance Considerations for UDFs
	Examples of Creating and Using UDFs
	Security Considerations for User-Defined Functions
	Limitations and Restrictions for Impala UDFs

	SQL Differences Between Impala and Hive
	HiveQL Features not Available in Impala
	Semantic Differences Between Impala and HiveQL Features

	Porting SQL from Other Database Systems to Impala
	Porting DDL and DML Statements
	Porting Data Types from Other Database Systems
	SQL Statements to Remove or Adapt
	SQL Constructs to Doublecheck
	Next Porting Steps after Verifying Syntax and Semantics

	Using the Impala Shell (impala-shell Command)
	impala-shell Configuration Options
	Summary of impala-shell Configuration Options
	impala-shell Configuration File

	Connecting to impalad through impala-shell
	Running Commands and SQL Statements in impala-shell
	Rerunning impala-shell Commands

	impala-shell Command Reference

	Tuning Impala for Performance
	Impala Performance Guidelines and Best Practices
	Performance Considerations for Join Queries
	How Joins Are Processed when Statistics Are Unavailable
	Overriding Join Reordering with STRAIGHT_JOIN
	Examples of Join Order Optimization

	Table and Column Statistics
	Overview of Table Statistics
	Overview of Column Statistics
	How Table and Column Statistics Work for Partitioned Tables
	Overview of Incremental Statistics
	Generating Table and Column Statistics (COMPUTE STATS Statement)
	Detecting Missing Statistics
	Keeping Statistics Up to Date
	Setting the NUMROWS Value Manually through ALTER TABLE
	Setting Column Stats Manually through ALTER TABLE
	Examples of Using Table and Column Statistics with Impala

	Benchmarking Impala Queries
	Controlling Impala Resource Usage
	Runtime Filtering for Impala Queries (Impala 2.5 or higher only)
	Background Information for Runtime Filtering
	Runtime Filtering Internals
	File Format Considerations for Runtime Filtering
	Wait Intervals for Runtime Filters
	Query Options for Runtime Filtering
	Runtime Filtering and Query Plans
	Examples of Queries that Benefit from Runtime Filtering
	Tuning and Troubleshooting Queries that Use Runtime Filtering
	Limitations and Restrictions for Runtime Filtering

	Using HDFS Caching with Impala (Impala 2.1 or higher only)
	Overview of HDFS Caching for Impala
	Setting Up HDFS Caching for Impala
	Enabling HDFS Caching for Impala Tables and Partitions
	Loading and Removing Data with HDFS Caching Enabled
	Administration for HDFS Caching with Impala
	Performance Considerations for HDFS Caching with Impala

	Testing Impala Performance
	Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles
	Using the EXPLAIN Plan for Performance Tuning
	Using the SUMMARY Report for Performance Tuning
	Using the Query Profile for Performance Tuning

	Detecting and Correcting HDFS Block Skew Conditions

	Scalability Considerations for Impala
	Impact of Many Tables or Partitions on Impala Catalog Performance and Memory Usage
	Scalability Considerations for the Impala Statestore
	Controlling which Hosts are Coordinators and Executors
	Effect of Buffer Pool on Memory Usage (Impala 2.10 and higher)
	SQL Operations that Spill to Disk
	Limits on Query Size and Complexity
	Scalability Considerations for Impala I/O
	Scalability Considerations for Table Layout
	Kerberos-Related Network Overhead for Large Clusters
	Kerberos-Related Memory Overhead for Large Clusters
	Avoiding CPU Hotspots for HDFS Cached Data
	Scalability Considerations for NameNode Traffic with File Handle Caching

	Partitioning for Impala Tables
	When to Use Partitioned Tables
	SQL Statements for Partitioned Tables
	Static and Dynamic Partitioning Clauses
	Refreshing a Single Partition
	Permissions for Partition Subdirectories
	Partition Pruning for Queries
	Checking if Partition Pruning Happens for a Query
	What SQL Constructs Work with Partition Pruning
	Dynamic Partition Pruning

	Partition Key Columns
	Setting Different File Formats for Partitions
	Managing Partitions
	Using Partitioning with Kudu Tables
	Keeping Statistics Up to Date for Partitioned Tables

	How Impala Works with Hadoop File Formats
	Choosing the File Format for a Table
	Using Text Data Files with Impala Tables
	Query Performance for Impala Text Tables
	Creating Text Tables
	Data Files for Text Tables
	Loading Data into Impala Text Tables
	Using LZO-Compressed Text Files
	Using gzip, bzip2, or Snappy-Compressed Text Files

	Using the Parquet File Format with Impala Tables
	Creating Parquet Tables in Impala
	Loading Data into Parquet Tables
	Query Performance for Impala Parquet Tables
	Partitioning for Parquet Tables

	Snappy and GZip Compression for Parquet Data Files
	Example of Parquet Table with Snappy Compression
	Example of Parquet Table with GZip Compression
	Example of Uncompressed Parquet Table
	Examples of Sizes and Speeds for Compressed Parquet Tables
	Example of Copying Parquet Data Files

	Parquet Tables for Impala Complex Types
	Exchanging Parquet Data Files with Other Hadoop Components
	How Parquet Data Files Are Organized
	RLE and Dictionary Encoding for Parquet Data Files

	Compacting Data Files for Parquet Tables
	Schema Evolution for Parquet Tables
	Data Type Considerations for Parquet Tables

	Using the Avro File Format with Impala Tables
	Creating Avro Tables
	Using a Hive-Created Avro Table in Impala
	Specifying the Avro Schema through JSON
	Loading Data into an Avro Table
	Enabling Compression for Avro Tables
	How Impala Handles Avro Schema Evolution
	Data Type Considerations for Avro Tables
	Query Performance for Impala Avro Tables

	Using the RCFile File Format with Impala Tables
	Creating RCFile Tables and Loading Data
	Enabling Compression for RCFile Tables
	Query Performance for Impala RCFile Tables

	Using the SequenceFile File Format with Impala Tables
	Creating SequenceFile Tables and Loading Data
	Enabling Compression for SequenceFile Tables
	Query Performance for Impala SequenceFile Tables

	Using Impala to Query Kudu Tables
	Benefits of Using Kudu Tables with Impala
	Configuring Impala for Use with Kudu
	Cluster Topology for Kudu Tables

	Impala DDL Enhancements for Kudu Tables (CREATE TABLE and ALTER TABLE)
	Primary Key Columns for Kudu Tables
	Kudu-Specific Column Attributes for CREATE TABLE
	PRIMARY KEY Attribute
	NULL | NOT NULL Attribute
	DEFAULT Attribute
	ENCODING Attribute
	COMPRESSION Attribute
	BLOCK_SIZE Attribute

	Partitioning for Kudu Tables
	Hash Partitioning
	Range Partitioning
	Working with Partitioning in Kudu Tables

	Handling Date, Time, or Timestamp Data with Kudu
	How Impala Handles Kudu Metadata

	Loading Data into Kudu Tables
	Impala DML Support for Kudu Tables (INSERT, UPDATE, DELETE, UPSERT)
	Consistency Considerations for Kudu Tables
	Security Considerations for Kudu Tables
	Impala Query Performance for Kudu Tables

	Using Impala to Query HBase Tables
	Overview of Using HBase with Impala
	Configuring HBase for Use with Impala
	Supported Data Types for HBase Columns
	Performance Considerations for the Impala-HBase Integration
	Use Cases for Querying HBase through Impala
	Loading Data into an HBase Table
	Limitations and Restrictions of the Impala and HBase Integration
	Examples of Querying HBase Tables from Impala

	Using Impala with the Amazon S3 Filesystem
	How Impala SQL Statements Work with S3
	Specifying Impala Credentials to Access Data in S3
	Loading Data into S3 for Impala Queries
	Using Impala DML Statements for S3 Data
	Manually Loading Data into Impala Tables on S3

	Creating Impala Databases, Tables, and Partitions for Data Stored on S3
	Internal and External Tables Located on S3
	Running and Tuning Impala Queries for Data Stored on S3
	Understanding and Tuning Impala Query Performance for S3 Data

	Restrictions on Impala Support for S3
	Best Practices for Using Impala with S3

	Using Impala with the Azure Data Lake Store (ADLS)
	Prerequisites
	How Impala SQL Statements Work with ADLS
	Specifying Impala Credentials to Access Data in ADLS
	Loading Data into ADLS for Impala Queries
	Using Impala DML Statements for ADLS Data
	Manually Loading Data into Impala Tables on ADLS

	Creating Impala Databases, Tables, and Partitions for Data Stored on ADLS
	Internal and External Tables Located on ADLS
	Running and Tuning Impala Queries for Data Stored on ADLS
	Understanding and Tuning Impala Query Performance for ADLS Data

	Restrictions on Impala Support for ADLS
	Best Practices for Using Impala with ADLS

	Using Impala with Isilon Storage
	Using Impala Logging
	Locations and Names of Impala Log Files
	Managing Impala Logs
	Rotating Impala Logs
	Reviewing Impala Logs
	Understanding Impala Log Contents
	Setting Logging Levels
	Redacting Sensitive Information from Impala Log Files

	Troubleshooting Impala
	Troubleshooting Impala SQL Syntax Issues
	Troubleshooting I/O Capacity Problems
	Impala Troubleshooting Quick Reference
	Impala Web User Interface for Debugging
	Debug Web UI for impalad
	Main Page
	Backends Page
	Catalog Page
	Logs Page
	Memz Page
	Metrics Page
	Queries Page
	Sessions Page
	Threadz Page
	Varz Page

	Breakpad Minidumps for Impala (Impala 2.6 or higher only)
	Enabling or Disabling Minidump Generation
	Specifying the Location for Minidump Files
	Controlling the Number of Minidump Files
	Detecting Crash Events
	Demonstration of Breakpad Feature

	Ports Used by Impala
	Impala Reserved Words
	List of Current Reserved Words
	Planning for Future Reserved Words

	Impala Frequently Asked Questions
	Impala Release Notes
	Impala Release Notes
	New Features in Apache Impala
	New Features in Impala 2.11
	New Features in Impala 2.10
	New Features in Impala 2.9
	New Features in Impala 2.8
	New Features in Impala 2.7
	New Features in Impala 2.6
	New Features in Impala 2.5
	New Features in Impala 2.4
	New Features in Impala 2.3
	New Features in Impala 2.8
	New Features in Impala 2.1
	New Features in Impala 2.0
	New Features in Impala 1.4
	New Features in Impala 1.3.2
	New Features in Impala 1.3.1
	New Features in Impala 1.3
	New Features in Impala 1.2.4
	New Features in Impala 1.2.3
	New Features in Impala 1.2.2
	New Features in Impala 1.2.1
	New Features in Impala 1.2.0 (Beta)
	New Features in Impala 1.1.1
	New Features in Impala 1.1
	New Features in Impala 1.0.1
	New Features in Impala 1.0
	New Features in Version 0.7 of the Impala Beta Release
	New Features in Version 0.6 of the Impala Beta Release
	New Features in Version 0.5 of the Impala Beta Release
	New Features in Version 0.4 of the Impala Beta Release
	New Features in Version 0.3 of the Impala Beta Release
	New Features in Version 0.2 of the Impala Beta Release

	Incompatible Changes and Limitations in Apache Impala
	Incompatible Changes Introduced in Impala 2.11.x
	Incompatible Changes Introduced in Impala 2.10.x
	Incompatible Changes Introduced in Impala 2.9.x
	Incompatible Changes Introduced in Impala 2.8.x
	Incompatible Changes Introduced in Impala 2.7.x
	Incompatible Changes Introduced in Impala 2.6.x
	Incompatible Changes Introduced in Impala 2.5.x
	Incompatible Changes Introduced in Impala 2.4.x
	Incompatible Changes Introduced in Impala 2.3.x
	Incompatible Changes Introduced in Impala 2.2.x
	Incompatible Changes Introduced in Impala 2.1.x
	Incompatible Changes Introduced in Impala 2.0.5
	Incompatible Changes Introduced in Impala 2.0.4
	Incompatible Changes Introduced in Impala 2.0.3
	Incompatible Changes Introduced in Impala 2.0.2
	Incompatible Changes Introduced in Impala 2.0.1
	Incompatible Changes Introduced in Impala 2.0.0
	Incompatible Changes Introduced in Impala 1.4.4
	Incompatible Changes Introduced in Impala 1.4.3
	Incompatible Changes Introduced in Impala 1.4.2
	Incompatible Changes Introduced in Impala 1.4.1
	Incompatible Changes Introduced in Impala 1.4.0
	Incompatible Changes Introduced in Impala 1.3.3
	Incompatible Changes Introduced in Impala 1.3.2
	Incompatible Changes Introduced in Impala 1.3.1
	Incompatible Changes Introduced in Impala 1.3.0
	Incompatible Changes Introduced in Impala 1.2.4
	Incompatible Changes Introduced in Impala 1.2.3
	Incompatible Changes Introduced in Impala 1.2.2
	Incompatible Changes Introduced in Impala 1.2.1
	Incompatible Changes Introduced in Impala 1.2.0 (Beta)
	Incompatible Changes Introduced in Impala 1.1.1
	Incompatible Change Introduced in Impala 1.1
	Incompatible Changes Introduced in Impala 1.0

	Known Issues and Workarounds in Impala
	Impala Known Issues: Startup
	Problem retrieving FQDN causes startup problem on kerberized clusters

	Impala Known Issues: Crashes and Hangs
	Altering Kudu table schema outside of Impala may result in crash on read
	Queries that take a long time to plan can cause webserver to block other queries
	Linking IR UDF module to main module crashes Impala
	Setting BATCH_SIZE query option too large can cause a crash
	Impala should not crash for invalid avro serialized data
	Queries may hang on server-to-server exchange errors
	Impalad is crashing if udf jar is not available in hdfs location for first time

	Impala Known Issues: Performance
	Slow queries for Parquet tables with convert_legacy_hive_parquet_utc_timestamps=true
	Slow DDL statements for tables with large number of partitions
	Interaction of File Handle Cache with HDFS Appends and Short-Circuit Reads

	Impala Known Issues: Usability
	Impala shell tarball is not usable on systems with setuptools versions where '0.7' is a substring of the full version string
	Unexpected privileges in show output
	Less than 100% progress on completed simple SELECT queries
	Unexpected column overflow behavior with INT datatypes

	Impala Known Issues: JDBC and ODBC Drivers
	ImpalaODBC: Can not get the value in the SQLGetData(m-x th column) after the SQLBindCol(m th column)

	Impala Known Issues: Security
	Malicious user can gain unauthorized access to Kudu table data via Impala
	Kerberos tickets must be renewable

	Impala Known Issues: Resources
	Configuration to prevent crashes caused by thread resource limits
	Memory usage when compact_catalog_topic flag enabled
	Kerberos initialization errors due to high memory usage
	DROP TABLE PURGE on S3A table may not delete externally written files
	Impala catalogd heap issues when upgrading to Impala 2.5
	Breakpad minidumps can be very large when the thread count is high
	Parquet scanner memory increase after IMPALA-2736
	Process mem limit does not account for the JVM's memory usage
	Fix issues with the legacy join and agg nodes using --enable_partitioned_hash_join=false and --enable_partitioned_aggregation=false

	Impala Known Issues: Correctness
	Parquet scanner memory bug: I/O buffer is attached to output batch while scratch batch rows still reference it
	ABS(n) where n is the lowest bound for the int types returns negative values
	Java udf expression returning string in group by can give incorrect results.
	Incorrect assignment of NULL checking predicate through an outer join of a nested collection.
	Incorrect result due to constant evaluation in query with outer join
	Incorrect assignment of an inner join On-clause predicate through an outer join.
	Impala may use incorrect bit order with BIT_PACKED encoding
	BST between 1972 and 1995
	parse_url() returns incorrect result if @ character in URL
	% escaping does not work correctly when occurs at the end in a LIKE clause
	ORDER BY rand() does not work.
	Duplicated column in inline view causes dropping null slots during scan
	Incorrect assignment of predicates through an outer join in an inline view.
	Crash: impala::Coordinator::ValidateCollectionSlots
	Incorrect assignment of On-clause predicate inside inline view with an outer join.
	Wrong assignment of having clause predicate across outer join
	Wrong plan of NOT IN aggregate subquery when a constant is used in subquery predicate

	Impala Known Issues: Metadata
	Catalogd may crash when loading metadata for tables with many partitions, many columns and with incremental stats
	Can't update stats manually via alter table after upgrading to Impala 2.0

	Impala Known Issues: Interoperability
	DESCRIBE FORMATTED gives error on Avro table
	Deviation from Hive behavior: Impala does not do implicit casts between string and numeric and boolean types.
	Deviation from Hive behavior: Out of range values float/double values are returned as maximum allowed value of type (Hive returns NULL)
	Configuration needed for Flume to be compatible with Impala
	Avro Scanner fails to parse some schemas
	Impala BE cannot parse Avro schema that contains a trailing semi-colon
	Fix decompressor to allow parsing gzips with multiple streams
	Impala incorrectly handles text data when the new line character \n\r is split between different HDFS block
	Invalid bool value not reported as a scanner error
	Incorrect results with basic predicate on CHAR typed column.

	Impala Known Issues: Limitations
	Set limits on size of expression trees
	Impala does not support running on clusters with federated namespaces

	Impala Known Issues: Miscellaneous / Older Issues
	A failed CTAS does not drop the table if the insert fails.
	Casting scenarios with invalid/inconsistent results
	Support individual memory allocations larger than 1 GB
	Impala Parser issue when using fully qualified table names that start with a number.
	Impala should tolerate bad locale settings
	Log Level 3 Not Recommended for Impala

	Fixed Issues in Apache Impala
	Issues Fixed in Impala 2.1.10
	Issues Fixed in Impala 2.10.0
	Issues Fixed in Impala 2.9.0
	Issues Fixed in Impala 2.8.0
	Issues Fixed in Impala 2.7.0
	Issues Fixed in Impala 2.6.3
	Issues Fixed in Impala 2.6.2
	Issues Fixed in Impala 2.6.0
	RuntimeState::error_log_ crashes
	HiveUdfCall::Open() produces unsynchronized access to JniUtil::global_refs_ vector
	HBaseTableWriter::CreatePutList() produces unsynchronized access to JniUtil::global_refs_ vector
	Stress test failure: sorter.cc:745] Check failed: i == 0 (1 vs. 0)
	String data coming out of agg can be corrupted by blocking operators
	CTAS with subquery throws AuthzException
	Crash on inserting into table with binary and parquet
	RowBatch::MaxTupleBufferSize() calculation incorrect, may lead to memory corruption
	Thrift buffer overflows when serialize more than 3355443200 bytes in impala
	Altering table partition's storage format is not working and crashing the daemon
	Race condition may cause scanners to spin with runtime filters on Avro or Sequence files

	Issues Fixed in Impala 2.5.4
	Issues Fixed in Impala 2.5.2
	Issues Fixed in Impala 2.5.1
	Issues Fixed in Impala 2.5.0
	Stress test hit assert in LLVM: external function could not be resolved
	Impalad is crashing if udf jar is not available in hdfs location for first time
	PAGG hits mem_limit when switching to I/O buffers
	Prevent migrating incorrectly inferred identity predicates into inline views
	Fix migration/assignment of On-clause predicates inside inline views
	Wrong plan of NOT IN aggregate subquery when a constant is used in subquery predicate
	Parquet DictDecoders accumulate throughout query
	Planner doesn't set the has_local_target field correctly
	MemPool allocation growth behavior
	Drop partition operations don't follow the catalog's locking protocol
	HAVING clause without aggregation not applied properly
	Hit DCHECK Check failed: HasDateOrTime()
	Aggregation spill loop gives up too early leading to mem limit exceeded errors
	DataStreamSender::Channel::CloseInternal() does not close the channel on an error.
	Codegen does not catch exceptions in FROM_UNIXTIME()
	Impala returns wrong result for function 'conv(bigint, from_base, to_base)'

	Issues Fixed in Impala 2.4.1
	Issues Fixed in Impala 2.4.0
	Issues Fixed in Impala 2.3.4
	Issues Fixed in Impala 2.3.2
	SEGV in AnalyticEvalNode touching NULL input_stream_
	Free local allocations per row batch in non-partitioned AGG and HJ
	Free local allocations once for every row batch when building hash tables
	Prevent migrating incorrectly inferred identity predicates into inline views
	Fix GRANTs on URIs with uppercase letters
	Avoid sending large partition stats objects over thrift
	Throw AnalysisError if table properties are too large (for the Hive metastore)
	Make MAX_PAGE_HEADER_SIZE configurable
	reduce scanner memory usage
	Handle error when distinct and aggregates are used with a having clause
	Handle error when star based select item and aggregate are incorrectly used
	Refactor MemPool usage in HBase scan node
	Fix migration/assignment of On-clause predicates inside inline views
	DCHECK in parquet scanner after block read error
	PAGG hits mem_limit when switching to I/O buffers
	Fix check failed: sorter_runs_.back()->is_pinned_
	Don't ignore Status returned by DataStreamRecvr::CreateMerger()
	DataStreamSender::Send() does not return an error status if SendBatch() failed
	Re-enable SSL and Kerberos on server-server

	Issues Fixed in Impala 2.3.1
	Issues Fixed in Impala 2.3.0
	Fixes for Serious Errors
	Fixes for Correctness Errors

	Issues Fixed in Impala 2.2.10
	Issues Fixed in Impala 2.2.9
	Query return empty result if it contains NullLiteral in inlineview
	HBase scan node uses 2-4x memory after upgrade to Impala 2.2.8
	Fix migration/assignment of On-clause predicates inside inline views
	Fix wrong predicate assignment in outer joins
	Avoid sending large partition stats objects over thrift
	Avoid overflow when adding large intervals to TIMESTAMPs
	Analysis exception when a binary operator contains an IN operator with values
	Make MAX_PAGE_HEADER_SIZE configurable
	Fix spilling sorts with var-len slots that are NULL or empty.
	Work-around IMPALA-2344: Fail query with OOM in case block->Pin() fails
	Crash (likely race) tearing down BufferedBlockMgr on query failure
	QueryExecState doesn't check for query cancellation or errors
	Impala throws IllegalStateException when inserting data into a partition while select subquery group by partition columns

	Issues Fixed in Impala 2.2.8
	Impala is unable to read hive tables created with the "STORED AS AVRO" clause
	make Parquet scanner fail query if the file size metadata is stale
	Avoid allocating StringBuffer > 1GB in ScannerContext::Stream::GetBytesInternal()
	Disallow long (1<<30) strings in group_concat()
	avoid FnvHash64to32 with empty inputs
	The catalog does not close the connection to HMS during table invalidation
	Wrong DCHECK in PHJ::ProcessProbeBatch
	Avoid cardinality 0 in scan nodes of small tables and low selectivity

	Issues Fixed in Impala 2.2.7
	Warn if table stats are potentially corrupt.
	Pass correct child node in 2nd phase merge aggregation.
	Set the output smap of an EmptySetNode produced from an empty inline view.
	Set an InsertStmt's result exprs from the source statement's result exprs.
	Fix planning of empty union operands with analytics.
	Retain eq predicates bound by grouping slots with complex grouping exprs.
	Row count not set for empty partition when spec is used with compute incremental stats
	Explicit aliases + ordinals analysis bug
	Fix TupleIsNullPredicate to return false if no tuples are nullable.
	fix Expr::ComputeResultsLayout() logic
	Substitute an InsertStmt's partition key exprs with the root node's smap.

	Issues Fixed in Impala Impala 2.2.5
	Impala DML/DDL operations corrupt table metadata leading to Hive query failures
	Avoiding a DCHECK of NULL hash table in spilled right joins
	Bug in PrintTColumnValue caused wrong stats for TINYINT partition cols
	Where clause does not propagate to joins inside nested views
	Add effective_user() builtin
	Make UTC to local TimestampValue conversion faster.
	Workaround IMPALA-1619 in BufferedBlockMgr::ConsumeMemory()

	Issues Fixed in Impala 2.2.3
	Enable using Isilon as the underlying filesystem.
	Expand set of supported timezones.
	Impala Timestamp ISO-8601 Support.
	Fix wrong warning when insert overwrite to empty table
	Expand parsing of decimals to include scientific notation

	Issues Fixed in Impala 2.2.1
	Issues Fixed in Impala 2.2.0
	Altering a column's type causes column stats to stop sticking for that column
	Impala may leak or use too many file descriptors
	Spurious stale block locality messages
	DROP TABLE fails after COMPUTE STATS and ALTER TABLE RENAME to a different database.
	IMPALA-1556 causes memory leak with secure connections
	unix_timestamp() does not return correct time
	Impala incorrectly handles text data missing a newline on the last line
	Impala's ACLs check do not consider all group ACLs, only checked first one.
	Fix infinite loop opening or closing file with invalid metadata
	Cannot write Parquet files when values are larger than 64KB
	Impala Will Not Run on Certain Intel CPUs

	Issues Fixed in Impala 2.1.10
	Issues Fixed in Impala 2.1.7
	Query return empty result if it contains NullLiteral in inlineview
	Fix edge cases for decimal/integer cast
	Constant filter expressions are not checked for errors and state cleanup on exception / DCHECK on destroying an ExprContext
	QueryExecState does not check for query cancellation or errors

	Issues Fixed in Impala 2.1.6
	Wrong DCHECK in PHJ::ProcessProbeBatch
	LargestSpilledPartition was not checking if partition is closed
	Avoid cardinality 0 in scan nodes of small tables and low selectivity
	fix Expr::ComputeResultsLayout() logic
	Properly unescape string value for HBase filters
	Avoiding a DCHECK of NULL hash table in spilled right joins

	Issues Fixed in Impala 2.1.5
	Avoid calling ProcessBatch with out_batch->AtCapacity in right joins

	Issues Fixed in Impala 2.1.4
	Crash: impala::TupleIsNullPredicate::Prepare
	Expand parsing of decimals to include scientific notation
	INSERT/CTAS evaluates and applies constant predicates.
	Assign predicates below analytic functions with a compatible partition by clause
	FIRST_VALUE may produce incorrect results with preceding windows
	FIRST_VALUE rewrite fn type might not match slot type
	AnalyticEvalNode cannot handle partition/order by exprs with NaN
	AnalyticEvalNode not properly handling nullable tuples

	Issues Fixed in Impala 2.1.3
	Add compatibility flag for Hive-Parquet-Timestamps
	Use snprintf() instead of lexical_cast() in float-to-string casts
	Fix partition spilling cleanup when new stream OOMs
	Impala's ACLs check do not consider all group ACLs, only checked first one.
	Fix infinite loop opening or closing file with invalid metadata
	external-data-source-executor leaking global jni refs
	Spurious stale block locality messages

	Issues Fixed in Impala 2.1.2
	Impala incorrectly handles double numbers with more than 19 significant decimal digits
	unix_timestamp() does not return correct time
	Row Count Mismatch: Partition pruning with NULL
	Fetch column stats in bulk using new (Hive .13) HMS APIs

	Issues Fixed in Impala 2.1.1
	IMPALA-1556 causes memory leak with secure connections
	TSaslServerTransport::Factory::getTransport() leaks transport map entries

	Issues Fixed in Impala 2.1.0
	Kerberos fetches 3x slower
	Compressed file needs to be hold on entirely in Memory
	Cannot read hbase metadata with NullPointerException: null
	Serious errors / crashes

	Issues Fixed in Impala 2.0.5
	Issues Fixed in Impala 2.0.4
	Add compatibility flag for Hive-Parquet-Timestamps
	IoMgr infinite loop opening/closing file when shorter than cached metadata size

	Issues Fixed in Impala 2.0.3
	Anti join could produce incorrect results when spilling
	Row Count Mismatch: Partition pruning with NULL
	Fetch column stats in bulk using new (Hive .13) HMS APIs

	Issues Fixed in Impala 2.0.2
	GROUP BY on STRING column produces inconsistent results
	Fix leaked file descriptor and excessive file descriptor use
	unix_timestamp() does not return correct time
	Impala should randomly select cached replica
	Impala does not always give short name to Llama.
	accept unmangled native UDF symbols

	Issues Fixed in Impala 2.0.1
	Queries fail with metastore exception after upgrade and compute stats

	Issues Fixed in Impala 2.0.0
	Join Hint is dropped when used inside a view
	WHERE condition ignored in simple query with RIGHT JOIN
	Query with self joined table may produce incorrect results
	Incorrect plan after reordering predicates (inner join following outer join)
	Combining fragments with compatible data partitions can lead to incorrect results due to type incompatibilities (missing casts).
	Predicate dropped: Inline view + DISTINCT aggregate in outer query
	Reuse of a column in JOIN predicate may lead to incorrect results
	Usage of TRUNC with string timestamp reliably crashes node
	Timestamp Cast Returns invalid TIMESTAMP
	IllegalStateException upon JOIN of DECIMAL columns with different precision
	Allow creating Avro tables without column definitions. Allow COMPUTE STATS to always work on Impala-created Avro tables.
	Ensure all webserver output is escaped
	Queries with union in inline view have empty resource requests
	Impala does not employ ACLs when checking path permissions for LOAD and INSERT
	Impala does not map principals to lowercase, affecting Sentry authorisation

	Issues Fixed in Impala 1.4.4
	Issues Fixed in Impala 1.4.3
	Issues Fixed in Impala 1.4.2
	Issues Fixed in Impala 1.4.1
	impalad terminating with Boost exception
	Impalad uses wrong string format when writing logs
	Update HS2 client API.
	Impalad catalog updates can fail with error: "IllegalArgumentException: fromKey out of range"
	"Total" time counter does not capture all the network transmit time
	Impala will crash when reading certain Avro files containing bytes data
	Support specifying a custom AuthorizationProvider in Impala

	Issues Fixed in Impala 1.4.0
	Failed DCHECK in disk-io-mgr-reader-context.cc:174
	impala-shell only works with ASCII characters
	The extended view definition SQL text in Views created by Impala should always have fully-qualified table names
	Impala forgets about partitions with non-existant locations
	CREATE TABLE LIKE fails if source is a view
	Improve partition pruning time
	Improve compute stats performance
	When I run CREATE TABLE new_table LIKE avro_table, the schema does not get mapped properly from an avro schema to a hive schema
	Race condition in IoMgr. Blocked ranges enqueued after cancel.
	Deadlock in scan node

	Issues Fixed in Impala 1.3.3
	Issues Fixed in Impala 1.3.2
	Failed DCHECK in disk-io-mgr-reader-context.cc:174

	Issues Fixed in Impala 1.3.1
	Impalad crashes when left joining inline view that has aggregate using distinct
	Incorrect result with group by query with null value in group by data
	Drop Function does not clear local library cache
	Compute stats doesn't propagate underlying error correctly
	Inserts should respect changes in partition location
	Text data with carriage returns generates wrong results for count(*)
	IO Mgr should take instance memory limit into account when creating io buffers
	Impala should provide an option for new sub directories to automatically inherit the permissions of the parent directory
	Illegal state exception (or crash) in query with UNION in inline view
	INSERT column reordering doesn't work with SELECT clause

	Issues Fixed in Impala 1.3.0
	Inner join after right join may produce wrong results
	Incorrect results with codegen on multi-column group by with NULLs.
	Using distinct inside aggregate function may cause incorrect result when using having clause
	Aggregation on union inside (inline) view not distributed properly.
	Wrong expression may be used in aggregate query if there are multiple similar expressions
	Incorrect results when changing the order of aggregates in the select list with codegen enabled
	Union queries give Wrong result in a UNION followed by SIGSEGV in another union
	String data in MR-produced parquet files may be read incorrectly
	Compute stats need to use quotes with identifiers that are Impala keywords
	COMPUTE STATS child queries do not inherit parent query options.
	COMPUTE STATS should update partitions in batches
	Fail early (in analysis) when COMPUTE STATS is run against Avro table with no columns

	Issues Fixed in the 1.2.4 Release
	The Catalog Server exits with an OOM error after a certain number of CREATE statements
	Catalog Server consumes excessive cpu cycle
	Query against Avro table crashes Impala with codegen enabled
	Statestore seems to send concurrent heartbeats to the same subscriber leading to repeated "Subscriber 'hostname' is registering with statestore, ignoring update" messages
	Join predicate incorrectly ignored
	Query result differing between Impala and Hive
	ArrayIndexOutOfBoundsException / Invalid query handle when reading large HBase cell
	select with distinct and full outer join, impalad coredump
	Impala cannot load tables with more than Short.MAX_VALUE number of partitions
	Various issues with HBase row key specification

	Issues Fixed in the 1.2.3 Release
	Impala cannot read Parquet files with multiple row groups

	Issues Fixed in the 1.2.2 Release
	Order of table references in FROM clause is critical for optimal performance
	Parquet in CDH4.5 writes data files that are sometimes unreadable by Impala
	Deadlock in statestore when unregistering a subscriber and building a topic update
	IllegalStateException when doing a union involving a group by
	Impala Parquet Writer hit DCHECK in RleEncoder
	Hive UDF jars cannot be loaded by the FE

	Issues Fixed in the 1.2.1 Release
	Scanners use too much memory when reading past scan range
	Join node consumes memory way beyond mem-limit
	Excessive memory consumption when query tables with 1k columns (Parquet file)

	Issues Fixed in the 1.2.0 Beta Release
	Issues Fixed in the 1.1.1 Release
	Unexpected LLVM Crash When Querying Doubles on CentOS 5.x
	"block size is too big" error with Snappy-compressed RCFile containing null
	Cannot query RC file for table that has more columns than the data file
	Views Sometimes Not Utilizing Partition Pruning
	Update the serde name we write into the metastore for Parquet tables
	Selective queries over large tables produce unnecessary memory consumption
	Impala stopped to query AVRO tables
	Impala continues to allocate more memory even though it has exceed its mem-limit

	Issues Fixed in the 1.1.0 Release
	10-20% perf regression for most queries across all table formats
	planner fails with "Join requires at least one equality predicate between the two tables" when "from" table order does not match "where" join order
	Parquet writer uses excessive memory with partitions
	Comments in impala-shell in interactive mode are not handled properly causing syntax errors or wrong results
	Cancelled queries sometimes aren't removed from the inflight query list
	Impala's 1.0.1 Shell Broke Python 2.4 Compatibility (AttributeError: 'module' object has no attribute 'field_size_limit)

	Issues Fixed in the 1.0.1 Release
	Impala parquet scanner cannot read all data files generated by other frameworks
	Impala is unable to query RCFile tables which describe fewer columns than the file's header.
	Impala does not correctly substitute _HOST with hostname in --principal
	HBase query missed the last region
	Hbase region changes are not handled correctly
	Query state for successful create table is EXCEPTION
	Double check release of JNI-allocated byte-strings
	Impala returns 0 for bad time values in UNIX_TIMESTAMP, Hive returns NULL
	INSERT INTO TABLE SELECT <constant> does not work.

	Issues Fixed in the 1.0 GA Release
	Undeterministically receive "ERROR: unknown row bach destination..." and "ERROR: Invalid query handle" from impala shell when running union query
	Insert with NULL partition keys results in SIGSEGV.
	INSERT queries don't show completed profiles on the debug webpage
	Impala HBase scan is very slow
	Add some library version validation logic to impalad when loading impala-lzo shared library
	Problems inserting into tables with TIMESTAMP partition columns leading table metadata loading failures and failed dchecks
	Ctrl-C sometimes interrupts shell in system call, rather than cancelling query
	Empty string partition value causes metastore update failure
	Round() does not output the right precision
	Cannot cast string literal to string
	Excessive mem usage for certain queries which are very selective
	HdfsScanNode crashes in UpdateCounters
	Parquet performance issues on large dataset
	impala not populating hive metadata correctly for create table
	impala daemons die if statestore goes down
	Constant SELECT clauses do not work in subqueries
	Right outer Join includes NULLs as well and hence wrong result count
	Parquet scanner hangs for some queries

	Issues Fixed in Version 0.7 of the Beta Release
	Impala does not gracefully handle unsupported Hive table types (INDEX and VIEW tables)
	DDL statements (CREATE/ALTER/DROP TABLE) are not supported in the Impala Beta Release
	Avro is not supported in the Impala Beta Release
	Impala does not currently allow limiting the memory consumption of a single query
	Aggregate of a subquery result set returns wrong results if the subquery contains a 'limit' and data is distributed across multiple nodes
	Partition pruning for arbitrary predicates that are fully bound by a particular partition column

	Issues Fixed in Version 0.6 of the Beta Release
	Impala reads the NameNode address and port as command line parameters
	Queries may fail on secure environment due to impalad Kerberos ticket expiration
	Concurrent queries may fail when Impala uses Thrift to communicate with the Hive Metastore
	impalad fails to start if unable to connect to the Hive Metastore
	Impala treats database names as case-sensitive in some contexts
	Impala does not ignore hidden HDFS files

	Issues Fixed in Version 0.5 of the Beta Release
	Impala may have reduced performance on tables that contain a large number of partitions
	Backend client connections not getting cached causes an observable latency in secure clusters
	Concurrent queries may fail with error: "Table object has not been been initialised : `PARTITIONS`"
	UNIX_TIMESTAMP format behaviour deviates from Hive when format matches a prefix of the time value

	Issues Fixed in Version 0.4 of the Beta Release
	Impala fails to refresh the Hive metastore if a Hive temporary configuration file is removed
	lpad/rpad builtin functions is not correct.
	Files with .gz extension reported as 'not supported'
	Queries with large limits would hang.
	Order by on a string column produces incorrect results if there are empty strings

	Issues Fixed in Version 0.3 of the Beta Release
	All table loading errors show as unknown table
	A table that cannot be loaded will disappear from SHOW TABLES
	Impala cannot read from HBase tables that are not created as external tables in the hive metastore.
	Certain queries that contain OUTER JOINs may return incorrect results

	Issues Fixed in Version 0.2 of the Beta Release
	Subqueries which contain aggregates cannot be joined with other tables or Impala may crash
	An insert with a limit that runs as more than one query fragment inserts more rows than the limit.
	Query with limit clause might fail.
	Files in unsupported compression formats are read as plain text.
	Impala server raises a null pointer exception when running an HBase query.

